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Abstract: This paper proposes an adaptive neural-network-based nonsingular fast terminal sliding
mode (NN-NFTSMC) approach to address the trajectory tracking control problem of a quadrotor
in the presence of model uncertainties and external disturbances. First, the dynamic model of the
quadrotor with uncertainty is derived. Then, a control scheme using nonsingular fast terminal sliding
mode control (NFTSMC) is proposed to guarantee the finite-time convergence of the quadrotor
to its desired trajectory. NFTSMC is firstly formulated for the case that the upper bound of the
lumped uncertainty is known in advance. Under this framework, a disturbance observer by using the
hyperbolic tangent nonlinear tracking differentiator (TANH-NTD) is designed to estimate the external
interference, and a neural network (NN) approximator is used to develop an online estimate of the
model uncertainty. Subsequently, adaptive algorithms are designed to compensate the approximation
error and update the NN weight matrix. An NN-NFTSMC algorithm is formulated to provide the
system with robustness to the model uncertainty and external disturbance. Moreover, Lyapunov-
based approach is employed to prove the global stability of the closed-loop system and the finite-time
convergence of the trajectory tracking errors. The results of a comparative simulation study with
other recent methods illustrate the proposed control method reduces the chattering effectively and
has remarkable performance.

Keywords: neural network; nonsingular fast terminal sliding mode; trajectory tracking; uncertainties
and disturbances

1. Introduction

Quadrotors have broad applications on military and civilian areas, such as environ-
mental supervision, geological analysis, agricultural operations, search and rescue, and
mail delivery [1,2]. In particular, they have promptly garnered special attention from the
aviation research due to their advantageous characteristics such as lightweight structure,
vertical take-off and landing, simple mechanical design, good maneuverability [3]. How-
ever, the trajectory tracking control of a quadrotor unmanned aerial vehicle (UAV) is a
complicated problem. On the one hand, the quadrotor is an inherently nonlinear and
multiple-input multiple-output (MIMO) system. On the other hand, the under-actuated
properties lead to strong coupling among state variables. Furthermore, quadrotor dynamics
involve parameter uncertainties and external disturbances, leading to potentially unstable
flight trajectories [4].

There are several control methods for the trajectory tracking problem of quadrotors
that have been explored in previous research. Linear control methods, such as proportional-
derivative (PD), proportional integral derivative (PID) and linear quadratic (LQR) are pre-
sented in Refs [5–7]. However, these linear control techniques cannot ensure the stability of the
system when the vehicle moves away from the operating domain. In addition, these control
approaches have limited capabilities of coupling alleviation and interference suppression.
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To obtain an accurate flight path trajectory when the quadrotor maneuvers rapidly,
a variety of nonlinear flight control methods have been developed, which can overcome
the drawbacks of the linear control approaches, such as backstepping control [8], feedback
linearization [9], sliding mode control (SMC) [10]. Of these methods, SMC has been proved
to be an attractive method for trajectory tracking control, which can compensate for the
model uncertainties and external disturbances. In other words, the main benefit of the SMC
technique is low sensitivity to parameter variations and dynamic uncertainties. Based on the
quadrotor model subjected to parametric uncertainties and external disturbances, the fuzzy
logic system (FLS) was employed in the structure of SMC to schedule the switching gain
and suppress the chattering [11]. The SMC method with the optimized radial basis function
neural networks (RBFNN) approximator was proposed for a 6-DOF quadrotor [12]. In
addition, the SMC technique also has been applied in other fields, such as attitude tracking
control of spacecraft [13], trajectory tracking for robotic airships [14] and autonomous
underwater vehicles [15].

