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Abstract: The development of UAV sensors has made it possible to obtain a diverse array of spectral
images in a single flight. In this study, high-resolution UAV-derived images of urban areas were
employed to create land cover maps, including car-road, sidewalk, and street vegetation. A total of
nine orthoimages were produced, and the variables effective in producing UAV-based land cover
maps were identified. Based on analyses of the object-based images, 126 variables were derived
by computing 14 statistical values for each image. The random forest (RF) classifier was used to
evaluate the priority of the 126 variables. This was followed by optimizing the RF through variable
reduction and by comparing the initial and optimized RF, the utility of the high-priority variable was
evaluated. Computing variable importance, the most influential variables were evaluated in the order
of normalized digital surface model (nDSM), normalized difference vegetation index (NDVI), land
surface temperature (LST), soil adjusted vegetation index (SAVI), blue, green, red, rededge. Finally,
no significant changes between initial and optimized RF in the classification were observed from a
series of analyses even though the reduced variables number was applied for the classification.

Keywords: OBIA; unmanned aerial vehicle; variable importance; random forest; land cover classification

1. Introduction

Land cover maps are produced in line with specific classification systems based on
the optical and physical conditions of the ground surface and serve as primary data for
assessing the current status of an area. At the urban level, the maps are used as a scientific
basis for city planning, including analyses of land aptitude, environmental assessments, and
urban regeneration; whereas academically, they play an essential role in various studies, for
instance thermal environment analyses, airflow simulations, and ecosystem surveys [1–5].
In the Republic of Korea, the national land cover maps are updated every 1–10 years,
depending on the government’s budget allocations. However, land cover mismatch may
occur due to the different update cycles of satellite and digital aerial imagery in the process
of land cover map production. Since the minimum classification criteria of these national-
level analyses are set to classify all land cover types > 2500 m2, these maps are limited by
low precision for medium- and small-sized areas. For example, even if there is a small
area of grass on the road, it was not classified as grass but as a road because the area is
smaller than the criteria. Accordingly, it is necessary to establish a land cover map with
high productivity and accuracy for medium and small-sized areas [6–9].

With the recent advancement of unmanned aerial vehicles (UAVs) and relevant sensor
technologies, spectroscopic and position accuracy have increased and are readily employed
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in remote sensing analyses with aerial surveys [10–15]. In addition, the development of
4-band multi-spectral sensors, combined with very high resolution (VHR) RGB or thermal
infrared sensors, have made it possible to obtain a diverse array of spectral imagery in a
single flight. Furthermore, UAV imagery has fewer spatiotemporal constraints compared to
satellite and other aerial images and therefore offers greater flexibility for obtaining images
with high spatiotemporal resolutions [16–18].

Researchers currently use high spatial resolution UAV imagery to classify and analyze
land cover types of specific areas [19–22]. However, high-resolution imagery maintains
high levels of spectral variability for the same object [23–25]; as more pixels are required
to represent an individual object, and each pixel value captures the variability in image
structure and background information. Therefore, when using a pixel-based image analysis
method for high-resolution UAV imagery, it is common for the number of pixels in a
single image to be >10,000,000 s, resulting in the possibility of lower accuracies due to the
fluctuations in the spectral value.

Object-based image analysis (OBIA) has recently emerged as a new paradigm for
controlling spectral variability, replacing pre-existing pixel-based approaches. Whereas
pixel-based approaches classify each pixel separately, object-based approaches group ho-
mogeneous and consecutive pixels to create and classify ground objects. Accordingly,
such object-based approaches can reduce the variability of spectral values caused by voids,
shadows, and textures. Additionally, data on accumulation, shape, and texture can be
considered comprehensively, further improving classification accuracy along with various
vector and geographic image data [26–29].

