
Citation: Wang, C.; Wang, D.; Gu, M.;

Huang, H.; Wang, Z.; Yuan, Y.; Zhu,

X.; Wei, W.; Fan, Z. Bioinspired

Environment Exploration Algorithm

in Swarm Based on Lévy Flight and

Improved Artificial Potential Field.

Drones 2022, 6, 122. https://doi.org/

10.3390/drones6050122

Academic Editors: Xiwang Dong,

Mou Chen, Xiangke Wang and

Fei Gao

Received: 28 March 2022

Accepted: 5 May 2022

Published: 9 May 2022

Publisher’s Note: MDPI stays neutral

with regard to jurisdictional claims in

published maps and institutional affil-

iations.

Copyright: © 2022 by the authors.

Licensee MDPI, Basel, Switzerland.

This article is an open access article

distributed under the terms and

conditions of the Creative Commons

Attribution (CC BY) license (https://

creativecommons.org/licenses/by/

4.0/).

drones

Article

Bioinspired Environment Exploration Algorithm in Swarm
Based on Lévy Flight and Improved Artificial Potential Field
Chen Wang 1 , Dongliang Wang 1, Minqiang Gu 1, Huaxing Huang 1, Zhaojun Wang 1, Yutong Yuan 2,
Xiaomin Zhu 2, Wu Wei 3 and Zhun Fan 1,*

1 College of Engineering, Shantou University, Shantou 515063, China; 20cwang2@stu.edu.cn (C.W.);
dlwang@stu.edu.cn (D.W.); mqgu@stu.edu.cn (M.G.); 20hxhuang@stu.edu.cn (H.H.);
17zjwang@stu.edu.cn (Z.W.)

2 College of Systems Engineer, National University of Defense Technology, Changsha 410073, China;
17ytyuan@alumni.stu.edu.cn (Y.Y.); xmzhu@nudt.edu.cn (X.Z.)

3 School of Automation Science and Engineering, South China University of Technology,
Guangzhou 510006, China; weiwu@scut.edu.cn

* Correspondence: zfan@stu.edu.cn

Abstract: Inspired by the behaviour of animal populations in nature, we propose a novel exploration
algorithm based on Lévy flight (LF) and artificial potential field (APF). The agent is extended to the
swarm level using the APF method through the LF search environment. Virtual leaders generate
moving steps to explore the environment through the LF mechanism. To achieve collision-free move-
ment in an unknown constrained environment, a swarm-following mechanism is established, which
requires the agents to follow the virtual leader to carry out the LF. The proposed method, combining
the advantages of LF and APF which achieve the effect of flocking in an exploration environment,
does not rely on complex sensors for environment labelling, memorising, or huge computing power.
Agents simply perform elegant and efficient search behaviours as natural creatures adapt to the
environment and change formations. The method is especially suitable for the camouflaged flocking
exploration environment of bionic robots such as flapping drones. Simulation experiments and real-
world experiments on E-puck2 robots were conducted to evaluate the effectiveness of the proposed
LF-APF algorithm.

Keywords: bionic algorithm; swarm robotic; environment exploration; distributed control; Lévy flight

1. Introduction

The exploration problem is an important research area of robotics, which can be
applied to various tasks such as military reconnaissance [1], search and rescue [2],
foraging [3], and drug delivery [4]. In recent years, exploration using robots in complex
environments has attracted widespread attention. Currently, environmental exploration
methods often rely on recording the explored area or the marking of the environment using
sensors. Among them, some use the odometer method [5,6] (recording the area that has
been walked) and pheromone method [7,8] (marking the environment). However, the path
information recorded by the agents is often subject to significant errors, and sometimes
the agents have difficulties in labelling the environment. Therefore, the elimination of the
agent’s reliance on complex sensors when searching in an unknown environment, like
natural creatures, is crucial.