For many practical systems like the quadrotor, it is required that the designed control
system must fulfill some performance index, such as convergence speed and steady-state
error [16]. Whereas, the ordinary sliding mode control can only drive the system state
converge progressively, it cannot quickly reach the origin within a finite-time. To obtain
the finite-time convergence, terminal sliding mode control (TSMC) has been developed,
which adopt nonlinear sliding surfaces. Based on a quadrotor system in the presence of
external disturbance, a robust fuzzy TSMC method is developed to track the predefined
flight path [17]. To further improve the convergence speed, a fast terminal sliding mode
(FTSMC) has been proposed. In Ref. [18], a robust control method which consisted of the
FTSMC method and super twisting reaching law, is proposed for the quadrotor position
and attitude tracking. However, the traditional FTSMC method suffers from the singularity
problem due to the terms with negative fraction power. To handle the singularity problem,
a nonsingular fast terminal sliding mode control (NFTSMC) method is recently developed.
Based on the orbit-coupling spacecraft model, an improved NFTSMC method combined
with a continuous differentiable constraint function was designed to solve the problem of
the spacecraft final approach [19]. Further, an adaptive NFTSMC method for controlling
the position and attitude of the smart flexible satellite [20]. Combined with the fully tuned
RBFNN, a finite-time control scheme using NFTSMC algorithm is proposed for redundant
parallel manipulators [21].

Motivated by the aforementioned analysis and inspired by Refs. [22,23], this paper
presents an adaptive neural-network-based nonsingular fast terminal sliding mode control
(NN-NFTSMC) scheme, to address the problem of trajectory tracking for a quadrotor in
the presence of inertial uncertainties and external disturbances. First, this paper presents a
quadrotor dynamic model with parametric uncertainty and unknown disturbances. For
the inertial uncertainties and external disturbances, the NFTSMC method can guarantee
convergence of the tracking errors in finite-time. However, the quadrotor dynamic model is
usually uncertain and the bounds of the uncertainties and disturbances are often unknown.
Therefore, under the framework of NFTSMC, a nonlinear disturbance observer is designed
by using a hyperbolic tangent nonlinear tracking differentiator (TANH-NTD) to estimate the
external disturbance. The neural network (NN) technique is utilized to estimate the model
uncertainties due to its strong nonlinear fitting ability. Furthermore, adaptive algorithms
are applied to automatically adjust the parameters of the controller to estimate the unknown
upper bound of the approximation error. Also, by employing the designed controller, the
chattering generated obviously in the conventional SMC is alleviated, without losing the
tracking precision and robustness property.

The main contributions and the key features of this paper are summarized as follows:
(1) A NFTSMC method is adopted to guarantee that the quadrotor system acquires

high-speed response, accurate tracking and strong robustness. Furthermore, the NFTSMC
method can overcome the singularity problem that exists in the normal FTSMC approach.
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(2) A TANH-NTD disturbance observer and an NN approximator are formulated to
provide an online estimate of the external disturbance and model uncertainties, which
can allows for the relaxation of the requirement of prior knowledge about the bound of
the uncertainties and disturbances, thus reducing the difficulty in modeling the system
in practice.

(3) The NN-NFTSMC control method acquire high-speed response, accurate tracking
and strong robustness, but also alleviate the negative effect of chattering.

The remainder of the paper is organized as follows. Section 2 describes the prelim-
inaries and problem formulation. Section 3 presents the formulation of the controller
NN-NFTSMC to be used in the trajectory tracking of the quadrotor. Section 4 presents the
results of simulations to illustrate the effectiveness of the designed control method. Finally,
Section 5 concludes the paper.

2. Preliminaries and Problem Formulation
2.1. Preliminaries

The following notations are adopted throughout this paper. | · | represent the absolute
value of each element of a vector. ‖ · ‖ denotes the Euclidean norm of a vector. λmax(·)
denotes the maximum element of a vector or the maximum eigenvalue of a matrix; λmin(·)
denotes the minimum element of a vector or the minimum eigenvalue of a matrix. For a
variable vector q = [q1, · · · , qn]

T ∈ Rn, the function signα(q) is denoted as

signα(q) = |q|αsign(q) = [|q1|αsign(q1), · · · , |qn|αsign(qn)]
T (1)

Then, it is easy to obtain

d(signα(q))
dt

= α|q|α−1 .
q (2)

2.2. Kinematics and Dynamics

The structure of the studied quadrotor model is shown in Figure 1, which consists of a
rigid cross-frame and four propellers. The kinematics model that describes the position
and attitude of the quadrotor is given by [4]:{ .