Indeed, many researchers have been utilizing data collected from UAVs for mapping
land cover of small and medium-sized areas via OBIA in conjunction with machine learning
methods [20,30–32]. Kilwenge et al. [33] utilized a fixed-wing UAV to obtain multispectral
(4 bands) images, achieving 95% classification accuracy for five items—banana plantation,
bare land, buildings, other vegetation, and water. Natesan et al. [34] installed RGB and
NIR cameras onto rotary-wing UAVs to photograph riverine areas (200 m x 100 m) for land
cover mapping, achieving a 78% accuracy for four items—grass, water, trees, and road.
Lv et al. [35] utilized UAV-based RGB photographs to compare image filters to classify
seven residential area targets—buildings, grass, road, trees, water, soil, and shadows.
Additionally, Geipel et al. [36] constructed a UAV platform to predict corn yield via a UAV-
based RGB sensor. Although UAV-based research in the environmental field remains in its
developmental stages, its utilization in the field of strictly urban land cover classification
and analysis is insufficient.

Complex landscapes such as urban environments have led to the difficulties in clas-
sification; it has been well known as the issue of spectral confusion [37,38]. In urban
environments, classification algorithms based solely on spectral features cannot effectively
handle the issue [39]; however, extracting more features can be a solution. The UAVs have
the advantage of being able to produce data with various characteristics because they can
be equipped with various sensors. Here, the issue was which image was effective to use in
urban classification.

Therefore, this study evaluated the priority of UAV-based imagery to produce accept-
able land cover maps for urban environmental research. To this end, the following processes
were used: (1) UAVs were used to acquire multi-spectral images, and maps of vegetation
indices and topographic characteristics were derived; (2) image and variable effective for
land cover classification in urban areas were assessed via OBIA and random forest (RF);
and, (3) based on these results, image land cover was reclassified using reduced variables
to more thoroughly assess the applicability and accuracy of land cover classification via
UAV-derived images.
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2. Materials and Methods
2.1. Target Site and Research Processes

The entire campus of Changwon University in Changwon, Gyeongsangnam-do, South
Korea, was selected as the target area. The university contains various land cover types
within a relatively small area; thus, it was optimal to verify the applicability of urban land
cover maps produced via UAV-derived imagery (Figure 1). The UAV imaging range was set
as a rectangle of 623 m × 1138 m and included the area immediately outside the university.
The local topography is surrounded by mountains, with an average elevation of ~600 m
above sea level. Most university buildings are between five and eight stories, contain a
wide pedestrian path made of sidewalk block material, as well as a road area with cars and
pavement. In addition, there are numerous landscaping features, such as lawns, trees, etc.
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Figure 1. Study area (original UAV image-RGB).

The research process here can be simplified into five main steps (Figure 2): data acqui-
sition, image preprocessing, image segmentation, classification, and accuracy assessment.
Essential data collection consisted of UAV flights to obtain GCPs for producing orthoimages
so that multiple images could be overlapped for the same area. Image preprocessing was
conducted to identify images and variables effective in classifying land cover types within
this urban environment. To this end, the differences in the relative sizes of numerical
data were eliminated so an identical weight could be assigned to all images (this is dis-
cussed in detail in Section 2.2). Next, objects were created by grouping pixels with similar
characteristics through image segmentation and object creation. Accordingly, training
data were produced, applied across all variables that could be extracted from the UAV
imagery, and used to train an RF classifier to calculate variable importance. Through this
process, the most effective images and variables for classifying land cover in urban areas
were obtained, and the model was retrained according to this reduced image and variable
number. Lastly, accuracy comparisons and verifications were carried out to assess the
usefulness of classifying land cover in urban areas using UAV images and OBIA.
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Figure 2. Conceptual diagram of data acquisition, preprocessing, segmentation, classification, and
validation steps implemented to derive an object-based land cover map for an urban environment
from UAV imagery.

2.2. UAV Image Acquisition and Preprocessing

The UAV used in this study was a fixed-wing aircraft, eBeeX developed by Sensefly
(Cheseaux-sur-Lausanne, Switzerland), with a weight of ~1.4 kg, and a 116 cm wingspan.
The aircraft can fly at speeds of 40–110 km·h−1 for ≤90 min and can be equipped with
various sensors such as RGB, thermal infrared, and 5-band multi-spectral sensors and
built-in real-time/post-processed kinematic (RTK/PPK) functionality. We utilized Duet-T
(RGB + Thermal) and RedEdge-MX (Red, Green, Blue, Rededge, NIR) imagers in this study.
Filming was conducted on June 21, 2021, a notably clear sky day without clouds. The flights
were conducted under the following conditions: for the installation of the RedEdge-MX
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sensor, the ground sample distance (GSD) was set to 13 cm·pixel−1; whereas that of the
Duet-T sensor was set to 20 cm·pixel−1. Both vertical and horizontal redundancies were
set to 75%. The 25 ground control points (GCPs) seen in Figure 1 were established for the
aerial triangulation of the drone images.

