Identification of Asbestos Slates in Buildings Based on Faster Region-Based Convolutional Neural Network (Faster R-CNN) and Drone-Based Aerial Imagery
Abstract
:1. Introduction
2. Methodology
2.1. Overview
2.2. Drone-Based Data Acquisition
2.3. Faster R-CNN and Training Data
2.4. Construction of Orthoimages and Estimation of Location
3. Experimental Results
3.1. Aerial Photography
3.2. Analysis of Aerial Images Based on Faster R-CNN
3.3. Estimation of Location of Asbestos Slates and on-Site Verification
4. Discussion
5. Conclusions
Author Contributions
Funding
Institutional Review Board Statement
Informed Consent Statement
Data Availability Statement
Conflicts of Interest
References
- Jang, H.S.; Lee, T.H.; Kim, J.H. Asbestos Management Plan According to the Investigation on the Actual Conditions of Asbestos in Public Buildings. Korean Soc Env. Admin. 2014, 20, 27–34. [Google Scholar]
- Baek, S.C.; Kim, Y.C.; Choi, J.H.; Hong, W.H. Determination of the essential activity elements of an asbestos management system in the event of a disaster and their prioritization. J. Clean. Prod. 2016, 137, 414–426. [Google Scholar] [CrossRef]
- Kim, S.Y.; Kim, Y.C.; Kim, Y.K.; Hong, W.H. Predicting the Mortality from Asbestos-Related Diseases Based on the Amount of Asbestos used and the Effects of Slate Buildings in Korea. Sci. Total Environ. 2016, 542, 1–11. [Google Scholar] [CrossRef] [PubMed]
- Castleman, B.I. Controversies at international organizations over asbestos industry influence. Int. J. Health Serv. 2001, 31, 193–202. [Google Scholar] [CrossRef]
- Kim, Y.C.; Hong, W.H. Optimal Management Program for Asbestos Containing Building Materials to be Available in the Event of a Disaster. Waste Manag. 2017, 64, 272–285. [Google Scholar] [CrossRef] [PubMed]
- Choi, J.K.; Paek, D.M.; Paik, N.W. The Production, the use, the Number of Workers and Exposure Level of Asbestos in Korea. J. Korean Soc. Occup. Environ. Hyg. 1998, 8, 242–253. [Google Scholar]
- Lee, S.Y.; Kang, W. A Study on the Reestablishment of the Drone’s Concept. Korean Secur. Sci. Rev. 2019, 58, 35–58. [Google Scholar] [CrossRef]
- Lee, S.W.; Hong, W.H.; Lee, S.Y. A Study on Slate Roof Research of Decrepit Residential Area by using UAV. J. Archit. Inst. Korea Plan. Des. 2016, 32, 59–66. [Google Scholar] [CrossRef]
- Pouyanfar, S.; Sadiq, S.; Yan, Y.; Tian, H.; Tao, Y.; Reyes, M.P.; Shyu, M.; Chen, S.; Iyengar, S.S. A Survey on Deep Learning: Algorithms, Techniques, and Applications. ACM Comput. Surv. (CSUR) 2018, 51, 1–36. [Google Scholar] [CrossRef]
- Yang, G.R.; Wang, X. Artificial Neural Networks for Neuroscientists: A Primer. Neuron 2020, 107, 1048–1070. [Google Scholar] [CrossRef]
- Nilsback, M.E.; Zisserman, A. A Visual Vocabulary for Flower Classification. In Proceedings of the 2006 IEEE Computer Society Conference on Computer Vision and Pattern Recognition, New York, NY, USA, 17–22 June 2006; pp. 1447–1454. [Google Scholar]
