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Abstract: To enable unmanned aerial vehicle (UAV) operators to efficiently and intuitively convey
their commands to a swarm of UAVs, we propose the use of natural and human-centric input
modalities, such as voices and gestures. This paper addresses the fusion of input modalities such
as voice and gesture data, which are captured through a microphone and a Leap Motion controller,
respectively, to control UAV swarms. The obtained experimental results are presented, and the
achieved performance (accuracy) is analyzed. Finally, combined human factor ergonomics test with a
questionnaire to verify the method’s validity.
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1. Introduction

Advanced computer-controlled environments such as virtual reality (VR) and immer-
sive displays are manifestations of efficient visual information for unmanned aerial vehicle
(UAV) operators. These displays are designed to simplify interactions with complex infor-
mation and they often present information in a human-centered manner. However, existing
user-input methods, e.g., mice and keyboards, are no longer convenient for interacting
with these immersive displays and remotely controlling UAV missions. To improve the
effectiveness of communication and reduce the time and effort required to complete tasks,
human–computer interaction must be as fluid as manipulating a “natural” environment.

In recent years, natural interactions have attracted considerable interest. Psychological
studies have also shown that people prefer to use gestures in combination with speech
in virtual environments because they are easy to learn for the operator [1]. Gesture-
based natural interaction systems are the most intuitive system type. Gesture-recognition
technology provides a simple, fast, and efficient human–computer interaction environment,
allowing an operator to issue instructions to the system of interest through simple gestures.
In addition, speech-based natural interaction systems provide better system control. Voice-
recognition features allow users to communicate naturally with a system using spoken
language. These interaction methods have significantly improved the efficiency and comfort
of human–computer interactions. However, the use of a single interaction mode often
results in low fault tolerance and few application scenarios. Gestures and speech together
constitute language. They have a bidirectional and mandatory influence on each other,
meaning that people usually consider both simultaneously [2]. Multimodal input has many
benefits, especially when dealing with gesture and speech combinations. When gestures
and speech are present simultaneously, it helps reduce faster task completion times and
even lower error rates [3].

This paper aims to address the challenges faced by users when controlling UAVs in
virtual environments using multiple natural interactions. This scenario combines multiple
modes, allowing the system to more accurately and naturally perform predefined tasks.
The design combines voice commands with captured gestures. The remainder of this
article is organized as follows. In Section 2, the related work on multimodal systems is
discussed. In Section 3, the multimodal interaction integration system is proposed, and two
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aspects, voice recognition and gesture interaction, are described for data fusion. The system
experiments including accuracy test and human factor ergonomics test are presented in
Section 4, and the conclusions are given in Section 5.

Contributions

In this paper, we propose the use of natural and human-centric input modalities, such
as voices and gestures. The main contributions are as follows:

• We propose a multimodal interaction integration system that provides intelligent
interaction service support for command recognition by dynamically modifying the
weights to fuse gesture and speech data to achieve the accurate output of UAV control
commands in virtual environments.

• We investigated gesture-only and speech-only command systems to highlight the
respective advantages of these input modes. Meanwhile, we studied the integrated
multimodal interaction system with an accuracy of 95.8824% to emphasize the synergy
found when combining these modalities. This result is higher than the unimodal
method and better than other fusion methods of the same type.

• We constructed the UAV flight simulation for the study of UAV mission operations
and combined it with a human–machine efficacy questionnaire to verify the method’s
validity.

2. Related Work

Virtual-reality environments were used for an exploratory study to investigate multi-
modal interaction to control a swarm of UAVs [4]. Furthermore, previous work demon-
strates that a multimodal approach can direct interaction with UAVs, for example, by taking
off and landing through speech and controlling movement by gesture [5,6]. Multimodal
interaction can address high information loads and communicate within various envi-
ronmental constraints. Typical multimodal human–robot interaction is possible through
two methods.

• Accepting operator inputs from separate devices.
• Accepting operator inputs as different modes and fusing the input to capture com-

mands related to operator behaviors.

The first method, which switches between multiple input devices, increases the cog-
nitive overhead, resulting in stress and performance losses [7]. Thus, this method is not
suitable for complex UAV-based mission control environments. Therefore, the second
method is the focus of this paper.