The UAV photos collected were converted into orthoimages using Pix4D Mapper
software v.4.4.12 developed by Pix4D (Prilly, Switzerland), preparing datasets of Red,
Green, Blue, RedEdge, NIR band, digital surface model (DSM), digital elevation model
(DEM), and land surface temperature (LST). The five band images acquired from the
RedEdge-MX sensor were radiometrically corrected by a calibrated reflectance panel and
downwelling light sensor; images of the panel taken before and after each flight were
used to correct the reflectance values of the UAV images using known reflectance values in
post-processing; the downwelling light sensor, which was mounted on top of the UAV to
face upward, recorded the light conditions during flights and corrects the reflectance values
of the UAV images along with the images of the panel in post-processing. Additionally,
both the normalized difference vegetation index (NDVI) and soil adjusted vegetation index
(SAVI) were derived according to Equations (1) and (2). NDVI is an indicator of vegetation
obtained using red and NIR bands, where higher values indicate greater densities of live
vegetation. Alternatively, SAVI is an index used to correct NDVI for the effect of soil
brightness in areas with low vegetation cover. SAVI derived from Landsat satellite images
employs a soil brightness correction factor (L) of 0.5 to accommodate most land cover types
for adjusting the NIR and red band ratio [40]. Through a difference operation with DEM,
which represents the surface height of the DSM excluding natural features, the normalized
digital surface model (nDSM) was produced representing only the elevation of natural
features, excluding the pure surface. Employing nDSM in the classification process assumes
that a more effective classification of buildings and trees in the terrain is possible.

NDVI =
NIR − Red
NIR + Red

(1)

SAVI =
NIR − Red

NIR + Red + L
× (1 + L) (2)

All produced images were resampled with a GSD of 15 cm·pixel−1 based on the multi-
spectral images to identify street grass coverage planted between the roads for landscaping.
Since various UAV images were produced, the units of pixel values of the images were
different; For example, in the case of nDSM, the unit was meter, and in the case of LST,
celsius (◦C) was used. As Immitzer et al. [41] and Luca et al. [30] suggested, the relative size
of numerical data was removed at this stage, and the data was normalized within a common
range to reduce the influence of potential outliers at the segmentation and classification
stage, and reflect all values to the same degree of importance. Therefore, all input layers
were equally rescaled in a linear band with an 8-bit range from 0 to 255. Finally, since one
raster image was required as input data for performing image segmentation, a layer stack
process of merging RGB, RedEdge, NIR, NDVI, SAVI, LST, and nDSM was conducted.

2.3. Image Segmentation and Object Creation

Image segmentation is the process of grouping individual pixels in raster data with
similar spectral and specific shape characteristics into a single object. The shape and size
of an object can vary depending on the object-based weight setting [42]. This technique
enabled the calculation of average pixel values by considering that adjacent pixel groups
and the determination of pixels are included in each object. Image segmentation generalizes
the area within the raster to retain all feature data as a larger, contiguous area rather than a
finite unit of pixels [43]. Therefore, the reliability of OBIA is determined by appropriate
image segmentation, and classification accuracy may vary depending on these results. Here,
ArcGIS Pro v.2.8 developed by ESRI (Redlands, CA, USA) was used for image segmentation
and the image with nine orthoimages stacked was used. During image segmentation, the
weights used to create each object must be considered. Object creation can be adjusted
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by modifying spectral and spatial detail to values between 1 and 20. Spectral detail is
the relative importance of separating objects on spectral characteristics; for example, a
higher spectral detail value in a forested scene will result in greater discrimination between
the different tree species. Spatial detail is the relative importance of separating objects
based on spatial characteristics; a higher value is appropriate for a scene where features of
interest are small and clustered together [44]. Image segmentation is designed to improve
classification processing speed by reducing spectral complexities and large file sizes related
to fine spatial resolution; however, since the direct relationship between the input weight
value and image segmentation result is inherently multifaceted, the analyst must identify
appropriate criteria and methods via trial and error [45,46]. If one detail among two weights
is reduced, the corresponding raster data complexity and file size decrease. Generally,
image segmentation with a great spectral detail and low spatial detail is preferred due to
shorter processing times. In the case of smaller objects, it is possible to merge with the most
similar adjacent segments by adjusting the minimum segment size to less than the object
size. Here, the spectral detail was applied sequentially from 10 to 20 by units of 5, and
the spatial detail was converted to units of 5 for object creation. Next, spectral and spatial
details were adjusted by units of 1, the minimum segment size was sequentially applied
from 20 to 60 by units of 10, and small object sizes were merged with adjacent objects to
select final weights.

