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Abstract: Arbitrary-oriented vehicle detection via aerial imagery is essential in remote sensing and
computer vision, with various applications in traffic management, disaster monitoring, smart cities,
etc. In the last decade, we have seen notable progress in object detection in natural imagery; however,
such development has been sluggish for airborne imagery, not only due to large-scale variations and
various spins/appearances of instances but also due to the scarcity of the high-quality aerial datasets,
which could reflect the complexities and challenges of real-world scenarios. To address this and
to improve object detection research in remote sensing, we collected high-resolution images using
different drone platforms spanning a large geographic area and introduced a multi-view dataset
for vehicle detection in complex scenarios using aerial images (VSAI), featuring arbitrary-oriented
views in aerial imagery, consisting of different types of complex real-world scenes. The imagery
in our dataset was captured with a wide variety of camera angles, flight heights, times, weather
conditions, and illuminations. VSAI contained 49,712 vehicle instances annotated with oriented
bounding boxes and arbitrary quadrilateral bounding boxes (47,519 small vehicles and 2193 large
vehicles); we also annotated the occlusion rate of the objects to further increase the generalization
abilities of object detection networks. We conducted experiments to verify several state-of-the-art
algorithms in vehicle detection on VSAI to form a baseline. As per our results, the VSAI dataset
largely shows the complexity of the real world and poses significant challenges to existing object
detection algorithms. The dataset is publicly available.

Keywords: dataset; vehicle detection; UAV; complex scenes

1. Introduction

Objection detection, as one core task in computer vision, refers to localized objects of
interest; predicting their categories is becoming increasingly popular among researchers
because of the extensive range of applications, e.g., smart cities, traffic management, face
recognition, etc. The contributions of many high-quality datasets (such as PASCAL VOC [1],
ImageNet [2], and MS COCO [3]) are immeasurable as part of the extensive elements and
efforts leading to the rapid development of object detection technology.

In addition to the above-mentioned conventional datasets, the datasets collected
by camera-equipped drones (or UAVs) for object detection have been widely applied in
a great deal of fields, including agricultural, disaster monitoring, traffic management,
military reconnaissance, etc. In comparison to natural datasets, where objects are almost
directed upward because of gravity, object instances in aerial images under oblique view
generally exist with arbitrary directions relying on the view of the flight platform and scale
transformation due to oblique aerial photography, as illustrated in Figure 1.

Numerous research studies significantly contributed to object detection in remote
sensing images [4–12], taking advantage of the latest advances in computer vision. Most
algorithms [6,8,9,12] experimented by converting object detection in natural scenes to the
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aerial image fields. It is not surprising that object detection in ordinary images is not
applicable to aerial images, as there are many differences (target sizes, degraded images,
arbitrary orientations, unbalanced object intensity, etc.) between the two. Overall, it is more
challenging for object detection in aerial images.
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Figure 1. Examples of labeled images taken from VSAI (green box: small vehicles, red box: large
vehicles). (a) Typical image under slope view in VSAI including numerous instances; examples
exhibited in (b–d) are cut out from the original image (a). (b) Represents dense and tiny instances;
(c) diagram of various instance orientations; (c,d) exhibition of the scale change caused by oblique
aerial photography; (e,f) illustrate the distinctions of the same scene from different perspectives.

Figure 1 illustrates that object detection in aerial images is facing many challenges
(such as image degradation, uneven object intensity, complex background, various scales,
and various directions) distinguished from conventional object detection tasks:

• Large size variations of instances: this almost depends on the different spatial resolu-
tions of the cameras, which are related to the camera pitch angles and flight heights
of UAVs.

• Degraded images: The load carried by a small UAV platform is subject to severe
limitations, with respect to the size and battery. Complex external weather variations
(e.g., fog, rain, cloud, snow, light, etc.) and rapid UAV flights have led to vague UAV
imagery, namely image degradation [13].

• Plenty of small instances: Ground objects with areas smaller than 32 × 32 pixels (MS
COC dataset’s definition of small objects) account for the majority of all objects in UAV
images, as illustrated in Figure 1. Owing to the less diverse features of small targets,
they may yield more errors and miss detection objects.

• Unbalanced object density: Uneven densities of captured objects are extremely preva-
lent in UAV images. In the same image, some objects may be densely arranged, while
others may have sparse and uneven distribution, which are prone to repeated detection
and missed detection, respectively.
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• Arbitrary orientations: objects in aerial images usually appear in any direction, as
shown in Figure 1.

In addition to these challenges, the research on object detection in UAV images is also
plagued by the dataset bias problem [14]. The generalization ability (across datasets) is
often low due to some preset specified conditions, which cannot fully reflect the task’s
complexity, e.g., fixed flight altitude [15,16], fixed camera pitch angle [15,17,18], narrow
shooting area [16,19], clear background [20,21], etc. To improve the generalization ability of
an object detection network, a dataset that adapts to the demands of practical applications
needs to be created.