ξ = Rtva.
η = Rrωb

(3)

where ξ = [x, y, z]T and η = [φ, θ, ψ]T denote the quadrotor position and attitude in the
inertial frame (Oe − xeyeze), va = [u, v, w]T and ωb = [p, q, r]T represent the speed and
angular velocity with respect to the body frame (Ob − xbybzb), Rt and Rr is the direction
cosine matrix and transformation matrix respectively, whose expressions can be found
in Ref. [24].

The rigid quadrotor system modeling described by Euler dynamic equations can be
expressed as follows [25].{

J
..
η = −ηT × Jη+ τ − τc − τa + dη

m
..
ξ = Rtu−mgez − fD + dξ

(4)

where ez = [0, 0, 1]T . m is the total mass, J is the symmetric inertia matrix, u denotes the
gross thrust generated by four rotors with respect to the body frame, g denotes the vector of
gravity acceleration, τ denotes the rotation torque produced by four propellers, τc denotes
the resultant moment generated by the gyroscopic effects. τa denotes the resultant of
aerodynamic friction torque, fD denotes the aerodynamic force, dη and dξ are the unknown
external disturbances.
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In this study, the additional parameter uncertainties of the quadrotor system can be
expressed as follows:

J = J0 + ∆J, m = m0 + ∆m (5)

where J0 and m0 denote the known inertial matrix and mass; ∆J and ∆m represent the
bounded uncertainties.

Then, the dynamic system described by Equation (4) can be rewritten as:{
J0

..
η = − .

η
T × J0

.
η+ τ − τc − τa + dη − ∆J

..
η− .

η
T × ∆J

.
η

m0
..
ξ = Rtu−m0gez − fD + dξ − ∆mgez − ∆m

..
ξ

(6)
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2.3. Problem Formulation

The quadrotor is an under-actuated system, which has six outputs and four control
inputs. In order to facilitate the controller design, a virtual control input v = [vx, vy, vz]

T is
introduced as:  vx

vy
vz

 =

(cos φ sin θ cos ψ + sin φ sin ψ) u
m

(cos φ sin θ sin ψ− sin φ cos ψ) u
m

cos φ cos θ u
m − g

 (7)

For simplicity, the quadrotor system can be deformed as follows:

..
x = F + Gu + D + d (8)

with

F =

− .
η

T×J0
.
η−τc−τa
J0

−mgez−fD
m0

, G =

[
1
J0

03×3

03×3
Rt
m0

]
, D =

 −∆J
..
η− .

η
T×∆J

.
η

J0
−∆mgez−∆m

..
ξ

m0

, d =

[
dη

dξ

]
(9)

where, x = [ηT , ξT ]
T is the state vector; u = [τφ, τθ , τψ, vx, vy, vz]

T is the input vector; D is
the model uncertainty term; d denotes the external disturbance vector.

Then, by setting the desired pitch angle ψd, the desired roll angle φd, desired pitch θd
angle can be obtained [25]:

φd = sin−1
(

vx sin(ψd)− vy cos(ψd)

vz + g

)
, θd = tan−1

(
vx cos(ψd) + vy sin(ψd)

vz + g

)
(10)

By setting the desired state xd = [φd, θd, ψd, xd, yd, zd]
T , the tracking errors are de-

fined as:
E1 = x− xd, E2 =

.
x− .

xd (11)

The control purpose of this work is formulated as follows: given the initial system
state x0, and the desired state xd, design a robust controller to stabilize the vehicle subjected
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to the model uncertainties and external disturbances. The vectors of tracking errors given
by Equation (11), are required to converge to zero in a finite-time, i.e.,:

lim
t→t f
‖E1‖ = 0, lim

t→t f
‖E2‖ = 0 (12)

3. NN-NFTSMC Controller Design

This section is devoted to the controller system design of the quadrotor. NFTSMC
technique is adopted to design the trajectory tracking controller. Under this control frame-
work, the hyperbolic tangent nonlinear tracking differentiator (TANH-NTD) and RBFNN
are developed to respectively approximate external disturbances and system uncertainties.
Adapting algorithms are introduced to update the weight matrix of RBFNN and estimate
the upper bound of the approximation errors.

