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Abstract: Micro aerial vehicle (MAV) fleets have gained essential recognition in the decision schemes
for precision agriculture, disaster management, and other coverage missions. However, they have
some challenges in becoming massively deployed. One of them is resource management in restricted
workspaces. This paper proposes a plan to balance resources when considering the practical use
of MAVs and workspace in daily chores. The coverage mission plan is based on five stages: world
abstraction, area partitioning, role allocation, task generation, and task allocation. The tasks are
allocated according to agent roles, Master, Coordinator, or Operator (MCO), which describe their
flight autonomy, connectivity, and decision skill. These roles are engaged with the partitioning based
on the Voronoi-tessellation but extended to heterogeneous polygons. The advantages of the MCO
Plan were evident compared with conventional Boustrophedon decomposition and clustering by
K-means. The MCO plan achieved a balanced magnitude and trend of heterogeneity between both
methods, involving MAVs with few or intermediate resources. The resulting efficiency was tested
in the GAMA platform, with gained energy between 2% and 10% in the mission end. In addition,
the MCO plan improved mission times while the connectivity was effectively held, even more, if the
Firefly algorithm generated coverage paths.

Keywords: area partitioning; connectivity; coverage mission; firefly algorithm; GAMA platform;
heterogeneity; Micro Aerial Vehicles; Voronoi-tessellation

1. Introduction

The participation of Unmanned Aerial Vehicles (UAVs) or drones in civil activities has
increased due to their versatility in any environment. Most commercial UAVs are classified
as Micro Aerial Vehicles (MAVs), restricted to up to 5 kg, a communication range of about
10 km, and a maximum altitude of 250 m [1]; they can be wing-based or multirotor, and
their cost is often less than other civil UAVs.

MAVs frequently are deployed to search, surveil, patrol, and perform other activities
which generate information to make decisions in agriculture, disaster management, and
other processes that require monitoring in space and time. These tasks are framed in the
CPP (Coverage Path Planning) problem [2] which usually has three stages; path planning,
allocation, and deployment [3]. The key to an efficient coverage plan is to visit all waypoints
of a workspace, avoiding obstacles or Zones of Low Interest (ZLIs). However, this type
of mission can fail in restricted (and large) workspaces since the MAVs have a limited
operational flight, around 15 to 30 min, which decreases by payload, angular acceleration
changes, maneuvers against the wind, and continuous deployments.

This limitation has been studied in research projects and some commercial initia-
tives using energy management through optimal paths and a global positioning [4], with
recharge stations in the middle of the course of the MAVs [5] and using a fleet of MAVs [6].
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Even though the latter approach has significant challenges, the current proposal is centered
on it, since optimizing the mission with a single MAV may not be enough to cover restricted
workspaces. The recharge stations require electric infrastructure in the workspace, which is
not available for most workspaces such as crops, forests, and other hostile areas.

A fleet of MAVs can be modeled based on the theory of multiple robotic agents
that can cooperate to accomplish a coverage mission [7]. The coordination model can
be centralized, hierarchical, decentralized, or hybrid. However, the last ones have a
significant preference because they are robust to faults and can combine local and high-
level control to solve complex tasks [8]. The no-centralized management has two paradigms:
the swarm-type and the heterogeneous systems. The coordination of a swarm involves
multiple homogeneous agents with behavior inspired by biological societies. For the
second paradigm, heterogeneity can be defined in behavior, morphology, performance, size,
or cognition. A heterogeneous system exploits the swarming coordination’s parallelism,
redundancy, and distributed solutions. Moreover, it can include mission specifications
because the agents have different skills and payloads [9].

From the previous context, this paper works with a decentralized model to deploy
multiple MAV agents for coverage missions in restricted workspaces. However, the multi-
drone technology is still not a part of the daily activities of users, possibly because most
alternatives work for environments and users in ideal conditions. A typical user does
not have the technical knowledge and is unprepared for a dynamic workspace’s cost and
possible risks. In answer, the first premise of the current solution is to consider simple MAVs,
easily acquired and adaptable, for example, Ardupilot, Parrot, and DJI. These commercial
MAVs facilitate use and maintenance and mitigate the risk of investment on possible missed
missions. From this approach, the question to solve is how to efficiently deploy multiple
MAVs for coverage missions conditioned to environments with restricted access.

The present research works on the off-line multi-CPP problem since online planning
would require continuous communication and processing resources that simple MAVs
and restricted environments cannot support [10]. The solution is a plan for area coverage
missions based on the balance of the heterogeneity of MAVs and the connectivity of the fleet
(Figure 1). Both are engaged with area partitioning inspired by the Voronoi-tessellation but
extended to heterogeneous polygonal sub-areas. The resulting tasks are profiled for agents
of type Master, Coordinator, and Operator (MCO). Then, tasks are allocated to the MAVs
using an auction mechanism. The main job of an agent is to follow a coverage path, which
is calculated with the Firefly algorithm, given as a near-optimal solution to the Traveling
Salesman Problem (TSP) for each area partition. The second task is to interact with near
neighbors, which is restricted by the role and the communication range.
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The GAMA platform [11] was selected to validate the hypothesis described in Figure 1
due to its extensive features to model physical agents and geographic environments. The
results show better resource management of the MCO Plan after comparing it with other
alternatives such as Boustrophedon-based and clustering-based planning. The experiments
state the performance of the MCO plan in three different workspaces throughout the
analysis of scores such as the task standard deviation, remaining energy in the end mission,
and the likely number of links. The mean values, 8% for standard deviation, 60% for saved
power, and five links per MAV, prove a balanced heterogeneity and connectivity skill.

The remaining paper is organized as follows: Section 2 describes related work on the
coverage mission for multiple heterogeneous MAVs. The subsequent problem statement
is defined in Section 3. Section 4 states the materials and proposed methods to plan a
coverage mission. Section 5 presents and analyzes the simulated results using the GAMA
platform. Finally, the conclusion and future research are described in Section 6.

2. Related Work

Some outstanding papers sorted by coverage planning mechanisms for multiple MAVs
were selected for this section. The following classification describes a timeline with specified
methods of world abstraction, area partitioning, and coordination.

2.1. Polygon-Based Coverage Plans

One of the pioneering works on this topic was found in [12]. The problem they tried
to solve was a cooperative search in areas while considering the computational complexity
required to implement in near real-time applications. Maza and Ollero defined a polygonal
decomposition of the region; every drone was assigned to one of the resulting polygons by
a ground coordinator based on deterministic scores. Next, they proposed optimizing the
UAV coverage path by minimizing the number of turns during a zigzag pattern, using the
optimal sweep direction (flight lines) of fixed-wing MAV for surveillance.

The work in [13] was representative of the 2D coverage solutions. Valente divided the
workspace into grid-like cells and planned the sub-areas with the best approximation to the
minimum line segment. The off-line planning considered the inherent limitations of a raster
and other constraints to be optimized. A heuristic wavefront was extended on a graph
generated by the neighborhood adjacency to calculate the coverage paths. Further, the
authors proposed task negotiations based on an auction mechanism only at the coverage
mission start. Following the line of optimal coverage with MAVs, the authors in [14]
decomposed the observed area into that of a regular grid, partitioning the area by equal
vertical segments. The area was rotated to find the optimal sweep direction and paths
with few flight lines. They compared the spiral, Zamboni, and lawnmower patterns to
calculate the coverage paths. The paths were complemented with the Dubbin curves to
optimize the agent energy. The work presented did not include a coordination mechanism
for the coverage mission; however, [15] proposed a one-to-one coordination algorithm for
area partition in patrolling missions that considered limitations of communication. This
decentralized strategy was aimed at minimizing the refresh time of the mission; every
MAV only exchanged information with nearby neighbors. They proposed a rectangular
decomposition and techniques of re-allocation using close links iteratively.