2.4. Land Cover Classification via Random Forest

Since land cover maps can provide primary research data at the urban level, the nine
classes selected here were designed to capture urban environments (Figure 2): buildings, car-
road, sidewalk, forest, grass, street-tree, street-grass, bare soil, and water; here, street-tree
and street-grass refer to green space for landscaping purposes. Roads were subdivided into
cars and pedestrians, including forests, street-trees, grass, and street-grass subdivisions. The
reason is that air pollutants such as fine dust and NOx are emitted from the vehicle spaces
but not from the sidewalks; thus, subclassifications were designed to specify pollutant-
generating spaces. In addition, in the case of the street-tree and street-grass, if the area was
below a certain threshold, it was classified as road cover, according to the land cover map
of the Ministry of Environment of South Korea. Street-tree and street-grass were included,
as these land cover types can be utilized for diverse aspects, such as lowering fine dust
particulates, creating wind paths, and lowering the thermal environment of urban areas.

The statistical values assigned to objects from UAV-based images to classify land cover
were as follows: count, area, mean, max, range, standard deviation (STD), sum, variety,
majority, minority, median, percentile (PCT), and nearby mean STD (NMS). Through this
process, 126 variables were derived by calculating 14 statistical values per image per
object. This study attempted to differentiate street-trees from spectrally similar forests,
as well as street-grass from grass, forest and grass maintained surrounding objects with
similar spectral characteristics; whereas street-tree and street-grass exist together with non-
vegetation roads, sidewalks, buildings, resulting in the substantial deviation of surrounding
spectral properties. Accordingly, the NMS variable was added so that the mean value of
the objects within 3 m could be compared via their standard deviation.

For the supervised classification training data, polygons in the range of 1000–5000
were constructed for the eight classes (excluding water). Only 165 polygons were selected
for water, as the riverside vegetation covered most riverine areas. All trained polygons
were manually selected through screen analysis while considering the distribution between
land cover grades and shading for the various colors characterizing the study area.

RF is an automatic, machine learning algorithm proposed by Breiman [47] consisting
of multiple decision tree sets and bootstrap aggregation (i.e., bagging). RF offers a method
for combining basic classifiers trained on slightly different training data; for example, one
decision tree is trained with identical samples, while another is trained without certain
samples. Although individual decision trees can be highly sensitive to noise in the training
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data, the derived results, by voting multiple trees by lowering the correlation between the
trees, show strong resistance to noise [48,49].

Although the RF classifier has numerous advantages, it is notably challenging to
secure the precise explanatory power of independent on dependent variables as with most
machine learning methods. Accordingly, increasing the variable number can make OBIA
classification a highly subjective and time-intensive task [50,51]. To address this issue,
measurements of varying importance were used to estimate which variables played the
most crucial role in predictive performance, thereby optimizing variable selection.

Training data sample collection is essential for the RF classifier. Congalton and
Green [52] emphasized the importance of collecting an adequate number of samples to
maintain a statistically valid representation of map accuracy. Since the areal ratios of land
cover are unequal, accuracy assessments can be statistically biased and imprecise despite
sampling; proportionate numbers of samples per land cover item were collected in the
present study. Among the 254,456 total image objects, 22,353 (8.8%) objects were selected as
training data. For RF learning, the percentage of validation data among the training data
was set to 30%. The number of trees in RF was set between the range of 100–1000, with a
maximum depth of trees between 5 and 10, and the minimum leaf size was between 1 and 3.
Through adjustments and alternations, an appropriate RF model was identified. Ultimately,
the number of trees was set to 500, with a maximum depth of 10, and a minimum leaf size
of 2. Variable importance was then calculated, the variables were optimized, retrained, and
compared to the original RF model under the same conditions.