In the field of human–computer interaction, various methods use multimodal in-
teractions to improve human–computer communication. However, many systems are
characterized by setting the priority levels of their input modes. For example, in [8],
Burger et al. proposed a probabilistic and multihypothesis interpretation framework for
fusing speech and gesture component results. The primary input mode is speech. When the
interpreter needs a supplementary gesture for disambiguation, the system fuses the gesture
interpretation results provided in the same time window. In [9], Tauheed et al. fused voice
data and captured electromyogram data with an MYO band based on priority. When the
MYO band could not capture electromyogram signals, voice commands were used to com-
pensate for this shortcoming and served as the only input, improving the accuracy of the
command output. In [10], a robotic arm was built according to voice and gesture commands
given by an operator. If a speech was not recognized, gesture commands were used as an
alternative. In addition, a five-layer multimode human–computer interaction framework
was constructed in [11], comprehensively applying voice, text, motion perception, touch,
and other human–computer interaction modes. The original data in the different modes
were gradually mapped to various aspects during the execution of the system.

In contrast with these methods, the method proposed in this paper does not assume the
dominant input modes or map the input modes to the output results. The proposed method
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employs a decision-level approach (late fusion) that dynamically weights the information
from a single-mode after a recognizer has interpreted the data. This strategy is typical in
human–computer interaction systems because it can be easily extended and adapted.

3. Multimodal Interaction Integration System

This paper selects two of the most common human–computer interaction methods.
The voice-interaction method involves using voice-recognition technology to understand
the meanings of command words. The gesture interaction method uses a Leap Motion con-
troller with infrared lighting and two grayscale cameras to captures 3D data of the hands.
This method determines hand actions based on continuous hand posture frames and estab-
lishes interaction between the hands and the computer. In view of the differences among
the interaction modes and interaction characteristics, a multimodal human–computer inter-
action integration framework is proposed, as shown in Figure 1. The original contents of the
different channels are mapped to the system to produce a high-accuracy instruction output.

Figure 1. The multimodal integration framework for fusing voice and gesture data.

3.1. Voice Recognition

Voice recognition is completed by an offline command word recognition-based soft-
ware development kit (SDK) provided by the iFlytek open platform. The user speaks
operation instructions (i.e., command words) into a voice input device, such as a micro-
phone. The iFly software compares the received command words with the preset grammar,
identifies the specific command information according to the comparison results, and
transmits the results to a multimodal fusion terminal. These results are used in the later
decision fusion step.

A standard command system should have three constituent elements—subject, predi-
cate, and object—to meet the development needs of modern operating systems. To improve
the accuracy of the voice recognition results, the grammar rules of the user voice inputs in
the UAV task control stage (Equation (1)) are determined according to a large number of
voice input experiments. The specific BNF syntax file is shown in Table 1.

Voice Input(VI) =Object description(OD)+

Action description(AD)+

Degree description(DD)

(1)

Each complete command includes the target object, the action to be performed, and the
scale of the action. A good UAV mission command in a VR environment should consist of
the UAV in the swarm, the current viewpoint position, and the scene. The UAV and the
viewpoint position can move in parallel at different scales. In addition, the UAV can yaw
left or right at different angles. The scene includes the global scene and the following scene
and can be zoomed in or out at different scales.
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Table 1. The grammar rules of the user’s voice inputs in UAV task control.

BNF Syntax File for UAV Command Control

!start <VI>;
<VI>::=[<OD>][<AD>][<DD>];
<OD>::=<UAVs>|<viewpoint>|<scene>;
<AD>::=<forward>|<back>|<left>...;
<DD>::=<large>|<middle>...;
<UAVs>::=[<id>]<UAV>;
<id>::=1|2|3...;
<UAV>::=UAV;
<viewpoint>::=current viewpoint position;
<scene>::=scene;
<forward>::=move forward;
<back>::=move back;
<left>::=move left;
<large>::=large scale;
<middle>::=medium scale;

3.2. Gesture Interaction

The Leap Motion controller consists of two high-definition cameras, three infrared
LED lights, and optical sensors. The infrared LED light compensation mechanisms and
dual high-definition cameras at different positions are used to obtain high-resolution
infrared stereo images, which are then used to simulate human binocular stereo images to
determine the associated gesture position [12]. A gesture recognition algorithm is proposed
based on the physical Leap Motion controller model. The 3D information contained in
the fingers, palms, elbows, and so on match the prebuilt physical models. The state of
a motion, including the shape and the movement, can be determined according to the
physical models. The gesture recognition process consists of four steps: acquiring the
gesture data, preprocessing the feature vector data, extracting and optimizing the trajectory,
and determining the trajectory recognition decision.