- Csillik, O.; Cherbini, J.; Johnson, R.; Lyons, A.; Kelly, M. Identification of Citrus Trees from Unmanned Aerial Vehicle Imagery using Convolutional Neural Networks. Drones 2018, 2, 39. [Google Scholar] [CrossRef] [Green Version]
- Flores, D.; González-Hernández, I.; Lozano, R.; Vazquez-Nicolas, J.M.; Hernandez Toral, J.L. Automated Agave Detection and Counting using a Convolutional Neural Network and Unmanned Aerial Systems. Drones 2021, 5, 4. [Google Scholar] [CrossRef]
- Papakonstantinou, A.; Batsaris, M.; Spondylidis, S.; Topouzelis, K. A Citizen Science Unmanned Aerial System Data Acquisition Protocol and Deep Learning Techniques for the Automatic Detection and Mapping of Marine Litter Concentrations in the Coastal Zone. Drones 2021, 5, 6. [Google Scholar] [CrossRef]
- Ouattara, T.A.; Sokeng, V.-C.J.; Zo-Bi, I.C.; Kouamé, K.F.; Grinand, C.; Vaudry, R. Detection of Forest Tree Losses in Côte d’Ivoire Using Drone Aerial Images. Drones 2022, 6, 83. [Google Scholar] [CrossRef]
- Sharma, V.; Mir, R.N. Saliency Guided Faster-RCNN (SGFr-RCNN) Model for Object Detection and Recognition. J. King Saud Univ.-Comput. Inf. Sci. 2022, 34, 1687–1699. [Google Scholar] [CrossRef]
- Lou, X.; Huang, Y.; Fang, L.; Huang, S.; Gao, H.; Yang, L.; Weng, Y.; Hung, I. Measuring Loblolly Pine Crowns with Drone Imagery through Deep Learning. J. For. Res. 2022, 33, 227–238. [Google Scholar] [CrossRef]
- Alshaibani, W.T.; Helvaci, M.; Shayea, I.; Saad, S.A.; Azizan, A.; Yakub, F. Airplane Type Identification Based on Mask RCNN and Drone Images. arXiv preprint 2021, arXiv:2108.12811. [Google Scholar]
- Cho, J.M.; Lee, J.S.; Lee, B.K. A Study on the Optimal Shooting Conditions of UAV for 3D Production and Orthophoto Generation. J. Korean Soc. Surv. Geod. Photogramm. Cartogr. 2020, 38, 645–653. [Google Scholar]
- Yoo, Y.H.; Choi, J.W.; Choi, S.K.; Jung, S.H. Quality Evaluation of Orthoimage and DSM Based on Fixed-Wing UAV Corresponding to Overlap and GCPs. J. Korean Soc. Geospat. Inf. Sci. 2016, 24, 3–9. [Google Scholar]
- Girshick, R.; Donahue, J.; Darrell, T.; Malik, J. Rich Feature Hierarchies for Accurate Object Detection and Semantic Segmentation. In Proceedings of the IEEE Conference on Computer Vision and Pattern Recognition, Columbus, OH, USA, 23–28 June 2014; pp. 580–587. [Google Scholar]
- Kim, J.M.; Hyeon, S.G.; Chae, J.H.; Do, M.S. Road Crack Detection Based on Object Detection Algorithm using Unmanned Aerial Vehicle Image. J. Korea Inst. Intell. Transp. Syst. 2019, 18, 155–163. [Google Scholar] [CrossRef]
- Huyan, J.; Li, W.; Tighe, S.; Zhai, J.; Xu, Z.; Chen, Y. Detection of Sealed and Unsealed Cracks with Complex Backgrounds using Deep Convolutional Neural Network. Autom. Constr. 2019, 107, 102946. [Google Scholar] [CrossRef]
- Lee, Y.J. Multispectral Orthoimage Production and Accuracy Evaluation using Drone. Master’s Thesis, Chungnam National University, Daejeon, Korea, 2020. Available online: http://www.riss.kr/link?id=T15513259 (accessed on 22 May 2022).