3.1. NFTSMC Design

The trajectory tracking errors are defined as:

e = x− xd (13)

The first derivative of the trajectory tracking errors is given by:

.
e =

.
x− .

xd (14)

A nonsingular fast terminal sliding surface is chosen as follows:

s = e + αsignγ1(e) + βsignγ2(
.
e) (15)

where α = diag(α1, α2, α3, α4, α5, α6) and β = diag(β1, β2, β3, β4, β5, β6) are positive definite
matrices, γ1 and γ2 are positive odd constants, satisfying 1 < γ1 < 2 and γ1 > γ2.

Remark 1. In the above-mentioned sliding manifold design, when the system states are far from
the equilibrium states, αsignγ1(e) has a dominant position and ensures a high convergence rate,
compared with βsignγ2(

.
e); when the system states approach the equilibrium states, βsignγ2(

.
e)

guarantees the finite-time convergence.

The time derivative of the sliding surface can be calculated as:

.
s =

.
e + αγ1|e|γ1−1 .

e + βγ2
∣∣ .
e
∣∣γ2−1

(F+Gu+D + d− ..
xd) (16)

Assumption 1. The total dynamic uncertainties are assumed to be bounded, satisfying the follow-
ing inequalities:

‖D‖+ ‖d‖ ≤ ρ (17)

where ρ is a finite positive constant.

Based on the sliding surface given by Equation (15), the equivalent control law is
designed as follows

ueq = −G−1
(

F +
..
xd −

1
βγ2

∣∣ .
e
∣∣2−γ2

(
1 + αγ1|e|γ1−1

)
sign

( .
e
))

(18)

Based on Assumption 1, the switching control law is given by:

us = −K1s−K2sign(s) (19)
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where K1 = diag(K11, K12, K13, K14, K15, K16) is a positive definite matrix K1i > 0
(i = 1,2,3,4,5,6) is the design parameter, K2 = diag(K21, K22, K23, K24, K25, K26) is the switch-
ing gain matrix, and K2i > 0 (i = 1,2,3,4,5,6) is a positive constant, which satisfies:

K2i = λmax(D) + λmax(d) + δ (20)

where δ is a small positive constant.
Hence, the NFTSMC control law for the quadrotor system is designed as:

u = −G−1
(

F− ..
xd +

1
γ2

∣∣ .
e
∣∣2−γ2 β−1

(
1 + αγ1|e|γ1−1

)
sign

( .
e
)
+ K1s + K2sign(s)

)
(21)

The control scheme of the NFTSMC technique for trajectory tracking is indicated
in Figure 2.
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Lemma 1. [26] Suppose there exists a positive definite Lyapunov function V(χ), which fulfills the
inequation

.
V(χ) + k1V(χ) + k2Vk3(χ) ≤ 0 where k1, k2 > 0 and 0 < k3 < 1. Let V0(χ) be the

initial value of V(χ), then the system state χ(t) converges to zero in finite time. The settling time
T satisfies:

T ≤ 1
k1(1− k3)

ln
k1V1−k3

0 (χ) + k2

k2
(22)

Theorem 1. Considering the nonlinear dynamic system given by Equation (8) and the sliding
surface chosen as Equation (15), if the NFTSMC controller is designed as Equation (21), then the
closed-loop system is stable and the tracking error can converge to zero in finite time.

Proof. The candidate Lyapunov function is considered as:

V1 =
1
2

sTs (23)

Differentiating Equation (23) with respect to time yields:

.
V1 = sT .

s (24)

Substituting Equations (16) and (21), the above equation is converted to:

.
V1 = sT

( .
e + αγ1|e|γ1−1 .

e + βγ2
∣∣ .
e
∣∣γ2−1(F+Gu+D + d− ..

xd
))

= −βγ2
∣∣ .
e
∣∣γ2−1K1sTs + βγ2

∣∣ .
e
∣∣γ2−1(sT(D + d)− sTK2sign(s)

) (25)

After simple calculation, the following can be obtained:
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.
V1 ≤ −γ2β