The Leap Motion sensors detect the fingers in each frame and use interface functions to
capture the position and rotation angle of the hand, the speed of the fingers, etc., capturing
hand movements with millimeter accuracy. Based on raw data that were previously
collected with the Leap Motion controller application programming interface (API), we
build features for recognizing gestures. To better integrate these results with the voice
recognition results, the gesture design entities are divided into three types: the object,
the action, and the degree. Furthermore, to minimize the impact of occlusion on the
recognition confidence of the Leap Motion controller, clearer gestures are used as much
as possible during the gesture design process. Shao [13], Fang [14], and Liu [15] provide a
more general terminology for gesture control. Inspired by them, we designed a reasonable
gesture database. Table 2 shows some of the gesture commands that are mapped to the
robot functions. Among them, the velocity of the palm is calculated. If the movement value
exceeds a predefined threshold, we assume that the hand is moving; otherwise, we classify
the movement as a static gesture.
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Table 2. Gesture recognition results

Hand Posture Recognition Results Action description Command Information

Object

Static gesture in which only
the index and middle fingers
are extended, while the other
three fingers are bent.

UAVs

Static gesture in which only
the thumb and index fingers
are extended, while the other
three fingers are bent.

Scene

Static gesture in which only
the thumb and index fingers
are bent, while the other three
fingers are extended.

Viewpoint

Action

Five fingers extended and
moving forward, backward,
left, right, up, or down in par-
allel movements.

Moving forward, backward,
left, right, up, or down

All five fingers extended and
rotating vertically.

UAV yaws to the
left or right

The five fingers of both hands
are extended, and the distance
between the hands gradually
increases or decreases.

Zooming in or out
of the scene.

Degree
_ _ The distance between the fingertips

is small or large. Ten or a thousand degrees

_ _ The yaw rotation angle is small,
medium, or large.

30 degrees, 45 degrees, or
60 degrees

3.3. Multimodal Fusion Interaction

A large number of studies have proven the excellent performance of various voice
and gesture recognition methods; however, single modal recognition technology has some
limitations. In this paper, the weighted fusion method is used to combine the recognition
results of the voice and gesture modes; thus, the results complement and corroborate each
other, improving the security and robustness of the command output.

Suppose that there are N predesigned commands Ci (i = 1,. . . , N). The method for
fusing the processing results of the voice and gesture inputs of these N commands can be
formulated as follows. Because the voice recognition input and gesture recognition input
have different processing periods, the longer voice recognition period is selected as the
fusion baseline period, which is denoted as Tα and defined explicitly in Equation (2).

Tα = Tα_end − Tα_start (2)

Tα_start is the start time of voice recognition, and Tα_end is the generation time of the
voice recognition result.



Drones 2022, 6, 201 6 of 13

In a cycle Tα, pvi represents the confidence degree of the voice recognition process
as a command Ci. Assume that the number of gestures recognized as command Ci is mi
and that the confidence degree of each gesture recognition result is phi,j (j = 1. . . mi). Then,
the set of gesture recognition results can be defined as Equation (3).

Γ =
{(

C1, ph1,1

)
, . . . ,

(
C1, ph1,m1

)
, . . . ,

(
CN , phN,1

)
, . . . , (CN , phN,mN

)
}

(3)

In Γ, the ratio rhi of the gestures recognized as command Ci is:

rhi =
mi

∑N
j=1 mj

. (4)

The average confidence coefficient ephi across all gestures recognized as command
Ci is:

ephi =
∑mi

k=1 phi,k

mi
. (5)

Then, the total confidence xi of the gestures recognized as command Ci in the current
cycle Tα is defined as:

xi = rhi × ephi

=
mi

∑N
j=1 mj

×
∑mi

k=1 phi,k

mi
=

∑mi
k=1 phi,k

∑N
j=1 mj

.
(6)

Since each submodule has a different model, the forms of the resulting confidence
results differ. In this paper, the total confidence of the gestures recognized as command
Ci is used to investigate the similarity between the observed data and the internal model,
as well as the number of recognition iterations. In contrast, the confidence of the voice
recognition results involves estimating the posterior probability that the recognition result
Ci is generated by the speaker. Notably, these two confidence values cannot be used
directly as the input weights in the fusion system; thus, before the fusion operation, the two
confidence values must be normalized.