The random points used for accuracy verification of the classified land cover maps
are shown in Figure 3. By creating a confusion matrix of classification accuracy, the pro-
ducer’s, user’s, and overall accuracy were calculated. For accuracy verification, 500 visually
interpreted verification points were randomly selected based on the original UAV images.
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3. Results and Discussion
3.1. Results of UAV Flight

As a result of UAV image collection, RGB, RedEdge, and NIR images were collected
from the Rededge-MX sensor totaling 5925 images. An additional 1132 RGB and LST
images were collected from the Duet-T sensor. Figure 4 presents the image results produced
by mosaicking the collected images; nine images were produced and assessed. As a result
of the geometric correction of the images using the GCPs, the Duet-T sensor-based images
showed a root-mean-square error (RMSE) of 0.033 m and 0.048 m in the x- and y-directions,
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respectively. Alternatively, the Rededge-MX sensor-based images maintained an RMSE of
0.056 m and 0.054 m in the x- and y-directions, respectively.
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3.2. Optimal Image Segmentation Weight

When selecting image segmentation weights, at spectral detail 10, the boundaries
between road and grass were obscured (Figure 5); while at spectral detail 15, there were
certain sections where road and sidewalk were not readily distinguished. At spectral detail
20, there was a tendency for objects to be (too) finely demarcated, even within the same
land cover class. In such cases, the boundaries between land cover classes are apparent;
however, since the object size is tiny, it may become susceptible to image noise. From
spectral or spatial detail 15, car-road and sidewalk began to be distinguished, although
there was no boundary between the asphalt-paved car-road and bare soil (consisting of
gravel). Accordingly, the conditions at which the boundary between car-road and bare
soil became clear were explored by increasing spectral detail. A more detailed adjustment
revealed that these boundaries were clear for each land cover class under a spectral detail
of 18 and spatial detail of 10, without objects being formed in excessive detail. When the
minimum segment size was set to 40, it was assumed that the object size was subdivided
into an appropriate size; indeed, as the boundary of the street-grass became clear, this
weight was selected.
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3.3. Land Cover Map Classification Results