Balampanis et al. in [16] described a novel algorithm for heterogeneous coverage
missions in non-convex coastal regions with ZLIs. The Constrained Delaunay Triangulation
(CDT) was used to represent the workspace, and the paths were spirals centered in the
first cell labeled for an improved wave-front algorithm. The sub-regions were calculated
according to the MAV capabilities and a defined start position; then, the paths were
adjusted to solve deadlock situations. Ardupilot SITL instances validated the results
in the ROS framework. In recent proposals, area partitioning has token relevance for
maritime applications [17]. The work uses a polygon decomposition algorithm to carry
out complete search coverage. The strategy fixed the start positions on the edge to divide
the workspace through line segments that considered the areas and optimized with a
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‘maximizing-minimum angle’ mechanism. The numerical results showed the performance
and computational complexity of the proposed algorithm. The coverage path was a parallel
sweep search pattern that was improved by decreasing the turns and the traveled distance.
A critical approach was found in [18] to surveilling missions. They split the area of interest
given the number of MAVs, the requirements for the site to be covered, and the initial
position of each MAV. The coverage path was a back-and-forth pattern with a given cross-
track separation. The novel partitioning method was based on the directed graph of the
triangular sub-regions by a constrained Delaunay triangulation. Each sub-region was
adjusted with a pseudo-site to start the mission. The path assignment was centralized and
considered few turns. Finally, a generalized proposal of the polygon decomposition for any
robotic agent was presented in [19]. The basis of the proposal was to divide a polygon into
two parts for given area requirements in terms of the perimeter of the corresponding part.
The algorithm continued until it split the workspaces in the given number of vertices in
the polygon’s border. The authors only worked on the mathematical solution to divide a
polygon for any range of applications.

2.2. Clustering-Based Coverage Plans

The coverage mission based on polygons is frequently oriented in the area geometry
and ZLIs. Still, clustering is focused on dividing the workspace into homogeneous sub-
areas that could be heterogeneous with ZLIs-included. For instance, [20] decomposed
the total area using the K-means algorithm. A genetic algorithm calculated the coverage
paths for each cluster, and a single MAV was assigned for each group. They proposed two
variants of a method for offline and online coverage paths, and the analysis was done for
small, medium, and large areas.

Similarly, in [21], an area reconnaissance mission was deployed with offline planning to
start the task and a partial online re-planning. The pre-planning was based on the Spanning
Tree Coverage algorithm; then, a fuzzy C-means clustering algorithm was executed to
calculate the multiple paths and corresponding sub-areas. The online re-planning was
designed to distribute tasks in case of MAV failures.

Leng et al. in [22] presented a new proposal to optimize the paths and maximize the
ground visibility considering the natural occlusions in forests. The authors changed the
traditional grid abstraction by the Voronoi cells to represent the waypoints to be visited.
Each MAV was assigned to a cluster of Voronoi cells to carry out surveillance. The coverage
path for each MAV was calculated with a custom clustered spiral-alternating algorithm.
Following the balance between areas, paths, and number of MAVs, in [23], the coverage
mission was defined by solving the Multiple Traveling Salesman Problem (m-TSP). First,
collision-free sub-areas were generated by the αβ swap algorithm. The second part updated
the sub-areas to find the partitioning that minimizes the longest MAV path. They allocated
paths to MAVs which had nearly equivalent lengths.

The authors in [24] proposed a solution to solve the problem of multi-MAV coverage
path planning that divided the region based on Reinforcement Learning with a grid world.
The initial cell is random, and each agent has a camera to acquire information. The
global control of the fleet is defined by a mechanism of Deep reinforcement learning with
Double Q-learning Networks (DDQN). The coverage showed that different start positions
are independent of the capacity to cover all spaces. The results proved autonomous
collaboration in dynamic environments with energy constraints.

Inspired by the algorithm called Clustering by the Fast Search and Find of Density
Peaks (CFSFDP) [25], the regions were classified into clusters and obtained approximate
optimal point-to-point paths for UAVs. The simulated UAVs are heterogeneous in their
flying speed, energy supply, and scanning width of onboard sensors. The coverage path was
calculated under MILP formulation, although the waypoints were efficiently visited with
complementary optimization strategies. The Nearest-to-any policy to classify unallocated
regions into clusters and an Order optimization strategy to adjust the visiting order of the
areas classified into the same group resulted in a reduced task time of MAVs.
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Comparable to the previous works considering communication requirements, in [26], a
fleet of AI-driven MAVs was modeled to survey urban zones. The proposal mixed Artificial
Neural Networks and a modified version of the famous A* pathfinder to solve the coverage
path planning. The workspace was clustered by combining K-means and the Voronoi
Diagrams for a homogeneous distribution. The results with different complex areas were
computed on the Gazebo simulator using the ROS framework.

2.3. Heuristics-Based Coverage Plans

The mentioned works may be classified as medium to low computational requirements
for MAVs. In contrast, heuristics-based mechanisms require high computational capacity.

In [27], the overall goal was to quickly build overview mosaics from unknown areas
for emergency and disaster response cases. They focused on wireless communication
networks for the transmission and control of acquired images. The online path planning
was based on the parallel Clarke and Wright savings algorithm and clustering combined
with the Christofides algorithm. Specifically, the mission was for area coverage, but they
designed an architecture to acquire images with onboard processing, annotating with
other sensor data, and transferring by a prioritized scheme. In [28], the coverage planning
for multiple UAVs was assumed for a known region and divided into square cells. The
spiral algorithm was applied to the search for uncovering cells, and the A* algorithm was
used to find the shortest path. The main contribution was a contingency strategy when a
UAV failed; it skipped all next path planning for that UAV. The remaining un-surveyed
region was automatically assigned to the other UAVs from the base station. In [29], explicit
communication was also considered to become a fault-tolerant system. A multi-agent
system decentralized for field coverage and weed mapping was introduced with a re-
broadcast protocol to account for limited communication ranges. A stochastic exploration
strategy based on a reinforced random walk was used, and a mechanism to avoid re-visited
areas was defined. Each agent had a local map to store the information acquired from
onboard processing or received from other agents through communication. In this work,
the results showed that the decentralized, self-organizing nature of the solution led to
robustness against faults.

The most recent studies continue to improve the energy consumption of MAVs. In [30],
an imagery mission was described using a column generation framework. The authors
defined a flight profile to estimate the energy consumption in the mission. The shape was
calculated for each coverage path based on an algorithm called RBECOM that calculated
an optimal solution by minimizing both the length of a returning path and the number of
turns. The sub-regions were calculated by adding a constant to the same model to define
a combination of routes that required the least amount of total energy. Another case that
considered energy consumption was found in [31] for data collection missions. The paper
conserved energy by optimization of the trajectory plan of a cooperative fleet of MAVs. The
planning was based on an algorithm called Deep Learning Trained by Genetic Algorithm
(DL-GA). The GA received inputs from various scenarios and then the deep neural network
was trained while facing familiar scenarios; it could rapidly provide the optimized path
which satisfied continuous operations. The solution reached a speed to process a solution
better compared with the GA algorithm.