xi is normalized to obtain x̃i as follows:

x̃i =
xi

∑ xi
=

∑mi
k=1 phi,k

∑N
i=1 ∑mi

k=1 phi,k
. (7)

Then, the voice recognition confidence pvi is normalized as p̃vi:

p̃vi =
pvi

∑ pvi
. (8)

Therefore, the fusion probability φi of the voice and gesture inputs of command Ci in
cycle Tα is calculated as follows.

φi = x̃i + p̃vi (9)

Among the object, action, and degree commands, the command Ci with the largest
φi value is selected. This value is adopted as the final command recognition result set
(CObject,CAction,CDegree) in the current period Tα.

4. Experiments

In this section, tests are conducted with the multimodal interaction integration system.
The accuracy test evaluate the effectiveness of multimodality; the human factor ergonomics
test restores real scenarios and evaluates the practical performance of the tested method.

The hardware environment includes the following components: a VR headset, a set of
gesture interaction equipment, a set of voice-input equipment, and two personal computers,
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one with Windows operating system, including Visual Studio 2013 and Steam VR software,
for human–computer interaction command and control; the other with Ubuntu operating
system, responsible for running Gazebo software in the robot operating system (ROS),
for UAV simulation, which can generate UAV flight data based on users’ input simulation.

As shown in Figure 2, the process of deploying the whole simulation experiment on the
platform is as follows. First, the interactive devices capture the gesture and speech information.
Second, the system fused them on the Windows system and the fusion result is converted
into command information. Third, it was passed to the ROS in the Ubuntu system via socket
programming with user datagram protocol (UDP) in real time. Fourth, the operating system
returns the current position coordinates of the UAV and converts them to geodetic coordinates.
Finally, Steam VR displays the UAV moving process loading on the VR device.

Figure 2. The process of deploying simulation.

4.1. Accuracy Test

This article investigates voice interactions, gesture interactions, and multimodal inter-
actions. Random combinations of the defined objects, actions, and degree commands are
designed, yielding 34 sets of complete commands. The experiment uses five tests for each
set of full commands; thus, a total of 170 sets of experiments are designed. Each speech
command can be controlled in less than 5 seconds, and the gesture interactions and voice
commands are output simultaneously.

To compare the effect of the multimodal fusion method proposed in this paper with
single-mode gesture recognition and single-mode voice recognition, we compared the
accuracies of the command results obtained with the different interaction methods under
the same input conditions. Referring to the industry-standard definition of the word error
rate (WER) for measuring speech accuracy [16], we define the command result accuracy
rate (CAR) as follows:

CAR = 1 − I + D + S
N

. (10)

To calculate the CAR, we first calculate the number of error commands identified
during the recognition process and then divide this value by the number of recognition
commands marked as artificial (N). The error identification commands can be classified
into three categories:

• Insert (I): A command that is incorrectly added to the hypothetical script.
• Delete (D): A command that is not detected from the hypothetical script.
• Substitution(S): A command that replaces the hypothetical script.

The complete experimental results are shown in Figure 3. As the CAR value approaches
1, the interaction recognition result becomes more accurate. An error occurs in the experiment
when a gesture or voice is missed or captured incorrectly. With the exception of a few cases,
the multimodal fusion recognition-based method proposed in this article is more accurate
than the single-modal recognition methods under the same input conditions. The accuracy
of the multimodal fusion-based recognition method reaches as high as 100%. In particular,
we analyze the rare cases in which the accuracy of the multimodal recognition method is less
than that of the single-modal recognition methods. These errors occur mainly when the pvis
of the speech recognition commands are 0 and the wrong gestures are read; e.g., a horizontal
hand movement is sometimes identified as a yaw command. Overall, the multimodal fusion
of the voice and gesture data significantly improves the system performance.
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Figure 3. The command result accuracies achieved by the different interaction methods under the
same input conditions.

The average accuracy of each interaction method is defined as C̃AR. This value is
used to describe and compare the effects of the various interaction methods.

C̃AR =
∑ CAR

EN
× 100% (11)

where EN indicates the total number of experiments. In this experiment, EN is equal to
170. The experimental results are shown in Table 3.