∣∣ .
e
∣∣γ2−1K1sTs− γ2δβ

∣∣ .
e
∣∣γ2−1‖s‖

≤ −2γ2λmin(K1)λmin(β)λmin(
∣∣ .
e
∣∣γ2−1

)V1 −
√

2γ2δλmin(β)λmin(
∣∣ .
e
∣∣γ2−1

)V1/2
1

(26)

By defining µ1 = 2γ2λmin(K1)λmin(β)λmin(
∣∣ .
e
∣∣γ2−1

) and µ2 =
√

2γ2δλmin(β)λmin

(
∣∣ .
e
∣∣γ2−1

), the following inequation is obtained:

.
V1 ≤ µ1V1 − µ2V1/2

1 (27)

Consequently, according to Lemma 1 and Lyapunov stability theory, it can be said
that the NFTSM sliding manifold s(t) can converge to zero in finite time. This completes
the proof. �

3.2. NN-NFTSMC Design

The proposed NFTSMC has provided an effective control method for the quadrotor
system. In the design of NFTSMC, it is assumed that the upper bound of the lumped
uncertainties is known in advance. In practical applications, the precise upper bound
information is usually difficult to obtain. In order to compensate for the uncertainties
existing in the actual system, the disturbance observer and the RBFNN approximator are
designed to estimate the external disturbances d and the model uncertainties D respectively.
Under the structure of NFTSMC, the NN-NFTSMC is designed with the disturbance
observer and the RBFNN approximator.

A nonlinear disturbance observer using the TANH-NTD is designed as follow [27]:
..
x̂ = F + Gu + D + d̂
.
d̂ = −RTR

(
a1tanh

(
b1

( .
x̂− .

x
))

+ a2tanh
(
R−1b2d̂

)) (28)

where R, a1, a2, b1 and b2 are positive definite diagonal matrices,
.
x̂ and d̂ are respectively

estimates of
.
x and d.

The approach of self-stable region is provided to prove the convergence of the distur-
bance observer designed as Equation (28) in Ref. [28].

Remark 2. The existence of the unknown disturbances makes the stabilization of the quadrotor
more difficult. In this study, a disturbance observer based on TANH-NTD is proposed to compensate
the external disturbance in real time. By selecting the proper values of R, a1, a2, b1 and b2, the
disturbance observer can estimate the corresponding disturbance d. Then, the approximation error
εn of the disturbance observer is defined as εn = d− d̂.

RBFNN is a well-known approach for the approximation of a nonlinear function. An
RBFNN is a three-layer feedforward neural networks, which includes an input layer, a
hidden layer with a nonlinear activation function and an output layer. The activation
function h, which is selected as Gaussian function, is expressed as:

hj(r) = exp

(
‖r− cj‖2

σ2
j

)
, j = 1, 2, · · · , m (29)

where r is the input of the RBFNN, cj is the center of the neuron, and σj is the width of
Gaussian function for neural net j.

Lemma 2. [29] For any positive constant ε, there always exists a RBFNN, which guarantees the
approximation error ultimately converges to an adequate small compact.

sup
χ∈o
| f (χ)− y(χ)| < ε (30)
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where f (χ) is a continuous function which is defined on a compact set o, and y(χ) is the output of
the RBFNN.

According to Lemma 2, the RBFNN is adopted to compensate for the model uncertain-
ties D, which can be expressed as follow:

D = WTh + εm (31)

where W is the optimal weight matrix, and εm denotes the approximation error.
The input vector of the RBFNN is chosen as:

r = [x,
.
x,

..
x] (32)

Then, the output vector of the RBFNN is

D̂ = ŴTh (33)

where Ŵ is the estimation of the best weight matrix W.

Assumption 2. It is assumed that there exists a positive constant η, which satisfies the follow-
ing inequation:

‖εm‖+ ‖εn‖ ≤ η (34)

where εm and εn denote the approximation errors of RBFNN and the disturbance observer respectively.