2.4. Conclusion of Coverage Plans

The review of multi-MAV systems for coverage missions denoted that offline planning
based on computational geometry had been more often implemented. This result could
be because practical work frequently requires campaign workers and infrastructure in the
field; therefore, simulated scenarios and/or experiments with few agents could accelerate
and cheapen the tests. The scope of the polygonal-based methods was to optimize the
division of areas with ZLIs, but it did not consider cooperation. The clustering strategy
resulted in an approach to plan optimal coverage with possible collaboration between
agents; however, little of the energy consumption heterogeneity was deepened. Finally, the
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alternative based on heuristics was closer to the goal of autonomous and robust multi-agent
systems, but they used high computational resources to compute sub-areas and paths.
In addition, continuous communication between all MAVs was delimited. In brief, few
works reached the resource balance between task allocation and communication challenges
in coverage planning. Further, none of the found results included user restrictions on
planning a mission with a MAV fleet.

3. Problem Statement and Principles

The research problem is centered on the coordination of a fleet of MAVs for coverage
missions in restricted workspaces. The challenge is to become effective in practical scenarios
where it is necessary to think about the investment, the technological usability, and the
usefulness of the information to make decisions. The current paper aims to reach a solution
considering the user context and the restrictions of workspaces. A user can be a farmer,
a security company, a forest manager, a search and rescue squad, an archaeologist, and
other persons who make decisions based on remote information. The typical user is not
interested in technological knowledge but in making decisions without loss. Therefore, a
restriction would be to deploy coverage missions with commercial and adaptable MAVs to
facilitate the use, maintenance, and data acquisition, and mitigate the risk in the investment
concerning the restricted workspace, including lack of electricity supply, rugged relief, and
changing weather.

In order to solve this problem, the research must obtain complete information on using
multiple MAVs. Complete information means the acquired data corresponds to the area of
interest; it tries the CPP problem in multiple regions with communication-enabled MAVs
to support future cooperation. Then, the statement to deploy a coverage mission starts
with a group of heterogeneous MAVs and a known polygonal area representing a restricted
workspace. The workspace is partitioned into sub-areas with corresponding sub-tasks
allocated to the MAVs.

Let A1, A2, . . . , An be a fleet of n MAV agents performing the coverage mission. Let S
be the total coverage area, and consider each sub-area as a set of S cells. Then, S1, S2, . . . , Si
are sub-areas of S, where Si is assigned to one MAV agent An. In Figure 2, each sub-area Si
is decomposed into cells as close as possible to the footprint size of the MAV remote sensor,
which is called world abstraction.
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Each MAV is modeled as an agent with skills to move, perceive its state and the
environment, follow a plan, reach a goal, interact, and adapt to a behavior. The MAV agent
is modeled with the Belief-Desire-Intention (BDI) control [32], and the interaction is based
on FIPA (Foundation for Intelligent Physical Agents) protocols.

According to previous studies, the research starts from the following principles:
P1. The total coverage area S is known, and it should have an extension at least three

times greater than the traveled nominal distance of a single MAV agent.
P2. The ZLIs can be identified in S. If a sub-area has ZLIs, the corresponding cells

should not be considered on the task. Then, each An should be allocated only with the free
cells cj of each Si (Figure 2).

P3. Each An should have basic communication capabilities to support the interaction.
The connectivity skill is required for possible cooperative tasks.

P4. All MAV agents on the mission have the same flight height and speed. In practice,
it will not happen, but the current interest is for bi-dimensional coverage and slow cruising
speeds.

P5. A Si sub-area corresponding to each MAV agent cannot be disjointed or intersected
with another sub-area; this principle is to avoid collisions during the mission.

P6. The number of MAV agents, n, is fixed by the user. The coverage planning
should be done with available MAVs without forcing the user to make a more significant
investment.

P7. There should be a ground station to monitor agents. Frequently, the station will be
close to buildings or an electric supply.

P8. The heterogeneity of MAV agents is given by the adequate flight time, decision
capacity, and communication skills.

P9. The MAV agents have the same remote sensor as the payload. The payload is a
user’s decision to obtain data related to the corresponding business.

4. Coverage Mission Planning

The proposed solution to deploy multiple heterogeneous MAVs is classified as a
polygon-based coverage mission plan. The decision is a result of contrasting the works
in Section 2. The techniques based on heuristics are discarded because they require high
computational capacity and persistent connectivity of the fleet, which could imply an
energy excess and additional time to complete the mission. The clustering-based category
was rejected because the resulting sub-areas become homogeneous, and the computational
complexity could restrict possible practical deployments of coverage missions. However,
the strengths of the focuses in the related works are integrated into a novel method of
coverage mission planning according to the principles in the problem statement (Section 3).

Consequently, the following content describes the technology to model MAVs as
agents and the proposed plan to solve the research problem, called MCO, by the agents’
roles (Master, Coordinator, and Operator). The method is stated step-by-step through five
components: world abstraction, area partitioning, role allocation, task generation, and task
allocation. The MCO Plan is assumed to run at the mission start.

4.1. Agent-Based Simulation

Different alternatives were found to model robotic agents, some more cited such as
NetLogo [33] and Repast Simphony [34], and others such as MAS-Planes [35] focused
only on UAVs. However, a physical engine and communication skills are required to
model MAVs. Both factors are found in the GAMA Platform [11]. The platform has a
friendly programming language (GAML), communication protocols for physical agents,
complete documentation, and a development community. In addition, the GAMA models
are spatially explicit and extended by including GIS (Geographic Information Systems).

Each MAV agent is implemented to move, perceive, follow a plan, interact, and adapt
behavior. The control of the skills is designed with BDI architecture as shown in Figure 3.
The beliefs are related to predispositions during the execution of a task. They can be
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updated according to world knowledge and self-knowledge; as an example, the MAV agent
can be believed to be at task target (4.At_target). The MAV agent should verify each belief
under logical rules from self-knowledge and the allocated task.
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Consequently, the MAV agent is motivated to reach some single goal; for the previous
example, the desire can be a return to home (4.Return_home). However, a MAV agent
cannot reach a goal without a plan. The library of plans considers the intentions and desires
to define the actions, which is going to affect the environment. From the example, when the
desire becomes an intention to 4.Return_home, a cruise flight is a possible plan to execute
such action.

Table 1 describes how the beliefs become actions of the MAV agents using steps 1 to
5 after any belief (On_takeoff, See_neighbors, Receive_msg, or At_target) is set. In brief, a
belief motivates a desire; then, the desire sets a goal to adopt an intention. The intention is
to run a plan that reflects actions.

Table 1. Rules for BDI Control.

Beliefs On Takeoff See Neighbors Receive Msg At Target

Step 1 Desire Go on a path Send a query Read message Return to home
Step 2 Goal Make a complete path Update fleet state Update fleet state State inactive
Step 3 Intention Go on a path Send a query Read message Return to home
Step 4 Plan Follow path steps Interaction as priority Interaction as priority Go to the setpoint
Step 5 Action Move to next waypoint Transmit message Reply message Fly as cruise mode

Concerning interaction skills, the current proposal only monitors the fleet state and
then tests the connectivity between agents. Each MAV agent uses a FIPA Query Interaction
protocol with a communicative act called query-if. This type of communication waits by
informing the neighboring state [36].