Table 3. The average accuracies of several interaction methods.

Interaction Methods Gesture Voice Multimodal

C̃AR 76.9502% 83.8264% 95.8824%

After the voice and gesture data are fused, the average accuracy reaches 95.8824%. This
result is noteworthy, as the accuracy is 12.056% better than that of the single modal speech
recognition method and 18.9322% better than that of the single modal gesture recognition
method. The above experimental results prove that the multimodal fusion of voice and gesture
data significantly improves the command recognition accuracy of the proposed approach.

Considering the differences between experimental devices, we mainly consider the
fault tolerance of the multimodal fusion method when conducting the comparison experi-
ments; i.e., we hope to obtain highly accurate fusion results even when the accuracies of
voice and gesture recognition are low. To facilitate a quantitative analysis, as shown in
Equation (12), we define the fault tolerance index as CARcompare.

CARcompare =
CARmultimodal

CARgesture + CARvoice
(12)

where the various parameters indicate the average gesture, voice, and multimodal accuracies.
Notably, the larger the index, the higher the fault tolerance level of the system. In [9], the value
of CARcompare is 56.89%, while the value of our fusion method is 59.63%, which is 2.74% higher,
so our method is valuable for improving the accuracy of the fusion results in the decision layer.
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4.2. Human Factor Ergonomics Test

To test the system’s performance, we set up a simple urban environment exploration
scenario with the UAV’s initial position and different ranges of target positions in advance.
The volunteers wore a pico neo headset, equipped with Leap Motion and a microphone,
and output commands through gestures and voice interaction to control the UAV moving
from the initial location to the target location in an immersive urban environment to explore
the urban environment and obstacle avoidance. The measurement process allows volun-
teers to repeatedly maneuver the UAV for urban environment exploration walkthroughs
and record their performance.

Ten non-professional volunteers of different ages and genders participated in the system
evaluation. The experiment was divided into three phases. In the first phase, the volunteers’
personal information related to the multimodal interaction integration system and their
expectations were obtained. The volunteers also studied and became proficient in the system
for 15–30 min. Next, in the second phase, the volunteers used the multimodal interaction
integration system to perform six urban environment exploration tasks with set starting and
target locations, including setting up three groups of experiments with different endpoint
target ranges (20 m × 20 m, 40 m × 40 m, 80 m × 80 m), and conducted each group of
experiments twice, to keep records and for the assessment of task performance; part of the
experimental process is shown in Figure 4. In the third phase, a questionnaire evaluated
the usability of the system, in which the volunteers score the questions on a seven-point
scale, and the data were collected for data analysis and summarization.

(a) (b)

(c) (d)

Figure 4. Intermediate results of operating the UAV for urban exploration. (a) The difference of
three target areas. (b) The trajectory of the UAV moving towards the target point. (c) The following
viewpoint of the UAV. (d) The UAV approached the target point.
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Figure 4a shows the difference in visual effects of three target areas, and the volunteer
determined the location of the target point according to the yellow flashing alert. After that,
the volunteer sent out UAV-related instructions through the multimodal interactive system,
changed the speed of the UAV in each direction, and controlled the UAV to move toward
the target point. The red part in Figure 4b is the UAV trails. While operating, the volunteer
could switch the following viewpoint to observe the specific location of the drone and the
surrounding environment information, as seen in Figure 4c. If there was a building, the vol-
unteers could adjust the direction of travel in time, and eventually, the UAV approached
the target point along a safe path. After reaching the target area, a pop-up window of the
end of the game appeared, as seen in Figure 4d.

In order to verify whether the system could assist the operator to complete the task
target and improve the manipulation efficiency, as well as whether the command output
was sensitive, we counted the number of commands per volunteer and the number of in-
correctly identified commands during the volunteer’s manipulation of the UAV movement.
Additionally, some of the experimental results are shown in Table 4. Different volunteers
had various ways to reach the destination point and the frequency of command output
due to different habits, but false recognition is minimal in relation to the total number of
commands, which means that there is overall high recognition accuracy, which verifies the
effectiveness of the system.

Table 4. The fusion output of different volunteers.