The ability of a single agent in cognition and action may be inherently limited, and
cooperation in a swarm can alleviate the impact of this limitation [9,10]. This kind of
problem-solving ability is abundant in nature, for example, swarms of ants search for
the shortest path [11] and honeybees choose the best food resources by dancing [12].
Therefore, it is specifically necessary to achieve effective coordination in a swarm robotic

Drones 2022, 6, 122. https://doi.org/10.3390/drones6050122 https://www.mdpi.com/journal/drones

https://doi.org/10.3390/drones6050122
https://doi.org/10.3390/drones6050122
https://creativecommons.org/
https://creativecommons.org/licenses/by/4.0/
https://creativecommons.org/licenses/by/4.0/
https://www.mdpi.com/journal/drones
https://www.mdpi.com
https://orcid.org/0000-0002-5208-765X
https://doi.org/10.3390/drones6050122
https://www.mdpi.com/journal/drones
https://www.mdpi.com/article/10.3390/drones6050122?type=check_update&version=3


Drones 2022, 6, 122 2 of 15

system [13,14]. Multi-agent swarm search can search targets in the environment more
effectively than is possible with single-agent exploration.

Many studies related to bionic UAVs have been reported in recent years [15–17].
Ramezani et al. used a series of virtual constraints to control an articulated, deformable
wing to achieve autonomous flight of a bat robot [16]. EPFL [15] optimized the aerodynamic
designs of winged drones for specific flight regimes. Large lifting surfaces provided
manoeuvrability and agility like the northern goshawk. Roderick developed a biomimetic
robot that can dynamically perch on complex surfaces and grasp irregular objects [17].
These latest studies show that research on bionic robots is crucial in the field of robotics,
together with suitable applications. If we assume that a group of biomimetic robots are
sent to perform a task of exploring the environment, then all of them as a group should
look like birds, including their appearance and movement, but if they fail to behave like a
natural cluster, the value of the stealth of the biomimetic robots is largely lost. Therefore, we
propose a new swarm intelligence task, so that agents can achieve efficient environmental
exploration of an area as much as possible like natural creatures without relying on complex
sensors or huge computing power.

To overcome the difficulties mentioned above, random movement, which is a common
search pattern for natural creatures, is introduced in this study. In some applications,
the agent needs to search for dynamic targets in a complex environment through a random
step generation mechanism [18]. Randomness plays a significant role in both swarm
intelligence motion control and swarm intelligence optimisation algorithm [19]. In the
swarm intelligence environmental exploration task in this study, due to the fact that the
target is moving, if the explored path is not repeated properly, that is, if the agent does
not go where it has gone, the dynamic target only needs to hide in the area where the
agents passed through to avoid being detected. Therefore, the agents must traverse the
area with some positions revisited occasionally. However, if a location is repeated many
times, the detection efficiency decreases. Therefore, when exploring the environment
with dynamic targets, agents must adopt a suitable random walk strategy to traverse an
area appropriately.

Natural creatures exhibit two well-known random movement mechanisms: Lévy
flight (LF) [18] and Brownian motion (BM) [20]. In animal foraging, when the prey in the
environment is abundant, BM is sufficiently efficient [21]. Fredy et al. proposed BM as an
exploration strategy for autonomous swarm robots [20]. This solution, to a certain extent,
solves the problem of swarm robots realising environmental exploration tasks through
bionic motion. As a more sophisticated alternative to BM, LF as a typical random walking
strategy has been introduced in many studies [22–25], especially in the literature of agents’
environmental exploration [26,27]. Vincenzo Fioriti et al. proved the LF’s superiority
to the random walk with simulations and applied the LF mechanism in the fish mass
model’s centre speed according to the Kuramoto equation [26]. Pang et al. pointed out
that the mean and variance of steps generated by LF are important parameters effecting
the searching efficiency and need to be optimised [25]. Even though these studies have
achieved improved results, they are all about single-agent exploration. In biomimetic
research of multi-agent exploration, Sutantyo et al. first presented the integration of LF
and an artificial potential field method to achieve an efficient search algorithm for multiple
agents applications [28]. However, in this study, the agent works in its own way and
does not search for targets together with other agents. In some specific task scenarios, it
may not be conducive to performing subsequent collaborative tasks such as entrapping
after a single agent has discovered the target. It is often too late to call on other agents to
collaborate when they are scattered too far away. In some situations, agents need to flock
to be prepared to perform following swarm tasks [28]. Therefore, we need to discover how
to make agents form flocks.