4.2. MCO Plan

MCO Plan is the solution to the problem described in Section 3. The known coverage
area (georeferenced raster) with ZLIs, the number of available MAVs, the return of MAVs,
and remote sensor parameters are inputs for planning. The outcome of the MCO Plan is
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allocated roles and coverage tasks to follow. The approach should become scalable and
near-optimal, looking for a balance between heterogeneity and connectivity. To reach that
goal, five components for coverage mission planning are represented in Figure 4 and are
described below.
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4.2.1. World Abstraction

The first step in coverage mission planning is to define how the MAV agent observes
the world. The world abstraction considers a MAV agent acquiring remote information
(through cameras, scanners, etc.). This payload type projects a footprint on the observed
workspace defining the cell shape to split the area. In the current case, a rectangular shape
represents the sensor’s approximate range.

Each cell center is the step or waypoint visited by a MAV agent (Figure 5). According
to the specification of the coverage mission, the centers should be so close as to overlap
more than 60%, according to photogrammetric fundamentals. The cell size is calculated
with Lx and Ly from Equation (1), where h is flight height, α is the angle of view from the
sensor, and the image size is defined by Ix and Iy. Then, the cell is interpreted into pixels
and split by Lx on height and Ly in width, ZLIs included. The final footprint is given by
Lx·(1 − p) and Ly·(1 − q), where p and q are respective percentages (0 to 1) of longitudinal
and cross overlap.

Lx = 2·h·tan
(α

2

)
, Ly = Ly

(
Ix

Iy

)
(1)
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Figure 5. Sensor footprint and overlap.

Some areas from the original workspace could not be included in the rectangular grid,
but if this is the case, the cell should be reduced as much as the application allows. The
world abstraction is implemented in four steps as seen in Figure 6: a georeferenced raster is
loaded, then the user identifies the coverage areas (coverages), and a raster with recognized
territories is segmented. Image processing extracts the ZLIs from the raster as in [4]. Finally,
the cells and waypoints based on the camera parameters are obtained. A screenshot of the
GUI for world abstraction is shown in Figure 6.
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4.2.2. Area Partitioning

The focus of offline coverage planning is how to split the total waypoints correspond-
ing with the number of MAVs. The waypoints are the free cells to visit calculated from the
world abstraction method.

In Section 2, the planning can be classified as polygonal from related works. The
polygonal mechanism uses segments on the area’s geometry, which results in heterogeneous
sub-areas, while the clustering-based distribution trends to homogeneity. Representants
of the polygonal-based partitioning can be the Boustrophedon approach and Voronoi-
tessellation, and clustering-based partitioning can be the K-means algorithm. Figure 7
shows partitioning by segments, clustering, and Voronoi-tessellation as an instance for four
MAV agents.
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Figure 7. Area partitioning techniques (a) segments, (b) clustering, and (c) Voronoi-based.

Figure 7c shows Voronoi-tessellation as the initial candidate for this research because
the computational complexity can become less than clustering; the areas to connect with
neighbors are more than others in some related work. Frequently, the Voronoi-based
partitioning results in heterogeneous divisions. However, it is heterogeneous for small
numbers; the obtained result can become homogeneous if the number increases. An
extension is then proposed in the current research to conserve heterogeneity and solve the
Voronoi-tessellation generalization. The phases of the attachment are described below:

Phase I: a takeoff location, called p0, should be selected to generate the centroids of the
Voronoi-tessellation (it could be the center of the coverage area). Other centroids to generate
tessellations are centered in p0 and follow a circumference as in Figure 8. The circumference
radius is calculated by dividing the measured width of the workspace between the number
of MAV agents, n. The distribution of the initial centroids p1, p2, . . . , pn−1 inside the
circumference is random.
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Figure 8. Base partition.

However, after calculating the first Voronoi-tessellation, some partitioning tests for
more MAV agents can become a homogeneous distribution. To solve it, a deterministic
mechanism is designed on the Base Partition that satisfies the following postulate.

Postulate 1: a Base Partition can have between two and four divisions. Therefore, a single sub-area
can have three connected sub-areas.

Phase II: If the MAV agents to deploy are more than four (n > 4), the centroids of
Base Partition are re-distributed based on the centroid pi of the detected largest sub-area
(p1 is the greatest sub-area in Figure 8). The centroid is moved one-third of the radius closer.
Consequently, the selected sub-area becomes larger after rerunning the Voronoi-tessellation.

The next sub-areas result from dividing the largest one using the Phase I method. The
new random circumference of centroids is calculated at the center of the largest sub-area.
The number of secondary centroids is updated to obtain the required sub-areas (Figure 9).
The result of Phase II is named Sub-partition k, which satisfies the following postulate.
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Postulate 2: a Sub-partition can have between two and four sub-areas. Then, if n > 4, the number
of divisions for a Sub-partition is (n − 3).

Phase III: an iterative process is run to determine Sub-partitions following postulate 2.
The movement of the secondary centroid of the largest sub-area concerns the closer p
centroid, and the cycle continues to complete the area partitioning until there are 16 sub-
areas. According to the problem statement for coverage missions, 16 is defined as enough
MAV agents. The deployment of 16 simple MAVs can be a great investment for the user,
and further, it can become complex to maintain. However, scalability is essential for the
research; hence the last phase is proposed below.

Phase IV: if the MAV agents to deploy are more than 16 (n > 16), the number of
divisions for the complete area, S, is calculated by multiples of 16. It means the number
of p0 to locate is the quotient between n and 16 plus 1 (n/16 + 1), called v. For each
new p0, Phases I, II, and III are applied to complete the Partition Levels. Each Partition
Level is centered in a new pv

0 (takeoff locations) as shown in Figure 10, satisfying the
following postulate.
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Postulate 3: a Partition Level can have up to 16 sub-areas. Then, a new Partition Level is generated
when v ≥ 1.

4.2.3. Role Allocation

Most work on coverage mission planning describes the method to allocate sub-areas.
Nevertheless, the present proposal is projected for MAV agents with some interaction
during missions. Consequently, the proposed plan creates roles to define the behavior of
the agent model (Section 4.1), creating hierarchical coordination. The model is not designed
for continuous connectivity since it would exceed energy consumption. The strategy then
becomes managing the fleet’s energy during the mission with partial connectivity with
few neighbors (at a restricted time). Each MAV agent can only interact when neighbors
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are in the defined range. The next steps, when MAV agents interact to make decisions to
complete a mission, are not tried in the current paper, but they are in development.

The hierarchical model has three roles to manage heterogeneity and connectivity of
the fleet, according to the skill scores of flight time, communication, and decision. The
Master should have a high score in decision and communication, and an intermediate flight
time score. The Coordinators should have a middle score for decision and flight time, and a
high score for communication. In case a Master fails, coordinators must support decisions.
The Operators should have a low score for decision and communication, and a high score
for flight time.

The Master’s role is single for one Partition Level. The role is to take principal decisions
to complete the mission, and it should be the closest to a ground station (relative to the
takeoff location). A Master agent should have a short coverage path to save energy for
transmitting and receiving messages from Coordinators. The Coordinator role is for a
MAV agent that works as a router of communication between Agents and the Master. A
Coordinator can make secondary decisions, and its coverage path should be intermediate.
The Coordinators are the four agents closest to the Master. Finally, the Operator role has
the hard work of the coverage of the greater peripheral sub-areas. Table 2 summarizes
the specifications of roles requested to cover each sub-area and the possible interactions.
The roles determine the heterogeneity and connectivity that should be requested from
MAV agents for a coverage mission and are the result of the area partitioning method in
Section 4.2.2; as an example, Figure 11 shows each role in a partitioned area. To avoid
a possible overload of transactions on the network, it is proposed that the number of
neighbors for each role is four (as a consequence of the partition phases).

Table 2. Roles for a Partition Level.