Figure 6 shows the characteristics of the training data per class. For nDSM, the
interquartile ranges of building, forest, and street-tree were 69 to 100, 58 to 90, and 51 to 72,
respectively, and other land cover types had almost no ranges.; due to the characteristics
of the natural features, building, forest, and street-tree were clearly distinguished from
other land cover types. NDVI and SAVI showed distinctly higher trends in the vegetation
classes. For NDVI, the interquartile range of the vegetation classes was 231 to 243, and
the highest third quartile of other land cover types was under 167. In the case of SAVI,
the interquartile range of the vegetation classes was 144 to 207, and the highest third
quartile of other land cover types was under 114. Notably, the NDVI of the street-grass
presented a greater range of values due to the varying proportion of exposed grass and
soil components. Furthermore, most ranges nearly overlapped for the non-vegetation
classes, and it was found that although vegetation and non-vegetation could be broadly
distinguished using NDVI and SAVI, deciphering further detail was challenging, such as
car-road, sidewalk, and bare soil. For LST, the interquartile range of land cover types were
137 to 171 (building), 150 to 172 (car-road), 137 to 155 (sidewalk), 73 to 95 (forest), 83 to 104
(grass), 91 to 102 (street-tree), 95 to 115 (street-grass), 117 to 144 (bare soil), and 60 to 69
(water), respectively. Water was clearly distinguished and classified by significantly lower
values, followed by vegetation (e.g., forest and grass) still within a low range. Artificial
land cover types, such as building and car-road maintained higher LSTs; whereas the range
of bare soil values was widely distributed from vegetation to artificial cover types. For the
Red, Green and Blue images, the boxplots of car-road, sidewalk, and bare soil continuously
overlapped for all images, save for blue band reflectance values. In the case of Blue image,
the interquartile range of car-road, sidewalk, and bare soil were 19 to 26, 13 to 20, and 24 to
48, resplectively; although the boxplots overlapped a little, they were more differentiated
than the Red and Green images. For the NIR and rededge wavelengths, the range of
boxplots for most classes overlapped (except for water). Notably, the car-road class, mainly
consisting of black asphalt, had a narrower boxplot range than the sidewalk composed of
various colored blocks.
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in the top 40), NDVI (7), LST (7), SAVI (6), Blue (6), Green (4), Red (1), and Rededge (1).
nDSM and NDVI occupied the first to twelfth most important variables, whereas those from
13th onwards were diverse images and statistical values. Presumably, nDSM distinguished
building from trees via height measurements, while NDVI was effective in distinguishing
vegetation from non-vegetation classes. Among the vegetation indices, NDVI showed
higher importance than SAVI, likely as a result of NDVI presenting fewer overlapping
sections between the ranges of forest, grass, and street-tree. LST was distributed between
the ranks of 16–33, and as shown in the training data characteristics, it was an important
factor for distinguishing car-road, and sidewalk, as well as water. Most previous studies
have used multi-spectral images and vegetation indices such as NDVI [33–35] for larger,
regional-scale analyses; however, the results here suggest that LST can also be used in
urban area classification. As for previous studied that compared LST data acquired using
UAVs with in-situ LSTs, Song and Park (2020) [10] measured and compared UAV LST
and in-situ LST; the UAV LSTs exhibited differences of 4.5 ◦C (July) and 5.4 ◦C (August)
between sidewalk and car-road; for effective LST image utilization, it is considered best
that LST image is taken at noon in summer, when the influence of shadow is minimal
due to the highest solar altitude. Among the single spectral wavelengths, the blue image
occupied the highest importance rank, likely due to its increased ability to distinguish
car-road, sidewalk, and bare soil. The statistical values of variable importance were as
follows: PCT75 (6 variables), mean (6), NMS (5), majority (5), median (5), max (5), min
(4), minority (3), and STD (1). In nDSM, median, PCT75, and mean occupied the high
ranks, while in NDVI, mean, PCT75, and median were the most important. In NMS used to
distinguish street-tree from street-grass, nDSM and green images were the most important.
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Through variable importance, the model was reduced and optimized to the six images
of nDSM, NDVI, SAVI, LST, blue, and green, and seven variables of PCT75, mean, NSM,
median, majority, max, and min. The results of applying these models to the entire target
areas can be found in Figure 8. When predicting land cover through the model using all
126 variables, the area ratio per land cover class was: forest (19.2%) > car-road (16.8%) >
street-grass (16.6%) > street-tree (14.8%) > sidewalk (13.5%) > building (11.5%) > grass
(5.3%) > bare soil (2.2%) > and water (0.1%); whereas in the optimized RF of reduced
variables, the results were: forest (19.1%) > car-road (17.6%) > street-grass (16.4%) > street-
tree (14.7%) > sidewalk (12.2%) > building (11.6%) > grass (5.8%) > bare soil (2.5%) > and
water (0.1%), indicating that the overall area ratios were similar (≤1%), except for sidewalk;
further, there was no significant change in classification results despite the reduced number
of variables.
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As a result of quantitatively analyzing land cover classification, forest and street-trees
were well distinguished. In contrast, water occupied a tiny percentage of the target area,
indicative of classification accuracy despite the least training data. It was found that among
the artificial cover types, building and car-roads were well-classified, and it was confirmed
that car-road and sidewalk were accurately separated; however, there was a tendency to
classify car-road as a sidewalk in some areas. As shadows are one of the most common
problems hindering accurate data extraction in remote sensing analyses, additional studies
on shadow detection and correction are required [53,54]. Indeed, a small path in the forest
was classified as a sidewalk, and there was a tendency to misclassify the surrounding grass
as street-grass. Furthermore, there was a tendency to classify bare soil as a sidewalk.
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3.4. Accuracy Verification