Based on the Equations (33) and (28), the control law in Equation (21) is rewritten as
follows:

u = −G−1
(

F + D̂ + d̂− ..
xd +

1
βγ2

∣∣ .
e
∣∣2−γ2

(
1 + αγ1|e|γ1−1

)
sign

( .
e
)
+ K1s + K2sign(s)

)
(35)

With the adapting laws:

.
Ŵ = γ2Γβ

∣∣ .
e
∣∣hsT ,

.
η̂ = λβ|s|T

∣∣ .
e
∣∣γ2−1 (36)

where Γ is a positive definite matrix, and λ is a positive constant.
The block diagram of the NN-NFTSMC technique for trajectory tracking is illustrated

in Figure 3.
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Theorem 2. For the quadrotor system subjected to the disturbances and model uncertainties
described by Equation (8), if the nonsingular terminal sliding surface is selected as Equation (15) and
the NN-NFTSMC controller is designed as Equation (35), in which the total dynamic uncertainties
are estimated by Equations (28) and (33), and the adaption laws are selected as Equation (36), then
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the stability of the closed-loop system is guaranteed and the tracking errors converge to zero in
finite time.

Proof. Select following Lyapunov function candidate V2

V2 =
1
2

sTs +
1
2

tr(W̃
T

Γ−1W̃) + γ2
1

2λ
η̃2 (37)

where W̃ = W− Ŵ and η̃ = η− η̂. Through the previous analysis, it is clear that
.

W̃ = −
.

Ŵ
and

.
η̃ = −

.
η̂.

Differentiating Equation (37) yields:

.
V2 = sT .

s + tr(W̃
T

Γ−1
.

W̃) + γ2
1
λ

η̃
.
η̃ (38)

By substituting Equation (16) into the Equation (38), the following equation can be
obtained:

.
V2 = sT

( .
e + αγ1|e|γ1−1 .

e + βγ2
∣∣ .
e
∣∣γ2−1 ..

e
)
+tr(W̃

T
Γ−1

.
W̃) + γ2

1
λ

η̃
.
η̃ (39)

By placing the NN-NFTSMC control law in Equation (35) and the adaptive laws in
Equation (36) into the above equation, the following equation is obtained.

.
V2 = γ2β

∣∣ .
e
∣∣γ2−1sT((εm + εn)−K1s− η̂sign(s))

+trW̃
T
(

γ2βT
∣∣ .
e
∣∣γ2−1hsT + Γ−1

(
−Γγ2βT

∣∣ .
e
∣∣γ2−1hsT

))
+ γ2

1
λ η̃β|s|T

∣∣ .
e
∣∣γ2−1 (40)

Simplifying Equation (40) leads to the following relation.

.
V2 = γ2β

∣∣ .
e
∣∣γ2−1

(
−K1sTs− η̂|s|+ (εm + εn)s− η̃|s|

)
(41)

Considering the constraint in Equation (34) yields

.
V2 ≤ γ2β

∣∣ .
e
∣∣γ2−1sT(−K1s− η̂sign(s) + ηsign(s)− η̃sign(s))

≤ −γ2β
∣∣ .
e
∣∣γ2−1K1sTs ≤ 0

(42)

According to the Lyapunov stability criterion, it is concluded that the system’s error
variables will converge to zero along the sliding manifold in a finite-time. The proof
is completed. �

Remark 3. Without the disturbance observer and RBFNN approximator being introduced, substi-
tuting Equation (21) into Equation (16) leads to Equation (44); With the TANH-NTD disturbance
observer and RBFNN approximator being adopted, substituting the Equation (35) into (16) leads
to Equation (45). Comparing with Equations (44) and (45), it can be seen that the total dynamic
uncertainties change from D + d to D− D̂ + d− d̂ by the compensatory effect of the disturbance
observer and RBFNN. Therefore, the switching gain of the control law can be decreased from K2,
the upper bound of the lumped uncertainties, to the estimation of the upper bound η̂, and the
approximation error D− D̂ + d− d̂, which can alleviate chattering.

.
s = βγ2

∣∣ .
e
∣∣γ2−1

(D + d−K1s−K2sign(s)) (43)

.
s = βγ2

∣∣ .
e
∣∣γ2−1(D− D̂ + d− d̂−K1s− η̂sign(s)

)
(44)

Given the proceeding analysis, the detailed computational procedure of designing the
NN-NFTSMC approach is described in Algorithm 1.
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Algorithm 1 NN-NFTSMC

Input:
(1) The desired trajectory xd
(2) The present position and attitude x
(3) Model parameters of the quadrotor
Output: Control inputs for trajectory tacking
Step 1: Design of the control input
(1) Compute the state errors: e = x− xd,

.
e =

.
x− .

xd;
(2) Define the sliding surface: s = e + αsignk1 (e) + βsignk2 (

.
e);

(3) Design adaptive laws:
.