Role Allocated Sub-Area Interact with

Master Sub-area closest to the takeoff location Coordinators and other Masters
Coordinator Sub-areas closest to the Master Master, Operators, and other Coordinators

Operator Sub-areas around the Coordinators Coordinators and other Operators
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4.2.4. Task Generation

After the requirements for coverage in each sub-area are defined, the next step is to
calculate the coverage task. Then, each MAV agent should be allocated with a path, and
its completeness should be guaranteed. The path generation component assumes that the
MAV agent will acquire data while visiting each waypoint.

According to the review in Section 2, the coverage paths for MAVs are frequently
zigzag or lawnmower movements with improvements in the flight line orientation and
smooth turns to optimize the task. However, the zigzag movements are indifferent to
ZLIs, and they could be inefficient because they do not consider the return home as part
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of the path. It means more flight time and high redundancy to achieve coverage planning
with included ZLIs. To overcome it, some restrictions such as ZLIs, irregular shapes in
workspaces, and only a practical runtime to compute missions should be considered. A
suitable runtime for the computation of coverage paths is in the range of hours since
practical assignments can require continuous deployments.

The literature describes alternatives to compute the coverage paths based on heuristics
and metaheuristics that solve the TSP. Some solutions were previously evaluated to decide
which accomplishes the previous requirements. The heuristics such as wavefront and
spanning tree are suitable for a few waypoints; if the scope increases, the optimization de-
creases. The found metaheuristics can be classified as trajectory-based or population-based.
The first ones are near-optimal, but the runtime was more significant than population-
based metaheuristics. Tests of those based on population versus the zigzag movement are
in Table 3.

Table 3. Metaheuristics vs. Zigzag movement.

Metaheuristics Runtime (s) Visited Waypoints

GA 1998 150
PSO 112188 200
ACO 37 120
BCO 6542 184
CS 0.953 168
FA 0.038 101

Zigzag 0.025 111

The scores used to compare are the runtime of the algorithm and the visited waypoints
to reach the start waypoint (target) again. The tests are for an area of 100 free cells homoge-
neously distributed, an initial population of 500 individuals, and 5000 iterations. Table 3
shows the results of the paths calculated using the general genetic algorithm (GA), Particle
Swarm Optimization (PSO), Ant Colony Optimization (ACO), Bee Colony Optimization
(BCO), Cuckoo Search (CS), and Firefly Algorithm (FA). The FA [37] was then selected
based on the smallest values.

4.2.5. Task Allocation

Task allocation is the last component of the MCO Plan, and looks for each MAV agent
to have a role and a coverage path. To develop the method, the current paper considers the
taxonomy for task allocation from the reference in [38]. The taxonomy solves multi-robot
problems by relating the number of robots with the number and period of the tasks. The
current issue is of type single-task (ST); each task can be realized by a single MAV-agent
(SR) and an instantaneous allocation is programmed (IA). However, this setup will change
because future research wants to support task re-planning based on partial connectivity.

Task allocation adapts the FIPA English Auction Interaction Protocol Specification [39]
as in Figure 12. The initiator is a ground station, and the MAV agents are participants.
The initiator informs the auction and requires the confirmation of MAV agents to know its
bidders. The bid for each MAV agent is calculated with three scores by knowing its resume
concerning use history, battery and communication module specifications, type of autopilot,
and capacity to process on a small computer board. The initiator takes the information
from the role and the flight time to calculate the same three scores. Both calculate three
features: flight time, decision capacity, and communication skills, and the initiator gives a
value for the first thresholds (subtraction of scores). Table 4 presents the score sources used
in Equation (2) for each score.

Score = 3 ∗ X − Xmin
Xmax − Xmax

(2)



Drones 2022, 6, 181 15 of 32

Drones 2022, 6, x FOR PEER REVIEW 15 of 32 
 

 

𝑆𝑐𝑜𝑟𝑒 = 3 ∗
𝑋 − 𝑋𝑚𝑖𝑛

𝑋𝑚𝑎𝑥 − 𝑋𝑚𝑎𝑥
 (2) 

Table 4. Task costs and bids. 

X Parameter Ground Station MAV Agent 

Flight time Estimated coverage time Estimated time by battery 

Communication 
Start position for each path 

with respect to area  

Estimated from power of te-

lemetry module 

Decision 
Start position for each path 

with respect to area 

Autopilot and possible on-

board computer 

 

Figure 12. Task allocation method. 

The scores range from zero (0) to three (3), where three means the maximum number 

of resources. The initiator rejects the participants with Bids more minor than the calculated 

Task cost and accepts the requests above. The initiator can increase the first thresholds 

and re-auctions in case of multiple MAV agents with accepted bids. The task is allocated 

to the agent with the better bid. When one task is assigned, the selected MAV agent saves 

it in its memory and waits for the call to start the deployment. Then, the process in Figure 

12 starts over for another task allocation. 

5. Simulations and Discussion 

The validation of the proposal was done using three different ZLIs-included work-

spaces in Cauca, Colombia. They were selected as areas for possible uses with multiple 

drones (crops and building Zones). The cases of the study were selected to prove the effi-

ciency of three coverage mission plans in areas with different shapes of ZLIs and the num-

ber of waypoints in free spaces. Such variations would impact the task heterogeneity and 

the connectivity skill of the fleet. Figure 13a is the Rejoya Farm with 70 Hectares, has free 

space in the center and some separate areas, and it is the largest workspace. Naranjos 

Farm in Figure 13b is 27 Hectares, has a small free area, few ZLIs on edge, and is the 

smallest area. Finally, the Urban Zone in Figure 13c is approximately 54 Hectares, has the 

broadest free space, and has one large ZLI on the edge. 

Figure 12. Task allocation method.

Table 4. Task costs and bids.

X Parameter Ground Station MAV Agent

Flight time Estimated coverage time Estimated time by battery
Communication Start position for each path with respect to area Estimated from power of telemetry module

Decision Start position for each path with respect to area Autopilot and possible on-board computer

The scores range from zero (0) to three (3), where three means the maximum number
of resources. The initiator rejects the participants with Bids more minor than the calculated
Task cost and accepts the requests above. The initiator can increase the first thresholds and
re-auctions in case of multiple MAV agents with accepted bids. The task is allocated to the
agent with the better bid. When one task is assigned, the selected MAV agent saves it in its
memory and waits for the call to start the deployment. Then, the process in Figure 12 starts
over for another task allocation.

5. Simulations and Discussion

The validation of the proposal was done using three different ZLIs-included workspaces
in Cauca, Colombia. They were selected as areas for possible uses with multiple drones
(crops and building Zones). The cases of the study were selected to prove the efficiency
of three coverage mission plans in areas with different shapes of ZLIs and the number of
waypoints in free spaces. Such variations would impact the task heterogeneity and the
connectivity skill of the fleet. Figure 13a is the Rejoya Farm with 70 Hectares, has free space
in the center and some separate areas, and it is the largest workspace. Naranjos Farm in
Figure 13b is 27 Hectares, has a small free area, few ZLIs on edge, and is the smallest area.
Finally, the Urban Zone in Figure 13c is approximately 54 Hectares, has the broadest free
space, and has one large ZLI on the edge.
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(c) Naranjos Farm.

Table 5 shows the number of ZLIs and the selected coverage area by image processing
as in Section 4.2.1. The number of waypoints was calculated according to camera parameters
such as angle of view (87◦), resolution (4000 × 3000 pixels), GSD (2 cm), and overlap
(75%). The number of minimum and maximum calculated sub-areas was limited from
Boustrophedon decomposition because the method does not deliberately allow selecting
the number of areas (ZLIs dependence).