- Han, B.Y. Deep Learning: Its Challenges and Future Directions. Commun. Korean Inst. Inf. Sci. Eng. 2019, 37, 37–45. [Google Scholar]
- Hung, G.L.; Sahimi, M.S.B.; Samma, H.; Almohamad, T.A.; Lahasan, B. Faster R-CNN Deep Learning Model for Pedestrian Detection from Drone Images. SN Comput. Sci. 2020, 1, 116. [Google Scholar] [CrossRef]
- Lee, K.H.; Hwang, M.G.; Sung, W.K. Research Trends in Data Management Technology for Deep Learning. Korea Inf. Sci. Soc. Rev. 2019, 37, 13–20. [Google Scholar]
- Woo, H.J.; Baek, S.C.; Hong, W.H.; Chung, M.S.; Kim, H.D.; Hwang, J.H. Evaluating Ortho-Photo Production Potentials Based on UAV Real-Time Geo-Referencing Points. Spat. Inf. Res. 2018, 26, 639–646. [Google Scholar] [CrossRef]
- Liao, Y.; Mohammadi, M.E.; Wood, R.L. Deep Learning Classification of 2D Orthomosaic Images and 3D Point Clouds for Post-Event Structural Damage Assessment. Drones 2020, 4, 24. [Google Scholar] [CrossRef]
- Zhang, Y.L.; Byeon, H.S.; Hong, W.H.; Cha, G.W.; Lee, Y.H.; Kim, Y.C. Risk assessment of asbestos containing materials in a deteriorated dwelling area using four different methods. J. Hazard. Mater. 2021, 410, 124645. [Google Scholar] [CrossRef] [PubMed]
- Hong, Y.K.; Kim, Y.C.; Hong, W.H. Development of Estimation Equations for Disposal Costs of Asbestos Containing Materials by Listing the Whole Process to Dismantle and Demolish them. J. Archit. Inst. Korea Plan. Des. 2014, 30, 235–242. [Google Scholar] [CrossRef]
- Raczko, E.; Krówczyńska, M.; Wilk, E. Asbestos roofing recognition by use of convolutional neural networks and high-resolution aerial imagery. Build. Environ. 2022, 217, 109092. [Google Scholar] [CrossRef]
- Kim, Y.C.; Son, B.H.; Park, W.M.; Hong, W.H. A study on the distribution of the asbestos cement slates and calculation of disposal cost in the rural area. Archit. Res. 2011, 13, 31–40. [Google Scholar] [CrossRef]
NO. | PNU Code | PNU Code-Based Address | Quantity of Asbestos Slates Detected |
---|---|---|---|
1 | 2729011700103410000 | 341, Jincheon-dong, Dalseo-gu, Daegu | 3 |
2 | 2729011700102920011 | 292-11, Jincheon-dong, Dalseo-gu, Daegu | 1 |
3 | 2729011700103970000 | 397, Jincheon-dong, Dalseo-gu, Daegu | 1 |
4 | 2729011700103140000 | 314, Jincheon-dong, Dalseo-gu, Daegu | 1 |
5 | 2729011700103060000 | 306, Jincheon-dong, Dalseo-gu, Daegu | 2 |
41 | 2729011700103830002 | 303-2, Jincheon-dong, Dalseo-gu, Daegu | 1 |
42 | 2729011700108080098 | 808-98, Jincheon-dong, Dalseo-gu, Daegu | 2 |
43 | 2729011700103260001 | 326-1, Jincheon-dong, Dalseo-gu, Daegu | 2 |
44 | 2729011700102910020 | 291-20, Jincheon-dong, Dalseo-gu, Daegu | 1 |
45 | 2729011700103920001 | 392-1, Jincheon-dong, Dalseo-gu, Daegu | 1 |
Publisher’s Note: MDPI stays neutral with regard to jurisdictional claims in published maps and institutional affiliations. |
© 2022 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Seo, D.-M.; Woo, H.-J.; Kim, M.-S.; Hong, W.-H.; Kim, I.-H.; Baek, S.-C. Identification of Asbestos Slates in Buildings Based on Faster Region-Based Convolutional Neural Network (Faster R-CNN) and Drone-Based Aerial Imagery. Drones 2022, 6, 194. https://doi.org/10.3390/drones6080194
Seo D-M, Woo H-J, Kim M-S, Hong W-H, Kim I-H, Baek S-C. Identification of Asbestos Slates in Buildings Based on Faster Region-Based Convolutional Neural Network (Faster R-CNN) and Drone-Based Aerial Imagery. Drones. 2022; 6(8):194. https://doi.org/10.3390/drones6080194
Chicago/Turabian StyleSeo, Dong-Min, Hyun-Jung Woo, Min-Seok Kim, Won-Hwa Hong, In-Ho Kim, and Seung-Chan Baek. 2022. "Identification of Asbestos Slates in Buildings Based on Faster Region-Based Convolutional Neural Network (Faster R-CNN) and Drone-Based Aerial Imagery" Drones 6, no. 8: 194. https://doi.org/10.3390/drones6080194
APA StyleSeo, D. -M., Woo, H. -J., Kim, M. -S., Hong, W. -H., Kim, I. -H., & Baek, S. -C. (2022). Identification of Asbestos Slates in Buildings Based on Faster Region-Based Convolutional Neural Network (Faster R-CNN) and Drone-Based Aerial Imagery. Drones, 6(8), 194. https://doi.org/10.3390/drones6080194