As a result of the accuracy verification, the Kappa coefficient of the initial RF containing
all variables was 0.728 (76.0% overall accuracy). Comparatively, the Kappa coefficient of
the optimized RF was 0.721 (75.4% overall accuracy), indicating that the accuracy did not
decrease significantly despite the reduced variable number (Tables 1 and 2). The user’s
accuracy based on variable optimization was within ±3% for building, car-road, sidewalk,
forest, grass, street-tree, and street-grass, indicating no significant difference compared
to the initial RF. This accuracy increased to 4.9% for water. There was also an increased
tendency for the sidewalk to be classified as bare soil when compared to the initial RF,
wherein accuracy decreased by 13.8%. The producer’s accuracy was also within ±3%
for building, forest, street-tree, bare soil, and water, similarly suggesting there was no
significant change compared to the initial RF. Furthermore, the producer’s accuracy for
sidewalk and street-grass decreased by −7.5 and −6.0%, respectively; whereas the accuracy
for grass and car-road increased by 7.0% and 5.6%, respectively. Therefore, in terms of
accuracy changes, there was not a large impact of the reduced variable number on buildings,
forests, and street-trees, corroborating the use of nDSM and NDVI in previous studies
to accurately classify buildings and forests [55–57]. Vanhuysse et al. [58] reported that
when nDSM was used as input data, there were improvements in the quantitative and
qualitative analysis of building and other classification results. Therefore, in the present
study, buildings, forests, and street-trees showed little change despite variable optimization,
as nDSM and NDVI, which occupied high ranks of variable importance, were included.

In the optimized RF, building and water classes maintained >90% of the user and
producer’s accuracy. As mentioned above, buildings were mainly identified through
nDSM, while water showed the most significant difference from other land cover types
with different LSTs among the optimized variables (Figure 6). The classification accuracy
of vegetation was likely high due to NDVI, as indicated by the overlapping boxplots for
these areas. When car-road and sidewalk were classified as a road, the producer and user
accuracies were 89.6% and 80.0%, respectively, similar to the classification accuracy results
of other studies (75–95%) [57,59–61]. However, as sidewalks were over-predicted in the
present study, the user’s accuracy was low (65.7%). There was a tendency to misclassify
bare soil with similar spectral characteristics as a sidewalk since the blocks constituting
the sidewalk within the target site encompassed various colors, such as beige, red, green,
and gray (Figure 9). Accordingly, 46% of the reference data of bare soil was classified as a
sidewalk, and the producer’s accuracy of the bare soil was very low (31.5%). When forest
and street trees were classified are merged into a single item and classified as tree, the user’s
and producer’s accuracies increased to 97.2% and 96.3%, respectively. In contrast, if a tree
was subdivided into forest and street-trees, the accuracy decreased due to misclassification
between these two items. When assessing these areas via visual interpretation, they were
judged to be affected by tree shadow. Notably, it is assumed that acknowledgment of this
error can be improved by including forest-type maps as auxiliary data in the future.
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Table 1. Confusion matrix for the initial RF.

Classification
Reference Data

Building Car-
Road Sidewalk Forest Grass Street-

Tree
Street-
Grass

Bare
Soil Water

Building 46 2 1 0 0 0 0 0 0
Car-road 0 38 3 0 0 0 0 2 0
Sidewalk 1 10 72 0 1 0 2 24 0

Forest 0 0 0 43 2 4 0 0 0
Grass 0 0 0 2 48 0 12 0 0

Street-tree 0 0 1 11 0 45 0 0 0
Street-grass 1 4 1 0 20 2 35 8 1

Bare soil 0 0 1 0 0 0 0 18 0
Water 0 0 1 0 0 0 1 2 35

Producer Acc. (%) 95.8 70.4 90.0 76.8 67.6 88.2 70.0 33.3 97.2
User Acc. (%) 93.9 88.4 65.5 87.8 77.4 78.9 48.6 94.7 89.7

Overall Acc. (%) 76.0 Kappa coefficient 0.728

Table 2. Confusion matrix for the optimized RF.