Table 5. Selected workspaces to test.

Workspace ZLI Coverage Waypoints Sub-Areas (Min, Max)

Rejoya Farm 6 Coffee crop 2000 3, 12
Naranjos Farm 3 Mix of crops 315 2, 7

Urban Zone 2 Building lot 870 3, 10

The following results present the performance tests regarding proposed stages of the
MCO Plan, specifically, area partitioning, the role and task allocation with a zigzag pattern,
and paths generated by the Firefly algorithm. Every approach is analyzed for the resulting
coverage missions of the plan based on MCO, Boustrophedon, and K-means. For each plan,
the scope to manage heterogeneity and connectivity is tested. Metrics such as standard
deviation, heterogeneity trend, active MAVs, task time, battery per agent, and the likely
links between neighbors were used for evaluation.

Heterogeneity management is considered the main factor for efficient resource man-
agement in working with MAV fleets [40]. The MCO Plan defines the MAVs with three
features to manipulate heterogeneity, adequate flight time, decision capacity, and communi-
cation skill. Each one represents the primary source of waste energy for a MAV. The proper
flight time depends on the battery and the use history; the decision capacity depends on
the payload to process data on-board; and finally, the communication skill can change
based on the telemetry module and data flow support. Hence, the key is to manage the
heterogeneity in the tasks to satisfy the balance of resources for the agents, understanding
it as an intermediate effect between the three features in a coverage mission.
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The considered heterogeneity in this research is a transparent property for the user
since it is natural in practical deployments with MAVs. The users can decide on the invest-
ment in at least one equipped MAV and some basic ones, adapt capacities for some basic
MAVs, or, as an ideal, have all MAVs equipped with high processing and communication
resources. The user should not be limited to homogeneous MAVs for the coverage mission,
although they should be adaptable and have a similar remote sensor.

On the other hand, the MCO Plan involves the connectivity from the mission planning.
This issue is important since coordination could require interaction mechanisms to solve
failures diagnosed during deployment. The estimation of communication resources in
the coverage mission efficiently supports detecting any unexpected events and decisions
during the mission. The developed MCO Plan involves explicit communication between
agents to monitor the allocated tasks and the agent status. The connectivity is partial during
a short time while closer neighbors are inside a minimum range. Therefore, the key to
achieving possible decisions is that agents continually find neighbors, but interact with
limited resource expenditure.

5.1. Area Partitioning

This section shows how the area partitioning proposed in the MCO Plan reaches a
balanced heterogeneity of coverage sub-areas. The metrics to compare the MCO plan with
the Boustrophedon and the K-means-based plan are the magnitude and trend; both were
analyzed in the selected workspaces in Cauca.

Figure 14 shows the resulting sub-areas of each plan, which are the basis for a qual-
itative analysis of the maximum distribution of waypoints (last column on the right in
Table 5), and are grouped by color to differentiate the sub-areas in each coverage. On the
left column of the figure, Boustrophedon decomposition projected vertical rectangular
shapes in all ranges since ZLI corners are used to segment the geometry of the area. The
clustering by K-means on the center column launched pentagonal shapes since the minimal
distance between centroids is determined on world abstraction (grid). Non-regular forms
are obtained with the MCO Plan on the right column of the figure since it is based on
the Voronoi Tessellation that uses the geometric intersection of midwives. In brief, all
projections can change geometrically when ZLIs are included in the workspace, resolving
in heterogeneous sub-areas.
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The next step is the quantitative analysis of the heterogeneity magnitude correspond-
ing to the standard deviation. Then, if the resulting divergence is compared for each
workspace as in Figure 15, it is evident that the clustering-based partition (red line) has
fewer minor deviations than other methods. Therefore, homogeneous sub-areas increase as
the number of MAV agents increases. In contrast, Boustrophedon decomposition shows the
highest divergence for the three study cases, as is expected from the literature, achieving a
better heterogeneity skill than the MCO plan (yellow line).
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In the results from Figure 15, the MCO plan states a maximum standard deviation of
7.9% for Naranjos Farm, 9.2% for Urban Zone, and 7.5% for Rejoya Farm. As it is observed,
the MCO plan reaches mean values between Boustrophedon decomposition and K-means
clustering, although the trend was not coherent between them. The Pearson correlation
coefficient was used between the traditional method and the MCO Plan (Tables 6–8) to
detail the trend.

Table 6. Correlation between MCO and other methods in Rejoya farm.

Correlation
Number of MAV-Agents

3 6 9 12

MCO vs. K-means 0.636 0.362 0.002 0.298
MCO vs. Boustrophedon −0.472 0.476 0.045 −0.061

Table 7. Correlation between MCO and other methods in Urban Zone.

Correlation
Number of MAV Agents

3 6 10

MCO vs. K-means 0.999 0,233 −0.254
MCO vs. Boustrophedon −0.967 0.104 0.315

Table 8. Correlation between MCO and other methods in Naranjos farm.

Correlation
Number of MAV Agents

2 4 7

MCO vs. K-means 1.000 −0.690 −0.708
MCO vs. Boustrophedon −1.000 −0.242 0.623

In brief, the correlations are higher while the number of MAV agents is slight, such as
2 or 3; it is consistent because, with fewer sub-areas, heterogeneity is not tangible. Mean-
while, the correlations show that the partitioning of the MCO plan is closer to the K-means
pattern in most study cases (Figure 15). In addition, in the Naranjos Farm (Table 8), the
correlations are higher than in other workspaces, even with the perfect association. The
result is given by the expansive workspace that forces the plans’ similitude. Another factor
could be the non-centered convex ZLIs, which restrict the ability to propagate sub-areas
towards the edges as MCO Plan proposes.

According to the observations above, the Boustrophedon decomposition reaches the
higher heterogeneity skill in the three evaluated workspaces, with more than 100 waypoints
of standard deviation. However, the resulting sub-areas could become small or large, as
the ZLIs limited them, which is considered an unbalanced heterogeneity. For instance, the
Boustrophedon-based plan for Rejoya Farm (upper left corner of Figure 14) had sub-areas
with just three waypoints and others twenty times greater. Consequently, resources are not
efficiently managed because, firstly, few MAV agents have greater responsibilities and may
make a non-completed mission. On the other hand, the requirement for shorter or longer
flight times restricts the user from investing in extra skilled MAVs. Different improvements
can be made to achieve a balanced heterogeneity with the Boustrophedon partitioning as
the heuristics. However, the effort has a limit due to heterogeneity caused by obstacles,
which will consume more computational resources to reach proper partitioning.

The plans’ divergences based on K-means show the lowest values between 2 and
50 waypoints (red lines in Figure 15). Despite the low magnitude, the clustering method
looks similar to the pattern of Boustrophedon decomposition, which notices a trend to
decrease the deviation for both strategies. The Boustrophedon pattern changed notoriously
for a smaller number of agents as Figure 15c, which could be a result of partitions dependent
on ZLIs. However, after eight divisions, K-means will linearly decrease the heterogeneity,
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and the Boustrophedon decomposition will stabilize by the fixed ZLIs in the workspace.
Hence, it is denoted that the MCO Plan engages the heterogeneity skill as Boustrophedon
decomposition without using ZLIs as a reference. It is compensated with the linear decrease
without reaching the homogeneity as partitioning based on K-means.

Further, in Figure 14, it is possible to see that the clustering by K-means and Bous-
trophedon decomposition resulted in disconnected sub-areas with complex ZLIs, such as
Rejoya Farm. Independent sub-areas do not support cooperative control. The MCO Plan
faces that weakness with sub-areas expanding from a take-off position to the edges. There-
fore, the sub-areas would converge, increasing the likelihood of a connection between them.