Moreover, compared to the object detection from a nadir image, the ability to identify
objects with multi-view (off-nadir) imagery enables drones to be more responsive to many
applications, such as disaster monitoring, emergency rescue, and environmental reconnais-
sance. To further unleash the potential of a drone’s multi-view observations, this paper
introduces a multi-view dataset for vehicle detection in complex scenarios using aerial
images (VSAI), to highlight the object detection research based on drones. We collected
444 aerial images using different drone platforms from multi-view imaging. The resolutions
of the pictures included 4000 × 3000, 5472 × 3648, and 4056 × 3040. These VSAI images
were annotated by specialists in aerial imagery interpretation, including two categories
(small vehicle and large vehicle). The fully labeled VSAI dataset consists of 49,712 instances,
48,925 of which are annotated by an oriented bounding box. The rest are marked with
arbitrary quadrilateral bounding boxes for instances at image boundaries, rather than
horizontal bounding boxes generally utilized as object labels in natural scenes. The major
contributions of this paper are as follows:

• To our knowledge, VSAI is the first vehicle detection dataset annotated with varying
camera pitch angles and flight heights (namely multi-view) rather than almost-fixed
heights and camera angles of other datasets for object detection. It can be useful for
evaluating object detection models in aerial images under complicated conditions
closer to real situations.

• Our dataset’s images c massive complex scenes (in exception for multi-view informa-
tion) from many Chinese cities, such as backlights, the seaside, brides, dams, fog, ice
and snow, deserts, tollbooths, suburbs, night, forest, Gobi, harbors, overhead bridges,
crossroads, and mountainous regions, as shown in Figure 1.

This paper also evaluated state-of-the-art object detection algorithms on VSAI, which
can be treated as the baseline for future algorithm development. We accomplished a cross-
dataset generalization with the DOTA [22] dataset to evaluate the generalization capability
of the VSAI dataset.

2. Related Work

In recent years, computer vision technology based on drones has gained much atten-
tion in many fields. As drones are excellent for acquiring high-quality aerial images and
collecting vast amounts of imagery data, different datasets have been created for learning
tasks, such as object detection, tracking, and scene understanding. Among these tasks,
object detection is considered a fundamental problem; datasets for object detection are very
important subsets of drone-based datasets. However, many drone-based datasets mainly
use nadir imagery (i.e., images taken by a camera pointing to the ground vertically) for
object detection and other computer vision tasks, without considering multi-view observa-
tions; the objects in scenes with high complexities are also insufficient, as they do not fully
reflect complex real-world scenes.

In this section, we firstly review the relevant drone-based benchmarks and then vehicle
target benchmarks collected by drones in object detection fields, similar to VSAI.

2.1. Drone-Based Datasets

To date, there are few drone-based datasets in the object detection field. Barekatain [23]
proposed the Okutama-Action dataset for human action detection with the drone platform.
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It consists of 43 min of completely annotated video sequences, including 77,365 representa-
tive frames with 12 action types. The benchmarking IR dataset for surveillance with aerial
intelligence (BIRDSAI) [24] is an object detection and tracking dataset captured with a TIR
camera equipped on a fixed-wing UAV in many African protected areas. It consists of
humans and animals (with resolutions of 640 × 480 pixels). The UAVDT dataset [25] is a
large-scale vehicle detection and tracking dataset, which consists of 100 video sequences
and 80,000 representative frames, overlapping various weather conditions, flying heights,
and multiple common scenarios, including intersections, squares, toll stations, arterial
roads, highways, and T-junctions. The VisDrone2018 [26] dataset is a large-scale visual
object detection and tracking dataset, which includes 263 video sequences with 179,264 rep-
resentative frames and 10,209 static images captured by multiple camera devices, using
various drones, in over 14 Chinese cities. VisDrone2018 covered some common object types,
such as cars, bicycles, pedestrians, and tricycles. VisDrone2019 [18,27], when compared to
VisDrone2018, increased 25 long-term tracking video sequences with 82,644 frames in total,
12 of them were taken during the day and the rest at night.

2.2. Vehicle Object Datasets

Hsieh et al. [15] proposed a dataset (CARPK) for car counting, which contained
1448 images shot in parking lot scenes with aerial views (with 89,777 annotated instances).
Multi-scale object detection in a high-resolution UAV images dataset (MOHR) [17] is a large-
scale benchmark object detection dataset gathered by three cameras with resolutions of
5482 × 3078, 7360 × 4912, and 8688 × 5792, respectively. MOHR incorporated 90,014 object
instances with five types, including cars, trucks, buildings, flood damages, and collapses.
The UAV-based vehicle segmentation dataset (UVSD) [28] is a large-scale benchmark object
detection–counting–segmentation dataset, which owns various annotation formats con-
taining OBB, HBB, and pixel-level semantics. The drone vehicle dataset [18] is a large-scale
object detection and counting dataset with both optics and thermal infrared (RGBT) images
shot by UAVs. The multi-purpose aerial dataset (AU-AIR) [29] is a large-scale object detec-
tion dataset from multimodal sensors (including time, location, IMU, velocity, altitude, and
visual) captured by UAVs, which are composed of eight categories—person, car, bus, van,
truck, bike, motorbike, and trailer—under different lighting and weather conditions. The
largest existing available aerial image dataset for object detection is DOTA [22], composed
of 2806 images with 15 categories and about 188,282 bounding boxes annotated with Google
Earth and satellite images. The EAGLE [30] dataset is composed of 8820 aerial images
(936 × 936 pixels) gained by several flight campaigns from 2006 to 2019 at different times
of the day and year with various weather and lighting conditions. It has 215,986 vehicle
instances (including large vehicles and small vehicles). To our knowledge, it is the largest
aerial dataset for vehicle detection.