The artificial potential field (APF) method is widely used to realise the formation
control of swarm robots while achieving collision avoidance, such as UAVs [29], wheeled
mobile robots [30], and underwater robots [31]. Gabor Vásárhelyi et al. proposed an
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extensible motion control framework based on an improved APF method that takes into
account the motion constraints in swarms, which achieved a good flocking effect in real-
world experiments, demonstrating behaviour similar to that of natural creatures [32].
Motivated by [18,32], a method combining LF and an improved APF is proposed in this
work for swarm robots to form flocks and explore unknown environments with constraints
effectively and efficiently.

In this study, we propose a method that combines the LF mechanism and the improved
APF method to make swarms of agents flock and explore the environment in a manner
similar to natural organisms. In the swarm, there is an invisible virtual leader in the
arena moving with the LF algorithm. The agents follow the virtual leader in groups to
find targets in an unknown environment. The swarm system randomly allocates each
agent to a pre-specified priority. The leader—the agent with the highest priority in the
swarm—calculates the position of the virtual leader and broadcasts the information to other
agents in the swarm via WiFi. When the leader is destroyed, the agent with the highest
priority in the swarm becomes the leader and continues to broadcast the virtual leader’s
location. An improved APF method is then applied to enable the agents in the swarm to
follow the virtual leader in a flocking and to explore the environment. The agents flock to
explore the environment without relying on marking the environment and recording the
itinerary and achieve efficient exploration of the environment, only relying on a simple
random walk mechanism, just like natural creatures. This has the potential to facilitate the
stealthy mission of bionic drones. Specifically, this paper contributes the following:

(1) The proposed LF-APF algorithm applies the LF search mechanism at the swarm level.
Combining the advantages of LF and APF can enable agents to efficiently explore the
environment through simple and natural random walking like natural creatures.

(2) The improved APF method makes agents follow the virtual leader, maintain a cer-
tain distance from each other, and move in an orderly manner in the specified task
area, autonomously changing their formations to traverse complex obstacles without
colliding with them.

(3) Experimental validations on E-puck2 robots are conducted. In particular, the perfor-
mance of the agent’s swarm movement and the fulfilment of environmental explo-
ration tasks are evaluated in comparative studies.

The remainder of this paper is organised as follows. In Section 2, several problems for
environmental exploration tasks are defined. In Section 3, we introduce the LF algorithm
as the roaming strategy. In Section 4, we describe the flocking speed controller based on
an improved APF method. We conduct some simulation experiments and analyse the
experimental indicators in Section 5. In Section 6, we report on the real-world experiments
based on E-puck2 robots and the completion time of the experiments. Finally, Section 7
concludes the paper.

2. Problem Definition

The central research question in environmental exploration is how to effectively
traverse an unknown area. The task of exploring the environment often requires the
explorer to have superior target search capabilities and environmental coverage capabilities.
In the process of executing the task, the agent needs to consider avoiding collision with
other individuals in the swarm and avoid collision with obstacles or boundaries. At the
same time, the swarm robot needs to follow the virtual leader. The virtual leader walks
randomly with a bionic roaming strategy, and agents follow the virtual leader to achieve
the effect of environmental exploration.

Definition 1 (Repulsion). The distance between agents is maintained within a certain range,
and it can be adaptively and dynamically adjusted as the environment changes. When the distance
is less than rarep, a repulsion speed is generated. Similarly, when the distance between the agent and
target is less than rat, a repulsion speed of the target is generated. When they are far apart from each
other, there is no mutual repulsive speed effect.
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Definition 2 (Avoid obstacles and walls). Agents need to perform tasks within the specified task
area. Therefore, agents cannot go out of a specific area in the process of performing tasks, which is
equivalent to some virtual walls. In addition, agents need to avoid obstacles. The agent decelerates
smoothly when encountering obstacles or walls to avoid colliding with them. The agent needs to
slow down smoothly instead of stopping abruptly near obstacles or walls. Specifically, the closer the
agent is to the them, the faster it decelerates.

Definition 3 (Follow the virtual leader). All agents in the swarm follow the movement of the
virtual leader. The virtual leader does not actually exist in the arena, and its position is calculated by
the leader. When the agent moves to the position of the virtual leader, it needs to decelerate smoothly
as the distance decreases, similar to avoiding obstacles. The closer the agent to its expected stopping
point, the faster its speed should decay. When the distance is very close, its speed even needs to decay
at the rate of change of the exponential function.