5.2. Role and Task Allocation with Zigzag Path

The previous description tried to describe heterogeneity according to the workspace
and its distribution of waypoints as just “divide and conquer”, however, it is necessary
to contrast the area partitioning with the MAV agent behavior when a coverage task is
allocated. The following results were obtained using the simulation environment (GAMA
Platform) and according to the role and task allocation mechanisms. In this experiment, each
MAV agent had an allocated role and a coverage path based on back-and-forth movements
(a zigzag path) using the method in Section 4.2.5, resulting in a maximum partitioning
distribution of each workspace as in Figure 16 (as an example to avoid extra figures).

The objective was to show how the MCO Plan can achieve better energy manage-
ment during a coverage mission using a balanced heterogeneity (magnitude and trend)
and connectivity.

Some metrics were calculated to measure the impact of heterogeneity in each workspace
and for the three plans mentioned above. The metrics are the time that each MAV fleet
requires to complete the mission (mission time), the number of active MAV agents per
time (MAV rate), and the percentage of remaining battery after the task (% remaining
battery). Figure 17 states coherence with the partitioning of each plan. Considering the
mission times, the allocation based on K-means had the lowest mission times. Still, complex
areas like Rejoya Farm expanded the mission times because the sub-areas were broad and
homogeneous, as shown in Figure 17a.

Conversely, to have the best mission times, the K-means allocation was based on
must-have agents active during longer times, as Figure 17b,d,f show in the red columns.
The result is that most MAVs would drain energy faster, risking the completeness of the
coverage mission (Tables 9–11). If some event required cooperation, few MAV agents could
support it.

The allocation based on Boustrophedon denotes a trend to stabilize mission times
in each case of study in Figure 16, due to the resulting tasks around the ZLIs. They
varied little and resolved in lighter tasks if the MAV agents increased. As an advantage,
the Boustrophedon allocation has the least number of MAVs per time unit, which is a
consequence of calculating many small tasks and only three or four long ones (with longer
task times). The Boustrophedon allocation transmits a message that most MAVs could have
significant excess energy at the mission end. At the same time, few MAV agents would
reach their limit of energy before the mission ended.

Concerning the MAV rates in Figure 17b,d,f, the allocation using the MCO plan has
a trend of managing active agents during less time than K-means allocation, despite the
high correlation demonstrated in the previous section. This triumph is reached because the
sub-area sizes increase exponentially for the MCO plan, while in the K-means allocation,
the growth is linear (compare the yellow columns in Figure 17b,d,f). The interpretation
of the result is that the MCO plan can balance managing missions using MAV agents
with minimal to intermediate resources, especially in those with few tasks, as shown
in Figure 17f.
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Table 9. Remaining battery in Rejoya Farm.

MAV-Agents Boustrophedon (%) K-Means (%) MCO (%)

1 99.98 93.46 99.47
2 99.98 93.52 97.44
3 99.62 93.2 95.9
4 99.5 93.22 93.88
5 97.2 93.82 93.49
6 96.7 91.3 92.55
7 93.26 90.9 85.83
8 91.49 88 86.83
9 89.20 83.23 84.07
10 88.83 82.31 84.08
11 66.88 79.28 83.09
12 66.61 70.83 82.52

The value of highlighted battery corresponds to Master for MCO Plan.
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Table 10. Remaining battery in Urban Zone.

MAV-Agents Boustrophedon (%) K-Means (%) MCO (%)

1 94.01 84.87 94.63
2 92.6 83.81 92.03
3 91.57 84.17 91.94
4 86.59 82.11 89.53
5 86.54 79.95 86.35
6 81.57 79.31 86.03
7 77.93 79.4 85.82
8 71.05 76.63 79.72
9 43.39 73.38 69.65
10 30.24 72.87 63.87

The value of highlighted battery corresponds to Master for MCO Plan.

Table 11. Remaining battery in Naranjos Farm.

MAV-Agents Boustrophedon (%) K-Means (%) MCO (%)

1 89.92 87.91 89.11
2 89.33 87.38 89
3 88.85 87.35 88.25
4 66.33 86.81 87.38
5 66.2 86.17 87.33
6 63.74 86.13 85.51
7 62.96 86.07 82.18

The value of highlighted battery corresponds to Master for MCO Plan.

Tables 9–11 show the remaining battery after the completed mission. This indicator
is essential for the current research because it allows MAVs with intermediate skills to
cooperate with their energy savings. The averages of saved energy obtained from all
agents for the Rejoya farm were 90.77%, 87.76%, and 89.93% with the Boustrophedon,
K-means, and MCO allocation, respectively. In the Urban Zone, the mean percentages
were 75.55%, 79.65%, and 83.96%, corresponding with the mentioned last order of methods.
In the same order, the percentages for Naranjos Farm were 75.33%, 86.83%, and 86.96%.
Therefore, the MCO plan reached higher values than other allocations, distributing the
resources efficiently regardless of workspace restrictions such as obstacles in the middle
of the free space. Moreover, the comparison of the methods shows a battery decrease
without exceeding 40% for the MCO plan, while Boustrophedon finished with an upper
reduction of 60%. It demonstrates that the heterogeneity pattern identified in the area
partitioning section effectively influences the removal of the energy consumption of the
fleet of MAV agents.

As a final inference, a result of the MCO Plan is that most MAV agents would have
sufficient remaining energy to be used in case of cooperation for non-completed tasks.
Although, area partitioning proved above that the chance of faults would be minimal
unless environmental causes exist. In contrast, the Boustrophedon allocation obtains a
higher case of defects in the deployment of missions by overloading a few agents. Finally,
the energy decrease for MAV agents with K-means allocation was up to 22.63%, with the
chance of faults lower than the Boustrophedon method and MCO. However, the result
would be subject to homogeneous agents with intermediate to high resource levels to
complete the mission.

After evaluating the effect of heterogeneity on task allocation, the following analysis
shows how the MCO Plan involves connectivity by studying the possible network topology
and the number of links when the MAV agents find neighbors in a defined range. For
the simulation experiment, the range was calculated with the fourth part of the diagonal
segment over space.

Figure 18 shows a likely network topology on the resultant sub-areas for each mission
planning and workspace with the maximum MAV agents to deploy. Previously, the
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Boustrophedon-based plan resulted in adjacent rectangular shapes (left column), and
consequently, the possible topology resembles a Bus. This means that an agent would
probably connect with side neighbors. The resultant topology for the K-means planning
resembles a mesh (center column), as an evident outcome from the homogeneous waypoint
distributions. The topology for the MCO plan has a hybrid focus based on multiple star
topologies centered on the centroids of the area partitioning method.
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Figure 18 is only an estimation of the likely links between MAV agents. Still, this trace
allows for detecting the skill to reduce faults during the mission and resolve them without
affecting the overall goal. The connectivity is low for the allocation based on Boustrophedon,
although it can have more connection time when it flies the waypoints at the intersections.
The K-means plan is better at managing cooperation, however, dynamic deployments in
restricted workspaces can have high data redundancy if a persistent connection is held.