2.3. Oriented Object Detection

Significant advances have been made in the last decade in detecting objects in aerial
images, which are often allocated with large changes and random directions. However,
most current methods are based on heuristically-defined anchors with various scales,
angles, and aspect ratios, and typically undergo severe misalignments between anchor
boxes (ABs) and axis-aligned convolution features, leading to the usual inconsistency
between the category score and localization correctness.

To solve this issue, a single-shot alignment network (S2A-Net) [31] is proposed, which
contains two units: a feature alignment module (FAM) for generating high-quality anchors
and adaptively aligning the convolutional features, and an oriented detection module
(ODM), with the goal of generating orientation-sensitive and orientation-invariant features
to reduce the discrepancy between the localization and accuracy classification score.

To address the misalignment, the feature refinement module of the R3Det re-encodes
the location parameters of the existing refined bounding box to the corresponding feature
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points through pixel-wise feature interpolation to accomplish feature reestablishment
and alignment.

Meanwhile, another solution named the ROI transformer is put forward to address
the above-mentioned problems. The key point of the ROI transformer is to exert spatial
transformations on regions of interest (ROIs) and to learn the conversion parameters under
the supervision of oriented bounding box (OBB) ground truth labels. To our knowledge,
there is no specific algorithm for object detection under multiple perspectives of aerial
images. So, we chose and altered the ROI transformer [32] as our baseline due to its higher
localization accuracy for oriented object detection. Its specific principle will be introduced
in Section 5.

Instead of directly regressing the four vertices, gliding vertices [33] regress four length
ratios, describing the relative gliding offset on each resultant side, which can simplify the
offset learning and avert ambiguity of sequential annotation points for oriented objects.

In general, there are abundant research studies [34–36] on down-view oriented object
detection, but multi-view object detection is still in its infancy, which is also one of the areas
we focus on in our follow-up research.

3. Overview of VSAI

In this section, we mainly explain the collection details of the entire VSAI dataset, the
basis for category selection (small vehicle or large vehicle), and the annotation methods of
the VSAI dataset.

3.1. Image Collection

Our dataset consists of 444 static images (specifically for vehicle detection tasks).
Images in our dataset were collected from DJI Mavic Air, DJI Mavic 2 pro, Phantom
3 Pro, Phantom 4, and a 4 RTK drone platform with a high-resolution camera; partial
critical technical parameters (including image sensor size, camera field angle, and imagery
resolution) of these drones are exhibited in Table 1.

Table 1. Some technical parameters of UAVs used in the VSAI dataset.

Version CMOS Field Angle Resolution

Mavic air 1/2.3 inch 85◦ 4056 × 3040
Mavic 2 pro 1 inch 77◦ 5472 × 3648

Phantom 3 Pro 1/2.3 inch 94◦ 4000 × 3000
Phantom 4 1/2.3 inch 94◦ 4000 × 3000

Phantom 4 RTK 1 inch 84◦ 5472 × 3648

To increase the divergence of data and overlay a wider geographical area, the VSAI
dataset gathered images taken in most Chinese cities (including Shenyang, Weihai, Yantai,
Weifang, Jinan, Lianyungang, Shanghai, Fuzhou, Xiamen, Zhengzhou, Luoyang, Yichang,
Changsha, Guangzhou, Yinchuan, Guyuan, Xian, Delingha, Bayingolin from east to west,
from north to south, etc.), as illustrated in Figure 2.

For shooting months shown in Figure 3a, this dataset covers the whole year. We
captured the images with all-weather conditions, even the rare ice and snow scenarios
as exhibited in Section 4.2. As for the shooting time displayed in Figure 3b, our dataset
also basically covers the time range from 7 to 24 o’clock, except for 9 to 10 o’clock and
21 to 23 o’clock. Therefore, the VSAI dataset owns different images of light conditions as
illustrated in Section 4.2, such as backlight, daylight, and night.
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3.2. Category Selection

Since vehicles photographed at high altitudes are difficult to classify, the VSAI dataset
focuses on the vehicle category, which constitutes two categories, as shown in Figure 4,
small vehicles (SVs include cars, minibuses, pickups, small trucks, taxis, and police cars)
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and large vehicles (LVs, such as buses and large trucks), similar to DOTA and EAGLE. The
VSAI dataset contains 47,519 small vehicles and 2193 large vehicles, which confirms the
uneven distribution of vehicles in the real world.
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Figure 4. Samples of annotated images in VSAI (left to right, top to bottom). Large trucks belong to
LV, a large truck (LV), a bus marked with an arbitrary quadrilateral bounding box (LV), a car labeled
using an arbitrary quadrilateral bounding box (SV), cars densely arranged and mutually blocked
(SV), cars partially occluded by vegetation (SV), a taxi (SV), small trucks (SV), pickup (SV), car (SV),
SUV (SV), police car (SV), box truck (SV), minibus (SV).