Definition 4 (Roaming strategy). The virtual leader traverses the environment with a bionic
walking strategy, and the agents in the swarm follow the virtual leader. This traversal strategy
should have the following functionalities, i.e., the agents find all targets in the least possible time
t ∈ R. In addition, agents travel the arena with the largest possible coverage ratio r ∈ (0, 1].

3. Roaming Strategy: Lévy Flight

LF is named after the French mathematician Paul Lévy. It refers to the random walk
with a heavy-tailed distribution in the probability distribution of the step length, which
means that there is a relatively high probability of large strides in the process of random
walking. Natural creatures with LF mechanism tend to traverse a small place by generating
many small steps and then move to another area through a large step to continue traversing
to obtain higher search efficiency. The Lévy probability distribution is stable with infinite
second-order moments and has the following form [18]:

Pα,γ(l) =
1
π

∫ ∞

−∞
e−γqα

cos(ql)dq (1)

The distribution is symmetric with respect to l = 0 . The parameter α determines the
shape of the distribution. The shorter the parameter α (0 < α < 2 in Lévy distribution),
the bigger the tail region. When the parameter α = 2 , the distribution changes from a Lévy
distribution to a Gaussian distribution. In this study, the parameter α = 1.5 , and γ is the
scaling factor. Equation (1) can be approximated by the following expression [18]:

Pα(l) ≈ l−α (2)

Many scholars have proposed an implementation method for generating random
numbers subject to Levy distribution, including a method proposed by Mantegna in
1994 [33]. This study adopted the method proposed by Mantegna to calculate the LF
step size:

z =
u

| v |1/β
(3)

where β ∈ [0.3, 1.99]; u and v are two normal stochastic variables with standard deviations
σu and σv, respectively:

u ∼ N
(

0, σ2
u

)
v ∼ N

(
0, σ2

v

)

σu =

Γ(1 + β) sin
(

πβ
2

)
βΓ
(

1+β
2

)
· 2

β−1
2


1
β

σv = 1 (4)
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where Γ(x) is the gamma function:

Γ(x) =
∫ ∞

0
e−ttx−1dt (5)

However, in practical applications, the control scale factor of the LF should be adjusted
as the environment changes [33]. We can multiply the stochastic process by an appropriate
multiplicative factor γ1/α. After the linear transformation, the result can be expressed
as follows:

Zs = γ1/αz (6)

From the perspective of the Lévy probability distribution, the LF algorithm produces a
large number of small step lengths and a few large step lengths. The agent traverses a local
area by generating multiple small steps; a few large steps may cause the agent to jump out
of the local area. Based on such a step size generation mechanism, organisms in nature can
efficiently traverse the unknown environment without relying on complex sensors.

4. Flocking Based on Improved Artificial Potential Field Method
4.1. Method of Following the Virtual Leader

The leader agent in the swarm continuously calculates the position of the virtual leader
and broadcasts its position to other agents in the swarm. When the agents identify a known
target point, they need to move to that point in the most reasonable way possible. Gabor
proposed a smooth speed decay mechanism through an ideal braking curve D(.) to make
their expressed motion resemble natural graceful movements, with constant acceleration at
high speeds and exponential approach in time at low speeds [32].

D(r, a, p) =


0 if r ≤ 0
rp if 0 < rp < a/p√

2ar− a2/p2 otherwise

(7)

The parameter r represents the distance between an agent and the expected stopping
point, p gain determines the crossover point between the two phases of deceleration, and a
is the preferred acceleration of the agent. We introduce D(.) function for the agents’ tracking
of the virtual leader. Here, vli decreases smoothly as rli decreases. It is easy to understand
that as you get closer to your target, you may slow down and stop gradually. When you are
far from the target, you need to speed up your pace and catch up. The agent can smoothly
approach its target position by the following equation:

vli = C f · D
(

rli, a f , p f
)
· −→rli (8)

where rli =| rl − ri | is the distance between the agent and virtual leader, and a f is the
maximal allowed acceleration in the optimal braking curve used for following the virtual
leader. p f represents the gain of the optimal braking curve. If this value is too large,
the braking curve exhibits a constant acceleration characteristic. When this value is small,
the final part of braking (at low speeds) with decreasing acceleration is elongated and
accompanied by a smooth stop. C f can linearly adjust the magnitude of the speed item of
the agent following the virtual leader. Higher values assume that agents can follow the
virtual leader more closely. −→rli =

rl−ri
|rl−ri |

represents the agent’s moving direction toward the
virtual leader.