Classification
Reference Data

Building Car-
Road Sidewalk Forest Grass Street-

Tree
Street-
Grass

Bare
Soil Water

Building 46 2 2 0 0 0 0 0 0
Car-road 0 41 5 0 0 0 0 2 0
Sidewalk 0 8 66 0 0 0 3 25 0

Forest 0 0 0 43 1 4 0 0 0
Grass 0 0 0 1 53 0 14 0 0

Street-tree 1 0 1 12 0 44 0 0 0
Street-grass 1 3 1 0 17 3 32 10 1

Bare soil 0 0 4 0 0 0 0 17 0
Water 0 0 1 0 0 0 1 0 35

Producer Acc. (%) 95.8 75.9 82.5 76.8 74.6 86.3 64.0 31.5 97.2
User Acc. (%) 92.0 85.4 64.7 89.6 77.9 75.9 47.1 81.0 94.6

Overall Acc. (%) 75.4 Kappa coefficient 0.721

4. Conclusions

Land cover maps contain critical spatial data necessary for urban environmental evalu-
ation and research; however, their utilization has been limited for small- and medium-sized
areas due to limited temporal data resolution, accuracy, and high production costs. In this
study, as a measure for addressing such limitations, effective images for constructing land
cover maps were analyzed via UAV, and the applicability of the land cover classification
method was confirmed. The primary research achievements were as follows:.Nine UAV-
derived images were used for OBIA: red, green, blue, RedEdge, NIR, LST, NDVI, SAVI, and
nDSM. The optimal image segmentation weights were selected as spectral detail 18, spatial
detail 10, and a minimum segment size of 40. While using 126 variables for training the
initial RF and computing variable importance up to the 40th, the most influential variables
were nDSM > NDVI > LST > SAVI > blue > green > red > rededge. nDSM was assumed to
be effective for distinguishing between buildings and trees, whereas NDVI distinguished
vegetation and non-vegetation classes and maintained significantly greater priority than
SAVI, which ideally minimized the effects of soil brightness (a notably variable characteris-
tic). Variable importance LST was distributed between the 16th and 33rd places. Indeed,
although most multi-spectral images and vegetation indices have been mainly used for
land cover classification, it was shown that LST images could be effectively used for land
cover classification of urban areas. It was an important factor for distinguishing car-road,
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and sidewalk, as well as water. For effective LST image utilization, it is considered best that
LST image is taken at noon in summer, when the influence of shadow was minimal due
to the highest solar altitude. Among the images containing a single spectral wavelength,
the blue image maintained the highest level of variable importance to distinguish car-road,
sidewalk, and bare soil. Finally, in terms of NMS, which was used to distinguish street-tree
and street-grass, the priority of nDSM and green images ranked high.

Comparing the land cover classification results of the initial RF using all 126 variables
with the optimized RF obtained via variable reduction, the difference in the overall area
ratio was 1.3%. Indeed, despite the reduced variable number, there was no significant
change in the overall classification results. As a result of the accuracy verification, the
Kappa coefficient of the initial RF was 0.728; whereas that of the optimized RF was 0.721.
When examining the accuracy changes for each land cover item, it was found that buildings,
forests, and street-trees were not significantly affected, presumably due to the influence
of nDSM and NDVI, which maintained higher variable importance. When car-road and
sidewalk were classified as a road (as often observed in other studies), producer and user
accuracy were 89.6% and 80.0%, respectively (similar to other studies). There was, however,
a tendency to misclassify bare soil as a sidewalk since the sidewalk blocks were made of
various colors. When forest and street trees were classified are merged into a single item
and classified as tree, the user and producer accuracies were 97.2% and 96.3%, respectively.
However, the accuracy decreased when subdividing these classes into forest and street-trees.
Visual interpretation revealed that shadows had a significant effect on the trees present.
Thus, it was judged that this error can be improved by incorporating a map of forest type
as ancillary data.

The acquisition of image data using UAV maintains fewer spatiotemporal constraints
than satellite and other aerial imagery forms. It also becomes possible to obtain more
accurate data than the time and costs required for data processing. It was further judged
that applying the object-based land cover classification technique using UAV imagery can
contribute to urban environmental research. However, since this study created a land
cover map solely with images from a single period, it is necessary to verify the feasibility
of constructing a time series of land cover maps through further research, in addition
to exploring additional methods for improving classification accuracy. Generally, forests
should have a minimum area and tree coverage fraction, but this study was not taken into
account here. Further research will be needed to improve this.
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