3.3. Annotation Method

This paper considers several methods of annotating. In computer vision, many vi-
sual concepts (including objects, region descriptions, relationships, etc.) are labeled with
bounding boxes (BB) [37]. A popular presentation of bounding boxes is (xc, yc, w, h), where
(xc, yc) is the central location and (w, h) are the width and height of the bounding box,
respectively.

However, the BB method cannot precisely annotate and outline the crowded objects
with many orientations in aerial images because of the large overlap between bounding
boxes. To settle this, we required searching for an annotation method adapted to oriented
objects.

A choice for labeling oriented objects is the oriented bounding box, which is adopted
in some text detection benchmarks [38], namely (xc, yc, w, h, θ), where θ refers to the angle
from the horizontal direction of the normal bounding box. In fact, the VSAI dataset uses
the θ-based oriented bounding boxes (OBB) to annotate objects in the aerial images due to
excellent adaptability to rotating targets.

Another alternative is arbitrary quadrilateral bounding boxes (QBB), which can be
defined as {(xi, yi), i= 1, 2, 3, 4}, where (xi, yi) refers to the positions of the bounding box
apexes in the image. The vertices are arranged in clockwise order, choosing the left front
vertices of vehicles as starting points, namely (x1, y1). This way is widely adopted in
oriented text detection benchmarks [39]. In comparison with θ-based-oriented bounding
boxes, arbitrary quadrilateral bounding boxes could compactly enclose oriented objects
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with large deformations among different parts; the latter will also consume more time in
labeling due to a higher amount of parameters. Therefore, we only adopted QBB for the
instances at the image edges as illustrated in Figure 4, and chose the time-efficient way
(OBB) for the rest.

4. Properties of VSAI

This section depicts the major characteristics of the proposed dataset VSAI, which
consists of multi-view UAV images, object visibility information, and more instances in
each image. These properties (in comparison to other datasets) are sequentially described.

4.1. Multi-View

The original sizes of the images in VSAI were 4000 × 3000, 4056 × 3040, and
5472 × 3648 pixels, which are particularly huge in comparison to regular natural datasets
(e.g., PASCAL-VOC and MSCOCO are no more than 1 × 1 k). To approach the real appli-
cation scenario, the images in VSAI were shot at various camera pitch angles and flight
altitudes in the range of 0◦ to −90◦ (0◦ indicates that the camera points in the forward
direction of the UAV; −90◦ refers to the bird’s-eye view) and from 54.5 to 499.4 m, respec-
tively. As far as we know, extant drone datasets for object detection are rarely dedicated to
collecting and labeling pictures from multiple views, namely distinct camera pitch angles
and flight heights. This paper draws comparisons among MOHR [17], VisDrone2019 [27],
Drone Vehicle [18], Okutama-Action [23], and VSAI to show the differences (Table 2). Note
that, compared with our dataset’s multi-view drone images, for facilitating data acquisition,
the current UAV dataset is mostly fixed with several heights and camera pitch angles.

Table 2. Comparison of camera pitch angles and flight heights among VSAI and other object detection
datasets based on UAV.

Dataset Camera Pitch Angles Flight Heights

MOHR [17] −90◦ About 200, 300, 400 m
VisDrone2019 [27] Unannotated Unannotated
Drone Vehicle [18] −90◦ Unannotated

Okutama-Action [23] −45◦, −90◦ 10–45 m
EAGLE [30] −90◦ Between 300 and 3000 m

VSAI From 0◦ to −90◦ 55–500 m

We graphed the distribution histogram of the camera pitch angles and flight heights of
our dataset. As shown in Figure 5, due to careful selection, the distributions of the camera
pitch angles were relatively uniform. However, because of the law restricting flight above
120 m, in most Chinese cities, the flight altitudes were generally concentrated between
100 and 200 m in VSAI. In contrast, images taken from 200 to 500 m were mainly centered
in the suburbs, accounting for a relatively low proportion of VSAI. Moreover, due to
the scale and shape changes of objects attributed to multi-view UAV images as shown
in Figure 1, object detection tasks are closer to reality, but they simultaneously become
extremely difficult.

In the VSAI dataset, the instances with line of sight (LOS) angles of (−30◦, −25◦) were
the largest, as illustrated in Figure 6. Overall, the LOS angle distribution of the number of
instances was not balanced, mainly concentrating on small observation angles in the range
of (−45◦, −15◦).