Ŵ = γ2Γβ
∣∣ .
e
∣∣hsT ,

.
η̂ = λβ|s|T

∣∣ .
e
∣∣γ2−1

(4) Construct neural network approximation and disturbance observer: D̂ = ŴTh, d̂
(5) Calculate the control signal u
Step2: Proof of the closed-loop system stabilization
(1) Select the Lyapunov candidate function V
(2) Calculate the first-order derivative of Lyapunov function

.
V

(3) Check the sign of
.

V
(4) Analyze the convergence of the state variables
Step3: Ending
If the state errors satisfy the requirement, terminate the algorithm and output the control signal u.
Otherwise, go to step1

4. Simulation Results

In this section, numerical simulations are presented to illustrate the effectiveness of the
designed control method. The physical parameters of the studied quadrotor are replicated
from Ref. [24] and the reference trajectories are adopted from Ref. [30]. Subsequently, to
study the performance of the designed NN-NFTSMC scheme, the global fast terminal
sliding mode control (GFTSMC) method [31] and second order sliding mode control
(SOSMC) method [32] will be compared by using numerical simulations. The controller
parameters of NN-NFTSMC are listed in Table 1.

Table 1. Control parameters of NN-FTSMC.

Parameter Value

α diag (6, 6, 6, 0.5, 0.5, 0.5)
β diag (0.3, 0.3, 0.3, 0.8, 0.8, 0.8)
γ1 1.3
γ2 1.1
K1 diag(20, 20, 20, 10, 10, 10)
Γ diag(15, 15, 15, 35, 35, 35)
λ 20

4.1. Simulation 1

This simulation is conducted considering the case for ∆J = 0.05J0, ∆m = 0.05m0,
dξ = 0.1N and dη = 0.1N · m. To evaluate the effectiveness of the proposed controller,
the GFTSMC controller is employed for comparison. The initial state of the quadrotor is
x0 = [0, 0, 0, 0, 0, 0]T , and the desired trajectory, which consists of taking-off, hovering and
landing, is listed in Table 2 in terms of the reference position and yaw angle.

The trajectory tracking results of both methods are shown in Figures 4 and 5, and
the tracking errors of the proposed method is displayed in Figure 6. It can be seen that
both the NN-NFTSMC and GFTSMC methods are able to hold the quadrotor position
and attitude steady, even though the desired position and angle are modified in every
moment. However, it is obvious that the GFTSMC technique is unable to maintain the null
steady error due to the coupling relationship between these state variables. The designed
NN-NFTSMC controller is able to maintain the system state variables on their references
without oscillation. In addition, compared with the GFTSMC technique, NN-NFTSMC
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can provide more rapid response speed and take less time to drive the state errors to zero.
The control inputs are displayed in Figure 7, which include the total thrust u, rotation
torques τφ, τθ and τψ. These results fully prove that the proposed NN-NFTSMC controller
has advantages over the GFTSMC controller in terms of suppressing coupling, tracking
accuracy and convergence rate.

Table 2. Reference position and yaw angle of the desired trajectory.

Variable Value Times

[xd(m), yd(m), zd(m)] [0.6, 0.6, 0.6] 0
[0.3, 0.6, 0.6] 10
[0.3, 0.3, 0.6] 20
[0.6, 0.3, 0.6] 30
[0.6, 0.6, 0.6] 40
[0.6, 0.6, 0.0] 50

ψ[(rad)] [0.5] 0
λ [0.0] 50
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4.2. Simulation 2

The tracking performance of the SOSMC method is given in the comparative simula-
tion. The values of inertias and total mass are up to 15% overstated, i.e., ∆J = −0.15J0 and
∆m = −0.15m0. The external disturbance is imposed on the accelerations of position and
attitude, whose expressions are given by:

d =



0.5 sin(0.7t)
0.5 sin(0.5t)
0.5 cos(0.7t)
0.5 sin(0.7t)
0.5 sin(0.4t)
0.5 sin(0.7t)