4.2. Repulsion

Agents must consider executing a task without collision when they move in swarms,
like flocks of birds in the sky, which flock but rarely collide. These agents need to consider
the collision avoidance between each other in the process of exploring the environment.
Agents do not need to worry about individuals who are relatively far away from them
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in the swarm. On the contrary, every agent should try to avoid all other agents within a
certain distance at the same time, and the closer a neighbouring agent is, the stronger the
repulsive effect should be from its neighbour. Agents can avoid collision with each other
through the following equation:

vrep
ij =

{
prep

a ·
(
rarep − rij

)
· −→rij if

(
rij < rarep

)
0 otherwise

(9)

where rij =| ri − rj | represents the distance between agent i and agent j, and rarep represents
the distance threshold for the speed influence at which agents start to interact and generate
repulsion. −→rij represents the direction of the speed from agent j to agent i. As a linear gain,
prep

a linearly adjusts the size of repulsion speed term. As the agent may have multiple
neighbours, it is necessary to consider the repulsive effects that may be caused by all other
agents in the swarm.

vrep
it =

{
prep

t · (rat − rit) · −→rit if (rit < rat)

0 otherwise
(10)

Similar repulsion occurs between the agent and the target. prep
t linearly adjusts the

size of repulsion speed term. When the distance between the two (rit) is less than the
desired separation distance (rat), the agent generates a repulsion speed away from the
target. The direction of the speed is −→rit , which is from the target to agent i. It is worth
noting that this repulsion is one-way, that is, the target will not move away from the agent
due to the proximity of the agent. Superimposing the repulsion speeds leads to the speed
item of the agent due to repulsion.

vrep
i = ∑

j 6=i
vrep

ij + ∑
target

vrep
it (11)

4.3. Avoid Obstacles and Avoid Moving out of Boundaries

In some practical tasks, we assume that the agents will explore a certain area, that is,
we have defined the boundaries for the agents. They only need to explore such a specific
area, and it is not necessary to explore other places. To prevent the agent from moving
out of bounds, rwall is the safe distance between the agent and the field boundary. In other
words, when the distance between the agent and the boundary is less than rwall , the agent
should produce a speed away from the boundary. We place the agents into a square-shaped
arena with soft repulsive virtual walls and define virtual agents near the arena walls [32].
Virtual agents are located at the closest point of the given edge of an arbitrarily shaped
convex wall polygon relative to agent i. When the distance between the agent and wall is
less than rwall , this speed term will take effect:

vwall
id =

{
Cs · (vis − D(ris − rwall , as, ps)) · −→vis if (ris < rwall)

0 otherwise
(12)

Convex obstacles inside the arena can be avoided using the same concept. When
the agents are far away from the obstacle, they can ignore the influence of the obstacle
on their current movement. Here, we assume that when the distance between the agent
and obstacle is less than a certain value robs, the agent will generate the speed away from
the obstacle.

vobs
id =

{
Cs · (vis − D(ris − robs, as, ps)) · −→vis if (ris < robs)

0 otherwise
(13)
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In the above two equations, rs represents the position of the shill agent, located at the
closest point of the given edge of an arbitrarily shaped convex wall polygon relative to
agent i. ris = ri − rs represents the distance between agent i and its closest shill agent. vs is
the speed of the shill agent, pointing perpendicularly to the wall polygon edge inward of
the arena (vis = |vi − vs|). −→vis is the unit vector difference between the speed of the agent
and the shill agent which represents the obstacle avoidance direction of the agent after
encountering obstacles. as and ps are the same as a f and p f , respectively, but for staying
away from the obstacles and walls. Cs adjusts the gain of the two speed terms.