The MCO wants to overcome these issues. The observed topology in the right column
of Figure 18 has characteristics that at least one MAV agent can have an overload of links
as a star, and the allocated agents on the edge can connect as a tree. In this order, that MAV
agent with an excess of communication has taken the role of Master, and the peripheral
MAVs have a role as Operators in the hierarchical society proposed in Section 4.2.3. As a
complement, Figure 19 shows the network topology at one instant of the simulation on
the GAMA Platform for each coverage area with the MCO Plan The numerical results
of total links between all fleets are in Tables 12–14, with the Master highlighted in each
allocation option to manage high data flow and shorter coverage paths. These tests confirm
that the efficient consumption of the fleet can be supported by data routing based on the
heterogeneity of the fleet.
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Table 12. Total links in Rejoya Farm.

MAV-Agents Boustrophedon K-Means MCO

1 49 337 146
2 102 70 105
3 91 57 141
4 137 107 243
5 66 123 124
6 22 55 55
7 105 224 140
8 62 73 125
9 56 58 57
10 39 58 75
11 56 123 73
12 64 95 279

The number of highlighted links corresponds to Master for MCO Plan.

Table 13. Total links in Urban Zone.

MAV-Agents Boustrophedon K-Means MCO

1 72 49 125
2 98 52 85
3 46 50 97
4 20 54 45
5 30 80 130
6 58 102 60
7 73 69 35
8 58 41 51
9 2 34 47
10 2 57 25

The number of highlighted links corresponds to Master for MCO Plan.

Table 14. Total links in Naranjos Farm.

MAV-Agents Boustrophedon K-Means MCO
1 20 28 75
2 0 23 29
3 33 39 24
4 38 45 52
5 33 39 18
6 15 40 28
7 9 23 17

The number of highlighted links corresponds to Master for MCO Plan.

The inferences above are confirmed by the number of links for each agent and the
average connectivity time during the mission. The Boustrophedon-based allocation for
Rejoya Farm, Urban Zone, and Naranjos Farm has the lowest link averages with 70.7, 47.9,
and 20.3 (blue areas in Figure 20) fronting to 130.2, 70.1, and 30.7 from the MCO plan,
respectively (yellow areas in Figure 20). On the other hand, the clustering method holds link
averages similar to the MCO Plan but with shorter mission time as it waits. The K-means
trend is to have a similar number of links for each MAV agent as Tables 12–14 show. At the
same time, the MCO plan proposes a centralized data flow with a few agents, resulting in a
substantial difference in interactions between the collaborators. As Tables 9–11 show, those
MAVs with the overload have enough energy to resolve it since the MCO Plan manages
to have fewer waypoints to visit with roles as Master or Coordinator. These are near the
take-off location, facilitating the monitoring with data flows around the ground station and
giving more control to the user.
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In brief, the MCO Plan has the highest link averages in Figure 18 for each workspace,
with values between 4 and 5 per time unit because of its connected sub-areas on a hybrid
topology. The power of a fleet with coordinated roles can be seen in the Rejoya Farm
case in Figure 20a, with ZLIs in the middle. The MCO plan can handle less mission time
while the connectivity of the fleet is held. The MCO plan converges to a connectivity skill
intermediate with larger free spaces such as the Urban Zone and Naranjos Farm.

5.3. Role and Task Allocation with the Firefly Path

Resource management of the proposed plan in previous sections illustrated the
roadmap to efficiently deploying MAVs fleet in outdoor workspaces, considering some
user requirements and the fieldwork. However, current research is working further to
manage the energy of the coverage path. Based on Section 4.2.4, it is possible to optimize
the coverage paths of the mission through the Firefly algorithm [37]. The motivation to
advance the study is because the zigzag movement used above and in most reviewed
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literature and mapping tools frequently includes the ZLIs in the cruise flight, acquiring
possible useless or redundant data to make decisions, in addition to increasing the data
processing costs.

Figure 21 shows the task allocation with Firefly paths for the experiment with maxi-
mum partitioning for each case of study with 12, 10, and 7 tasks, respectively (as an example
to avoid extra figures).
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Figure 22 shows that energy consumption can improve with the coverage paths
calculated with the Firefly algorithm. In Rejoya Farm, the gained energy reached up to
10% (Figure 22a); in Urban Zone, it gained up to 2.5% (Figure 22c); and in Naranjos Farm,
it gained up to 1.9% (Figure 22e). Such performance seen in the bars of the figures is
consistent with the heterogeneity of the role allocation shown above. However, just the
Firefly algorithm can resolve tasks with small sub-areas more efficiently than the zigzag
pattern, gaining some cycles of time to complete the mission. As a complementary analysis,
Figure 22b,d,f displays graphs to show the link averages at mission time. The MCO Plan
has a higher number of alleged links per time unit, which can be explained because the
Firefly paths start to visit the peripheral waypoints of the sub-area and continue until
they are as close as they can to the starting location again, therefore increasing the chance
of connectivity.
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The gained mission time is also argued in Tables 15–17 which show the active MAV
agents during the mission. The path based on the Firefly algorithm completed the missions
saving 2%, 9%, and 25% of released MAV agents in Naranjos Farm, Urban Zone, and Rejoya
Farm, respectively. This observation is highlighted in Tables 15–17 to contrast that runtime
changes the action of the MCO Plan.
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Table 15. Number of active agents during Rejoya Farm mission.

Method
Runtime

5 15 25 35 45 55 65 75 85 95 105 115
Firefly 11 8 8 6 4 2 1 1 1 1 1 0
Zigzag 11 8 8 7 4 3 2 1 1 1 1 1

The highlighted numbers denote the main changes for active agents between Firefly and Zigzag pattern.

Table 16. Number of active agents during Urban Zone mission.

Method
Runtime

3 6 9 12 15 18 21
Firefly 10 9 7 6 5 3 0
Zigzag 10 9 7 6 5 5 2

The highlighted numbers denote the main changes for active agents between Firefly and Zigzag pattern.

Table 17. Number of active agents during Naranjos Farm mission.

Method
Runtime

3 6 9 12 15
Firefly 6 1 1 1 1
Zigzag 5 2 1 1 1

The highlighted numbers denote the main changes for active agents between Firefly and Zigzag pattern.

6. Conclusions and Future Work

The MCO Plan is focused on resolving an efficient deployment of the MAV fleet,
considering user expectations and restrictions of the workspaces. An efficient deploy-
ment means that the coverage mission should be completed with balanced resources. A
novel area partitioning method was designed to include heterogeneous MAVs, data flow
close to the take-off location, and partial communication between neighbors to satisfy
these purposes.

The proposed plan created a hierarchical society with roles defined by adequate flight
time, communication skills, and decision capability. Master, Coordinator, and Operator
roles were allocated together with the coverage path through an auction mechanism.
The integrated strategy was tested in three different coverage areas to show the scope of
practical deployments.

The plan’s advantages were evident compared with traditional coverage plans such as
Boustrophedon decomposition and clustering by K-means. MCO achieved a magnitude and
trend of heterogeneity balanced between both methods, directly related to the intermediate
mission times reached during the deployment tests in the GAMA Platform. Further, the
plan managed fleet energy by decreasing the rate of active MAV agents during missions and
increasing the chance to connect with neighbors. Such likelihood was even higher because
the resultant coverage paths calculated with the Firefly algorithm followed movement
patterns that started on the peripherical waypoints until the start position was found again.
Therefore, the connectivity skill was incremented, beyond the clues, indicating reduced
energy consumption compared to the zigzag movements.

Consequently, the presented coverage mission planning can improve resource man-
agement even more if wind, MAV turns, and energy consumption from communications
are considered. Future research should incorporate new alternatives to generate coverage
paths beyond managing fault resolution. These facts contribute to the future design of
fault-tolerant cooperative MAVs for large and restricted workspaces.
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