Up Down Forward Backward Left Right

All Fault All Fault All Fault All Fault All Fault All Fault

volunteer 1 15 0 11 0 49 0 0 0 2 0 23 0
volunteer 2 13 1 10 0 31 0 0 0 0 0 13 0
volunteer 3 15 0 16 0 28 3 0 0 10 0 24 0
volunteer 4 12 1 13 0 35 2 0 0 1 0 17 0
volunteer 5 21 0 15 0 40 0 0 0 3 1 20 0
volunteer 6 13 1 15 0 31 2 0 0 1 0 14 0
volunteer 7 17 1 12 0 21 0 0 0 5 0 9 1
volunteer 8 17 0 16 0 30 1 3 0 6 0 23 0
volunteer 9 12 0 10 0 36 2 0 0 2 0 14 1

volunteer 10 12 1 12 0 24 0 0 0 4 0 15 0
the overall 147 5 130 0 325 10 3 0 34 1 172 2

Meanwhile, Figure 5a shows the time consumed by each volunteer to reach the target
point each time and Figure 5b shows the number of collisions with the building. From the
experimental results, despite the gradual reduction of the target range, the time spent on the
operation still gradually decreases as the number of user drills increases, and the collision
with the building occurs very few times and all occur in the first few experiments. Very
few abnormal cases, such as the third volunteer in the fifth experiment, took considerably
more time, which indicates that the system is designed to be simple and easy to interact
with, and has low learning costs, which can effectively improve the user’s familiarity with
the urban environment and enhance the efficiency of UAV control.

In this paper, we designed a questionnaire (Table 5) based on VRUSE [17] about the
system’s overall effectiveness, covering seven aspects: completion, functionality, interac-
tivity, consistency, learnability, usability, and comfort. Then we statistically analyzed the
results of the questionnaire. The mode and average values are above 6, the volunteers
mostly agree with the descriptions of the questions in Table 5, and the variance is less than
0.5, which reflects the consistency of the volunteers’ evaluations. The results indicate that
the volunteers found the multimodal interaction integration system is usable.
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(a) (b)

Figure 5. Task performance. (a) The time consumed by each volunteer to reach the target point in the
six tests. (b) The total number of hit buildings in each test for all volunteers.

Table 5. The questionnaire and scores of availability measures.

Category Detail Mode Average Variance

1 Completion
The system supports volunteers in per-
forming the complete task of manning a
UAV for urban environment exploration.

7 7 0

2 Functionality
The system’s method of completing tasks,
frequency of operation, and duration are
reasonable.

7 6.9 0.09

3 Interactivity

The system allows volunteers to interact
naturally and flexibly with the scene and
the UAV in real-time, and where attention
is focused more on the task than on the
interactive interface and physical devices.

7 6.8 0.16

4 Consistency
The system responds interactively in the
way the volunteer expects, and the feed-
back is clear and easy to understand.

7 6.7 0.41

5 Learnability The system is intuitive and easy to learn. 7 6.8 0.16
6 Usability The system is intuitive and easy to use. 7 6.8 0.36

7 Comfort

The use of helmets, gestures, and voice
control in the system did not make vol-
unteers feel fatigued, nauseous, vertigo,
or other discomforts.

7 6.7 0.21

However, they also found some shortcomings of the system. The recognition system
is not very friendly to people with short and thick fingers and accents, the command
recognition speed is slow, the voice-recognition lexicon is small, and the gesture recognition
may be interfered with by irrelevant postures. Therefore, in the future, we must integrate
more modules in our system, expand the speech recognition library, and exclude the
interference items in gestures. Furthermore, due to there being more models in the scene,
the frame rate is reduced, which may easily cause visual discomfort to users. Therefore,
the improvement of visualization is also our next research direction.

5. Conclusions

This paper proposes a multimodal interaction integration system that realizes accu-
rate UAV control command outputs in virtual environments by fusing gesture and voice
data. In the multimodal data fusion process, we propose a new interaction method and
adjust the interaction strategy according to the confidence of the single-modal recognition
result; that is, we dynamically modify the fusion weight, providing intelligent interactive
service support for command recognition. We also evaluate and compare the single-modal
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and multimodal fusion-based interaction recognition results obtained with this system.
The accuracy test results show that the multimodal interaction integration system that
combines gesture and speech data is more accurate than the single interaction modalities.
Then the human factor ergonomics test results indicate the system’s overall effectiveness
and usability. The next step is to integrate more natural interaction modules and improve
visualization.
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