4.4. Final Equation of Desired Speed

When the agents perform environmental exploration tasks in the unknown environ-
ment, they may encounter many complex scenarios, so the above speed influencing factors
need to be considered at the same time. Agents should have all the velocities mentioned
above to produce the desired motion effects. In this way, we take the vectorial sum of all
the interaction terms.

vdesire
i = vrep

i + vli + vwall
is + vobs

is (14)

Agents should meet motion constraints, that is, their speed can not be unlimited, which
does not meet the needs of practical applications. When the speed generated by the above
speed controller is too large, the agents should adopt a maximum speed to meet the safety
requirements, but the speed direction should not be changed. In this way, after getting the
speed generated by our method, we set a cut-off to cope with motion restraint. If the speed
vdesire

i is over the limit, the direction of the desired speed is maintained but its magnitude
is reduced [32]:

ṽdesire
i =

ṽdesire
i

| ṽdesire
i |

·min
{
| ṽdesire

i |, vlimit

}
(15)

5. Simulation Experiments and Analysis
5.1. Simulation Experiments

In this section, the performance of the proposed LF-APF method is evaluated using
simulation based on MATLAB. In the simulation experiments, the agent can obtain the
location information of other agents in the swarm through communication and can detect
obstacles and calculate the distance from them. In addition, the agent can get the boundary
position of the arena. We set the size of the arena as 250 m × 250 m. To reduce the impact
of hardware computing power, we assume that the time for the agent to take a step is one
second (the true time is related to the computing ability of the computer). Depending on
the step size of the arena, it is necessary to adjust the size of the agent’s movement. Similar
to the albatross and bees in nature, although they both use the LF algorithm to search for
food, the step size corresponding to the Lévy distribution should be scaled according to
their different athletic abilities. To ensure fairness of comparison, we first optimise the BM
step to make the agents perform as well as possible in the 250 m × 250 m arena. Then,
we adjusted the parameters γ in LF to let the median step lengths generated by the two
algorithms match as closely as possible in the case of having the same size of the arena
(250 m × 250 m).

As shown in Figure 1, there are four small isolating islands at sea level in the blue sea.
Eight agents flocked to search for two moving targets in the complex obstacle environment.
The scenario where the agents are distributed at the initial moment is shown in Figure 1a.
Figure 1b shows agents in swarm having found one of the targets. Figure 1c,d shows
that the agents adaptively change their formation according to the environment and pass
through obstacles without any collision.

There are experimental videos for readers to watch in Appendix A. We can see that
the LF-APF method has the following performance on environmental exploration tasks:

(1) The agents do not collide with each other, keep a proper distance from each other, flexibly
change their formation, and shuttle in the task area, similar to a natural population.
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(2) The agents can flexibly avoid isolating islands in the ocean. On some special occasions,
the agents swim past obstacles in groups or pass through a limited space in a line.

(3) When the agents move near obstacles, their speed decreases smoothly, which complies
more with their dynamic constraints.

(4) The agents can follow the virtual leader to achieve efficient traversal of the task area.

(a) t = 0 (b) t = 70 steps

(c) t = 252 steps (d) t = 712 steps

Figure 1. Eight agents are flocking to explore the environment with our method. There are complex
unknown obstacles and two dynamic targets in the sea. Agents are blue, and targets are red. The arena
is 250 m on either side. The speed of the virtual leader and targets are 1 m/s and 0.3 m/s, respectively.
When the target is found (the distance between agent and target < 8 m), the target becomes stationary.

5.2. Indicator Statistics

In the experimental display discussed in the previous section, we can see from the
figure (please also refer to the video in the Appendix A for details) that the method
proposed in this study can enable a robotic swarm to achieve a good performance of
environmental exploration. Since swarm robots employing BM as the exploration strategy
to explore the environment scheme proposed in the previous study [20] also achieved
a good environmental exploration effect, we let the swarm agents perform LF and BM
for environmental exploration, respectively, and compared the results of both methods.
In an unknown environment, since the target is constantly moving, it may move to any
reachable place in the environment. Therefore, the evaluation index measures not only the
capability of the agents to find all the targets as soon as possible [34] but also their ability
to traverse the environment as much as possible. In addition, indicators of the quality of
swarm movement to describe different aspects of the agents’ motion are needed. The task
evaluation indicators used in this study are as follows:

(1) Time for the swarm to find target;
(2) The coverage area of the swarm in a period of time;
(3) The change of agents’ area coverage ratio over time;
(4) The correlation of agents’ speed, the average and minimum inter-agent distances

while agents are flocking.