 (45)

The initial condition of the vehicle is x0 = [0, 0, 0.5, 0.5, 0.5, 0.5]T .The desired trajectory
is given as:

xd =

{
0 t ∈ [0, 55)
0.3 cos

(
πt
6
)
m t ∈ [55, 120]

yd =

{
0 t ∈ [0, 55)
0.3 sin

(
πt
6
)
m t ∈ [55, 120]

zd =


1m t ∈ [0, 42)
0.7m t ∈ [42, 87)
0.8m t ∈ [87, 120]

ψd = 0rad

(46)

The trajectory tracking results are depicted in Figures 8 and 9. It should be noted that,
despite the presence of the dynamic uncertainties and external disturbances, the proposed
controller demonstrates the better tracking performance than the SOSMC technique. It is
noticeable that, starting from the initial position far from the desired trajectory, the NN-
NFTSMC succeeds in maneuvering the quadrotor along the reference trajectory in a short
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time and small amplitude oscillation observed. However, during flight phase involving
hovering and sine-wave maneuver in the trajectory, the proposed method can maintain
a satisfactory level of precision, due to the strong nonlinear fitting ability of the designed
disturbance observer and RBFNN approximator. The position tracking errors are displayed
in Figure 10. It can be seen that the NN-NFTSMC method is able to reject the model
uncertainties and disturbances. These figures successfully illustrate that the remarkable
performance of the proposed NN-NFTSMC controller.
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4.3. Simulation 3

In this simulation, the values of inertias and total mass are undervalued by 15%,
i.e., ∆J = 0.15J0 and ∆m = 0.15m0. The external disturbances are the same as those in
Simulation 2. The quadrotor is initially located at x0 = [0, 0, 0.5, 0.5, 0.5, 0.5]T , and the
desired trajectory is given as:

xd =


1
2 cos

( t
2
)

m t ∈ [0, 4π)

0.5 m t ∈ [4π, 20)
0.25t− 4.5 m t ∈ [20, 30)
3 m t ∈ [30, 80]

yd =



1
2 sin

( t
2
)

m t ∈ [0, 4π)

0.25t− 3.14 m t ∈ [4π, 20)
5− π m t ∈ [20, 30)
−0.2358t + 8.94 m t ∈ [30, 40)
−0.5 m t ∈ [40, 80]

zd =


0.125t + 1 m t ∈ [0, 4π)

0.5π + 1 m t ∈ [4π, 40)
exp(−0.2t + 8.944) m t ∈ [40, 80]

ψd = 0 rad

(47)

The trajectory tracking performances under the model uncertainties and time-varying
disturbances are presented in Figures 11 and 12. It can be seen that the proposed NN-
NFTSMC method achieves the desired trajectory tracking with a faster convergence rate
than that of the SOSMC method. The trajectory tracking using the NN-NFTSMC ap-
proach has much lower oscillations and overshoots. However, the SOSMC approach can
hardly handle the chattering well, which is aggravated by parameter uncertainties and
disturbances. Figure 13 shows the time histories of the position tracking errors with the NN-
NFTSMC. The position tracking errors converge to the neighborhood of zero in finite time.
During the steady state, the error accuracy of the position is on the order of 10−3.Based on
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above analysis, it is clear that the proposed method can provide better tracking accuracy
and faster convergence rate.
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5. Conclusions

A NN-NFTSMC approach was designed to address the problem of quadrotor trajectory
tracking control while being subjected to model uncertainties and disturbances. The
proposed method combined the merits of NFTSMC, TANH-NTD and NN. The NFTSMC
technique guaranteed the rapid finite-time convergence of all state variables with high
accuracy, in which the singularity problem was avoided. Furthermore, a TANH-NTD
disturbance observer and NN approximator were adopted provide an online estimate
of the external disturbances and dynamic uncertainties acting on all degrees of freedom
of the system. Comprehensive simulations were conducted to illustrate the enhanced
performance of the proposed method.
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