The main reason for this distribution is that the camera pitch angle decreases; that
is, as the camera’s line of sight gradually approaches the horizontal plane, the larger the
ground scene range corresponding to the image area of the same size, the farther the
observation distance, and the more object instances can be included, resulting in more
objects corresponding to the smaller oblique line of sight angles when there is no significant
difference in the number of images at different pitch angles (Figure 7). This shows that the
object instances are unevenly distributed with the observation line of sight angle under
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the multi-view observation condition. At the same time, this observation method will
lead to large object scale variations and image blurring, which increases the difficulty of
object recognition.
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Figure 5. Image view statics information in VSAI: (a) distribution histogram of camera pitch angles;
(b) distribution histogram of flight heights.
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4.2. Complex Scenarios

Apart from the more extensive regional distribution, as shown in Figure 8, VSAI
also covers six complicated scenes throughout China, including the desert, city, mountain,
suburb, riverside, and seaside, as illustrated in Figure 8. The six scenarios also contain
many subsets, such as cities, including the overhead bridge, crossroad, stadium, riverside
embracing dam, bridge, etc. Observing Figure 8, VSAI essentially covers the vast majority
of real-world complex scenarios, rather than the single urban scenario of other datasets.
Meanwhile, aerial images of the VSAI dataset in multiple views are totally different from
traditional down-view airborne imageries, because the former have more small targets,
instances of occlusion, and larger-scale transformations of targets (as exhibited in Figure 8),
which are closer to the complexities of the real-world.
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Figure 8. Examples of multi-view annotated images from VSAI with complex scenes and distinct
terrains (left to right, top to bottom): seaside (120 m,−8.4◦); bridge (208.6 m,−31.3◦); desert (106.9 m,
−41.9◦); suburb (114.8 m, −49.9◦); Forest (291.5 m, −57.2◦); harbor (104 m, −37.1◦); overhead bridges
(112.2 m, −46.7◦); crossroads (203 m, −69.6◦); dam (118.8 m, −6.7◦); tollbooth (202.2 m, −89.9◦); Gobi
(356.6 m, −54.6◦); mountainous region (409.2 m, −35.4◦). The images in the first three lines have
resolutions of 4000 × 3000 pixels; the resolution of the last line is 5472 × 3648 pixels.

The statistical histogram of the VSAI scene distribution is shown in Figure 9. It is
obvious that the urban scenario accounts for half of the VSAI dataset. The other five
scenarios make up the other half. The histogram of the VSAI scene distribution exhibits the
complexities of the VSAI dataset.

Except for the weakness of a single scene, most existing datasets also ignored the
influence of the natural environment and variations in illumination. However, the VSAI
dataset considered complicated scenarios with diverse lighting conditions (such as daylight,
backlight, and night) and interference from harsh natural environments (fog, snow cover,
and sea ice), some examples of labeled images are shown in Figure 10.
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Figure 10. Examples of multi-view annotated images from VSAI in complex scenes (left to right, top
to bottom): daylight; backlight that can never appear in a down-view aerial image; night; fog; snow
cover; sea ice.

4.3. Vehicle Statistics

We collected statistical information about the vehicles, including the vehicle’s orienta-
tion angles, instance length, and vehicle aspect ratio, as illustrated in Figure 11. Because of
careful selection, we gained relatively uniform distributions of rotation angles, as shown in
Figure 11a. Noting Figure 11b, the lengths of the vehicles were concentrated in the range
of 0 to 75 pixels, signifying that there were numerous small instances in the VSAI dataset.
At the same time, there was a considerable scale change in VSAI, as shown in Figure 11b.
In addition, distinct perspectives also resulted in a wider range of the vehicle aspect ratio
rather than the aspect ratio of 2 or so in traditional down-view aerial images.
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4.4. Object Occlusion Ratio

Additionally, VSAI provides useful annotations with respect to the occlusion ratio
(the distribution of the occlusion ratio is shown in Figure 12). In this case, we used the
proportion of vehicles being blocked to represent the occlusion ratio and define four levels
of occlusions: no occlusion (occlusion ratio 0%), small occlusion (occlusion ratio < 30%),
moderate occlusion (occlusion ratio 30~70%), and large occlusion (occlusion ratio > 70%),
mainly for better reflecting the instance density of the instance location. The examples of
different occlusion ratios are exhibited in the second line of Figure 13.
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Reasons for occlusion in multi-view and down-view aerial images are completely
disparate. There are a couple of block types in multi-view aerial images that will never
exist in down-view airborne imageries, such as occluded by a building, being blocked by
other vehicles, or being sheltered by shafts, such as flags (first line of Figure 13). Due to
more types of occlusions, there are more hardships for multi-view aerial images to detect
objects accurately in comparison with the down-view ones, which means the former is
closer to real-world complicacies.
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Figure 13. Examples of vehicle occlusion. The first line demonstrates different block reasons of in-
stances, from left to right, occluded by a building, blocked by other vehicles, sheltered by shafts, 
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images). However, for aerial datasets, UAVDT images [25] only have 10.52 instances on 
average. DOTA has 67.10. Our dataset VSAI is much larger in instances per image, which 
can be up to 111.96. Figure 14 shows the histogram of the number of instances per image 
in our VSAI dataset. Although the numbers of images and instances of VSAI are less than 
most other datasets, the average number of instances in each image is much greater than 
most other datasets, as illustrated in Table 3, except for DLR-3K-Vehicle [40], which only 
has 20 images. 
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Figure 13. Examples of vehicle occlusion. The first line demonstrates different block reasons of
instances, from left to right, occluded by a building, blocked by other vehicles, sheltered by shafts,
such as flags, and occluded by vegetation, respectively. The second line illustrates different occlusion
ratios, from left to right, no occlusion, small occlusion, moderate occlusion, and large occlusion.