We conducted an indicator analysis of the time to find all targets in the arena shown
in Figure 2. We counted the time of identifying the target when the virtual leader runs at
different speeds in 10 independent runs each. Figure 2 shows that when the agents follow
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the virtual leader, with the speed of the virtual leader at 3 m/s, the agents find the targets
faster. If the speed of the virtual leader is too slow, it may lead to more time for the agents
to search for the targets, but if the speed is too fast, it may cause the agents to track not
close enough and also lead to more time for the agents to find the target.

Figure 2. Time for the swarm to find target with LF-APF method for 10 experiments. The figure
shows the virtual leader moving at different speeds (speed 1 = 1 m/s, speed 2 = 2 m/s, speed 3 =
3 m/s, speed 4 = 4 m/s) in an area of 250 m × 250 m.

To prove the advantages of LF-APF in exploring unknown regions, we compile statis-
tics on the regions the agents walked. Let the virtual leader move at a speed of 2 m/s
under two algorithms (LF and Brownian motion), and the agents follow the virtual leader
to search for targets in the arena. We respectively show the coverage area in the arena
with obstacles in Figure 3 and without obstacles in Figure 4. In the arena with obstacles,
the obstacle areas (marked by yellow boxes) cannot be covered by the agents. Figure 5
shows how the area coverage ratio of agents varies with the time when the virtual leader
moves at different speeds with two different algorithms. From Figures 3–5, it can be found
that, in general, the LF has better area coverage ability than Brownian motion. At the same
time, we find that when the speed of the virtual leader is too fast, the agents do not follow
closely (the agents have a speed limit). If the speed is too slow, the time for the agents to
traverse the environment increases. In addition, we found that when the virtual leader
moves with LF at a speed of 2 m/s, the LF-APF method obtains the best area coverage
ability. The above indicators proved the superiority of the LF-APF method to perform tasks
in exploring unknown regions.

To make the method deploy successfully in practical applications, it is important to
evaluate the effect of flocking. Considering that the speed of the agents and obstacles in
the arena will affect the effect of flocking, we utilised some evaluation indicators such as
the correlation of speed between agents φcorr and the average and minimum of inter-agent
distances (rmin

ij and min(rij)) [32]. N represents the number of agents in the swarm; Ji
represents the set of individuals in the swarm except for agent i. The calculation formula
of φcorr is as follows. We evaluated the flocking effect of LF-APF at different speeds
and obstacles.

φcorr =
1
T

1
N

∫ T

0

N

∑
i=1

1
Ni − 1 ∑

j∈Ji

vi · vj

| vi | · | vj |
dt (16)

In Figure 6, the quality of eight agents flocking to follow the virtual leader with
different speeds or obstacles are digitised. In Figure 6a,b, the results are shown when there
are no obstacles in the arena. The distance between the agents is kept constant with only
very minor fluctuations, and the agents’ speed directions are highly correlated most of the
time. At some moments, the speed correlation drops due to the virtual leader’s sudden
turn. When obstacles appear in the arena, the quality of the swarm motion of the agents is
affected to a certain extent, as shown in Figure 6c,d. The index rij

min surges in cases when
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some agents are blocked by an obstacle accidentally in the arena, as shown in Figure 6c.
In general, the agents achieve a relatively flocking effect safely.
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Figure 3. Display of the covered area with eight agents when the virtual leader performs Brownian
motion (left) and Lévy flight (right) at the speed of 2 m/s after 10,000 s. There are some randomly
distributed obstacles (yellow line) in the environment. Agents need to avoid obstacles automatically
when covering the area.
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Figure 4. Display of the covered area with eight agents when the virtual leader performs Brownian
motion (left) and Lévy flight (right) at the speed of 2 m/s after 10,000 s. There are no obstacles in
the environment.
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Figure 5. For the two different algorithms of Lévy flight and Brownian motion, the area coverage
ratio of agents varies with the time.
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Figure 6. Order parameters as a function of time during experiments with eight agents in 10,000 s.
φcorr represents the correlation of agent’s speed in swarm. rij

min is the average distance of the closest
neighbours, whereas min (rij) is the minimum distance of the closest neighbours. The size of the
arena is 250 m × 250 m. (a) Agents flocking to explore environment in an obstacle-free arena (1 m/s).
(b) Agents flocking to explore environment in an obstacle-free arena (2 m/s). (c) Agents flocking to
explore environment with obstacles in the arena (1 m/s). (d) Agents flocking to explore environment
with obstacles in the arena (2 m/s).