4.5. Average Instances

It is common for UAV images to include plenty of instances (but seldom for general
images). However, for aerial datasets, UAVDT images [25] only have 10.52 instances on
average. DOTA has 67.10. Our dataset VSAI is much larger in instances per image, which
can be up to 111.96. Figure 14 shows the histogram of the number of instances per image in
our VSAI dataset. Although the numbers of images and instances of VSAI are less than
most other datasets, the average number of instances in each image is much greater than
most other datasets, as illustrated in Table 3, except for DLR-3K-Vehicle [40], which only
has 20 images.
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Figure 14. Histogram of the number of annotated instances per image in VSAI.
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Table 3. Comparison of statistics between VSAI and other object detection benchmarks.

Dataset Vehicle Instances
per Image No. of Images No. of Instances Instances per

Image
Image Width

(Pixels)

UAVDT [25] 841,500 80,000 841,500 10.52 1080
DOTA [22] 43,462 2806 188,282 67.10 300–4000
EAGLE [30] 215,986 8280 215,986 26.09 936

DLR-3K-Vehicle [40] 14,232 20 14,232 711.6 5616
VSAI 49,712 444 49,712 111.96 4000, 4056, 5472

5. Method

We benchmarked the current object detection methods based on OBB with VSAI in
the evaluation section (below). Moreover, we selected and altered the ROI transformer [32]
as our baseline because of its higher localization accuracy for oriented object detection.

When detecting dense objects in aerial images, algorithms based on horizontal pro-
posals for natural object detection always lead to mismatches between regions of interest
(ROIs) and objects. The ROI transformer is proposed for addressing this; it contains two
parts, RROI learner and RROI warping. In this section, we briefly introduce two parts of
the ROI transformer and the ResNeSt backbone, the alternative to ResNet in this paper.

5.1. RROI Learner

The purpose of the RROI learner is to learn to rotate ROIs (RROIs) from the feature
map of horizontal ROIs (HROIs). We have HROIs in the form of (x, y, w, h) for predicted
2D coordinates and the width and height of a HROI; the corresponding feature maps
are defined as {Fi}. Because ideally a single HROI is the circumscribed rectangle of the
RROI, the ROI learner attempts to infer the geometric parameters of RROIs from Fi by
fully connected layers with dimensions of 5, regressing the offsets of rotated ground truths
(RGTs) relative to HROI; the regression targets are shown as

tgt
x = 1

wr

((
xgt − xr) cos θr + (ygt − yr) sin θr),

tgt
y = 1

hr

((
ygt − yr) cos θr −

(
xgt − xr) sin θr),

tgt
w = log wgt

wr , tgt
h = log hgt

hr ,

tgt
θ = 1

2π

((
θgt − θr)mod2π

)
(1)

where (xr, yr, wr, hr, θr) represents the location, width, length, and rotation of a RROI
and

(
xgt, ygt, wgt, hgt, θgt) stands for the ground truth parameters of an OBB. For deriving

Equation (1), the ROI learner utilizes the local coordinate systems bound to RROIs instead
of the global coordinate system bound to the image.

The output vector
(
tx, ty, tw, th, tθ

)
of the fully connected layer is represented as follows

t = C(F ; Θ) (2)

where C is the fully connected layer, F is the feature map for every HROI, and Θ represents
the weight parameters of C.

Once an input HROI matches with a ground truth of OBB, tgt is set by the description
in Equation (1). The smooth L1 loss function [41] is used for the regression loss. The
predicted t is decoded from offsets to the parameters of RROI. In other words, the RROI
learner learns the parameters of RROI from the HROI feature map F .

5.2. RROI Warping

Based on the RROI parameters learned by the RROI learner, RROI warping extracts
the rotation-invariant deep features for oriented object detection. The module of the rotated
position sensitive (RPS) ROI align [32] is proposed as the specific RROI warping, which
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divides the RROI into K× K bins and exports a feature map Y of the shape (K, K, C); for
the bin’s index (i, j)(0 ≤ i, j < K) of the output channel c(0 ≤ c < C), we have

Yc(i, j) = ∑
(x,y)∈bin(i,j)

Di,j,c(Tθ(x, y))
n

(3)

where Di,j,c is the feature map from the K × K × C feature maps. The n × n denotes
the number of sampling locations in the bin. The bin(i,j) represents the coordinates set{

i wr
k + (sx + 0.5) wr

k×n ; sx = 0, 1, . . . n− 1
}
×

{
j hr

k +
(
sy + 0.5

) hr
k×n ; sy = 0, 1, . . . n− 1

}
.

Moreover, each (x, y) ∈ bin(i, j) is transformed to (x′, y′) by Tθ , where(
x′

y′

)
=

(
cos θ − sin θ
sin θ cos θ

)(
x− wr/2
y− hr/2

)
+

(
xr
yr

)
(4)

Equation (3) is realized by bilinear interpolation.
The combination of the RROI learner and RROI warping replaces the normal ROI

warping, which provides better initialization of RROIs. In turn, it achieves better results in
rotating object detection.

5.3. Architecture of ROI Transformer

The main architecture of the ROI transformer is composed of three parts—the back-
bone, neck, and head networks. We chose the ResNeSt50 backbone to replace ResNet50 in
our baseline for extracting features, and the batch size was set to 2. FPN was selected as
the neck network to integrate the feature output of the backbone efficiently, whose input
channels were set as Cin = [256, 512, 1024, 2048], output channels Cout = 256. The
head network includes the RPN head and the ROI transformer head. We used five scales{

322, 642, 1282, 2562, 5122} and three aspect ratios {1/2, 1, 2}, yielding k = 20 anchors for
the RPN head network initialization. The ROI head adopted the ROI transformer described
in the previous subsection; we used the Smooth L1 loss [41] function for the bounding
box regression loss and the cross-entropy loss function for the category loss. The IOU
threshold was set as 0.5. We trained the model in 40 epochs for VSAI. The SGD optimizer
was adopted with an initial learning rate of 0.0025, the momentum of 0.9, and weight decay
of 0.0001. We used the learning rate warm-up for 500 iterations.

5.4. ResNeSt

ResNeSt accomplished an architectural alteration of ResNet, merging feature map split
attention within the separate network blocks. Specifically, each block partitioned the feature
map into multiple groups (along the channel dimension) and finer-grained subgroups or
splits with each group’s feature representation determined via a weighted combination
of the split representations (with weights determined in accordance with global context
information). The resulting unit is defined as a split attention block. By stacking some split
attention blocks, we gained ResNeSt (S means “Split”).

Based on the ResNeXt blocks [42] that divide the feature into K groups (namely “cardi-
nality” hyperparameter K), ResNeSt (Figure 15) introduces a new “Radix” hyperparameter
R, which means a split number within a “cardinality” group. Therefore, the total number of
feature-map groups is G = KR. The group alteration is a 1 × 1 convolution layer followed
by a 3 × 3 convolution layer. The attention function is composed of a global pooling layer
and two fully connected layers followed by SoftMax in the “cardinal” dimension.

ResNeSt combines the advantage of the “cardinality” group in ResNeXt and the
“selective kernel” in SKNets [43], and achieves a state-of-the-art performance compared to
all existing ResNet variants, as well as brilliant speed–accuracy trade-offs. Therefore, we
chose the ResNeSt backbone to replace ResNet in this paper.
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6. Evaluations
6.1. Dataset Split and Experimental Setup

To ensure that the distribution of vehicles in the training, validation, and test sets was
approximately balanced, we randomly assigned images with 1/2, 1/6, and 1/3 instances to
the training, validation, and test sets, respectively. To facilitate training, the initial images
were cropped into the patches with two methods. For the single-scale segmentation method,
the size of the patch was 1024 × 1024 pixels, with 200-pixel gaps in the sliding window,
leading to 5240, 1520, and 2315 patches of the training, validation, and test sets, respectively,
set according to the input size of the DOTA dataset [22]. For the multi-scale segmentation
method, the original images were cropped into 682 × 682, 1024 × 1024 and 2048 × 2048
pixels with 500-pixel gaps, resulting in 33,872, 9841, and 14,941 patches of the training,
validation, and test sets, respectively. Moreover, this paper evaluated all of the models on
NVIDIA GeForce GTX 2080 Ti with PyTorch version 1.6.0.

6.2. Experimental Baseline

We benchmarked the current object detection methods based on OBB with VSAI. In
this research, based on the features of VSAI (such as numerous small instances, huge
scale changes, and occlusion), we carefully selected rotated Faster R-CNN [44], oriented
R-CNN [34], rotated RetinaNet [45], and gliding vertex [33] as our benchmark testing meth-
ods due to their wonderful performances on object detection with arbitrary orientations.
We chose and altered the ROI transformer [32] as our baseline. We followed the same
implementations of these models released by their original developers. Except for the ROI
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transformer, we modified the backbone network from ResNet50 [46] to ResNeSt50 [47]
to obtain better feature extraction results. All codes of the baseline selected in this paper
are based on MMRotate [48], available at https://github.com/open-mmlab (accessed on
27 April 2022).