6. Real-World Experiments

To evaluate the effectiveness of our method in real-world applications, we performed
experiments with E-puck2 robots. We added an expansion board with Raspberry Pi to



Drones 2022, 6, 122 12 of 15

the E-puck2 robots to increase their computing power. The E-puck2 robots communicate
with each other via WiFi. In the arena with random obstacles and targets, eight E-puck2
robots searched for two targets with the LF-APF method. The E-puck2 robots obtained
global information from the motion capture device above the arena, including the position
information of the robots and obstacles of the arena. The E-puck2 robot and the initial scene
of the task are shown in Figures 7 and 8, respectively.

We counted the time (Table 1) taken by the E-puck2 robot to search for the targets.
From the table, we can see that the E-puck2 robots can always identify all targets and
complete the task with the LF-APF method. We selected one representative experiment,
as shown in Figure 9. When the E-puck2 robots encounter obstacles, they adjusted for-
mations to bypass the obstacles without any collision. In addition, they can gather in the
obstacle-free area and automatically change the formation when it is necessary to disperse.
The E-puck2 robots kept a certain distance between each other during the entire flocking
without colliding while forming a tight whole and moved orderly in the task area without
running out of the boundary of the arena. From the above results and analysis, it can be
suggested that the E-puck2 robots can adaptively deal with the environment to perform
environmental exploration tasks in the arena using the LF-APF method.

Figure 7. E-puck2 robot platform. E-puck2 is the latest mini mobile robot developed by GCtronic
and EPFL, which is an evolution of the successful E-puck robot used in many research and educa-
tional institutes.

Table 1. Statistics of the time taken by the agents to find the two targets, respectively, in 6 real-world
experimental runs.

Experiments 1st 2nd 3rd 4th 5th 6th

The time of finding one target 174 s 62 s 235 s 419 s 311 s 283 s
The time of finding all targets 432 s 211 s 619 s 847 s 346 s 438 s

Figure 8. Initial scene of E-puck2 robots searching for the target in the arena.
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(a) t = 0 s (b) t = 72 s (c) t = 90 s

(d) t = 212 s (e) t = 340 s (f) t = 437 s

(g) t = 470 s (h) t = 516 s (i) t = 552 s

Figure 9. E-puck2 robots flocking to explore the environment. There are complex unknown obstacles
and two dynamic targets in the arena (3 m × 3 m). The agents are green, and the targets are red. When
the E-puck2 robots find the target (the distance between the agent and the target < 10 cm), the target
becomes stationary and its colour turns blue.

7. Conclusions

In this study, we proposed the LF-APF method combining APF and LF mechanisms to
achieve environmental exploration in swarms. The proposed method makes agents flock to
explore unknown environments, relying on little environmental information. Agents in the
swarm determine the position of the virtual leader, who performs LF, and form a flocking
to follow the virtual leader to traverse the area searching for the target. In the process,
the agents can adjust formations to adapt to the environment and incur no collisions
between the agents or between the agents and obstacles. The resulting movements of
the swarm robots are similar to those of the natural population, which suggests that
the proposed method can be well applied to the exploration task of the bionic robot
environment. Several simulations and real-world experiments have validated that the
method can achieve effective and efficient environmental exploration.
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Abbreviations
The following abbreviations are used in this manuscript:

LF Lévy flight
BM Brownian motion
APF Artificial potential field

Appendix A

The video of experiments: Search for two targets with eight agents.
Simulation experiments: https://www.bilibili.com/video/BV1Sr4y1S7Xi?spm_id_

from=333.999.0.0.
Real-world experiments: https://www.bilibili.com/video/BV1RT4y1h7vU?spm_id_

from=333.999.0.0.
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