6.3. Experimental Analysis

By exploring the results illustrated in Figure 16, one could see that the OBB detection
is still challenging in relation to tiny instances, densely arranged areas, and occlusions in
aerial images. In Figure 16, we provide a comparison of small and large vehicle detection
with different ROI transformer methods (distinct backbones and split ways). As shown in
Figure 16, the unbalanced dataset (the number of small vehicles being much higher than the
large vehicles) led to less accuracy of the algorithms in large-vehicle detection compared
to small-vehicle detection. Observing the first column in Figure 16, we notice that the
models with ResNeSt50, random rotation, and multi-scale split more accurately framed the
large vehicle, because the former owns the more powerful feature extraction capability in
contrast with ResNet50 and the latter possesses more large-vehicle instances. Whether it is
single-scale or multi-scale or ResNet50 or ResNeSt50 models—for large-size vehicles, as
shown in the middle column in Figure 16, it precisely detects (even in the shadows and
occlusions). As demonstrated in the last column, under reverse light conditions, although
the multi-scale split and ResNeSt50 are better than the single-scale split and the ResNet50,
the three models completely miss many minor targets. The results are not satisfying,
implying the high hardship of this task.
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In Table 4, we show the quantitative results of the experiments. Analyzing the results
exhibited in Table 4, performances in categories of small vehicles and large vehicles are far
from satisfactory, attributed to the former’s small size and the scarcity of the latter in aerial
images. Overall, a two-stage network is generally better than a one-stage network, except
for S2A-Net and SASM. The former relies on FAM and ODM units to achieve better position-
ing accuracy by reducing the misalignment between anchor boxes (ABs) and axis-aligned
convolution features. The latter obtains better sampling selection results through SA-S
and SA-S strategies. Therefore, these two single-stage networks achieve similar results to
two-stage networks. It is worth noting that simply replacing the ResNet50 backbone of the
ROI transformer with ResNeSt50 improved the mAP by 4.1% and 0.7% for single-scale and
multi-scale splits, respectively, which proves the effectiveness of the split-attention module
in the ResNeSt50 backbone. An unbalanced dataset contributed to the lower accuracy of
all the models in large-vehicle detection in comparison with small-vehicle detection. To
summarize, although our baseline of the ROI transformer (adopting ResNeSt50, multi-scale
split, and random rotation) achieved the best performances (64.9% mAP, 79.4% average
precision (AP) for small vehicles, and 50.4% AP for large vehicles), among the state-of-
the-art algorithms used in this paper, object detection in multi-view aerial images was far
from satisfactory. Object detection in aerial images under various perspectives needs to be
further developed.

Table 4. Benchmark of the state-of-the-art on the rotated bounding box (RBB) detection task trained
and tested on VSAI; mAP means mean average precision, higher is better. SS and MS mean single-
scale and multi-scale split. RR indicates random rotation. R50 stands for ResNet50, S50 repre-
sents ResNeSt50.

Method Backbone Split and
Rotation

Type
AP [%]

SV LV Mean

Rotated RetinaNet [45] R50 SS One-Stage 67.1 32.6 49.9
R3Det [49] R50 SS One-Stage 69.6 38.5 54.0

Gliding Vertex [33] R50 SS Two-Stage 70.3 42.5 56.4
Rotated Faster R-CNN [44] R50 SS Two-Stage 70.7 44.0 57.3

S2A-Net [31] R50 SS One-Stage 73.6 41.9 57.7
Oriented R-CNN [34] R50 SS Two-Stage 76.9 43.1 60.0

SASM [36] R50 SS One-Stage 76.7 45.2 60.9
CFA [35] R50 SS Two-Stage 77.6 45.0 61.3

ROI Transformer [32]

R50 SS Two-Stage 77.4 38.4 57.9
S50 SS Two-Stage 77.7 46.2 62.0
R50 MS Two-Stage 78.9 48.2 63.6
S50 MS Two-Stage 78.8 49.8 64.3
R50 MS, RR Two-Stage 79.0 49.2 64.1
S50 MS, RR Two-Stage 79.4 50.4 64.9

In Figure 17, we provide several examples of fault detection and leak detection with
our baseline. As shown in Figure 17, it is still pretty hard for the state-of-the-art methods
to gain great detection results due to the complex scenes in the VSAI dataset. The model
misidentified the neon lights of buildings and blue blocks of roofs and arches, as large
vehicles. Motion blur vehicles at night, buses in close rows, and oblique photography of
tiny vehicles in the distance were not successfully detected.
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6.4. Cross-Dataset Validation

We completed a cross-dataset generalization experiment to validate the generalization
ability of the VSAI dataset. We chose DOTA [22] for comparison and its test set for
testing. We selected the ROI transformer models with the baseline of the VSAI dataset for
generalization experiments with OBB ground truth. Table 5 shows that a model trained
on VSAI generalizes well to DOTA, scoring 10% mAP over a model trained on DOTA
and tested on VSAI, which indicates that VSAI contains a wider range of features in
comparison to DOTA. At the same time, it reveals that VSAI is particularly more complex
and challenging than the current available down-view datasets, which makes it suitable for
real-world complicated vehicle detection scenarios.

Table 5. Comparison of results on VSAI and DOTA using the baseline of the VSAI dataset. The
comparison is on account of mAP. SL and LV stand for small vehicle and large vehicle, respectively.

Training Set Test Set SV LV mAP

DOTA VSAI 17.0 4.5 10.8
VSAI DOTA 35.5 6.1 20.8

7. Conclusions

We presented VSAI, a UAV dataset for targeting vehicle detection in aerial photogra-
phy, whose number of instances per image is multiple times higher than existing datasets.
Unlike common object detection datasets, we provided every annotated image with camera
pitch angles and flight height of drones. We built a dataset highly relevant to real-world
scenarios, which included multiple scenarios in aerial images, such as time, weather, illu-
minative situation, camera view, landform, and season. Our benchmarks illustrated that
VSAI is a challenging dataset for the current state-of-the-art orientated detection models;
our baseline achieved 64.9% mAP, which is 79.4% the average precision (AP) and 50.4% the
AP for small and large vehicles. The cross-dataset validation showed that models trained
with pure down-view images could not adapt to multi-angle datasets. On the contrary,
VSAI could cover the features of straight-down datasets, such as DOTA. We believe that
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VSAI contributes to remote sensing target detection (closer to reality). It also introduces
novel challenges to the vehicle detection domain.
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