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Abstract: Simulation plays a critical role in the development of UAV navigation systems. In the
context of celestial navigation, the ability to simulate celestial imagery is particularly important, due
to the logistical and legal constraints of conducting UAV flight trials after dusk. We present a method
for simulating night-sky star field imagery captured from a rigidly mounted ‘strapdown’ UAV camera
system, with reference to a single static reference image captured on the ground. Using fast attitude
updates and spherical linear interpolation, images are superimposed to produce a finite-exposure
image that accurately captures motion blur due to aircraft actuation and aerodynamic turbulence. The
simulation images are validated against a real data set, showing similarity in both star trail path and
magnitude. The outcomes of this work provide a simulation test environment for the development of
celestial navigation algorithms.
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1. Introduction

Celestial navigation in uncrewed aerial vehicles (UAV) has been a topic of interest for
over half a century (see, for example, [1]). The significance of this mode of navigation has
been overshadowed, however, by the ubiquity of global navigation satellite systems and
the integration of compact micro-electromechanical attitude sensors into aviation platforms.
Nonetheless, celestial navigation has unique advantages due to its independence from
critical infrastructure and robustness to external interference. We see recent works, such
as [2,3] integrating celestial imaging into their navigation solutions. Modern UAVs must
typically conform to size, weight and power constraints and, to this end, benefit from a
strapdown celestial implementation, as opposed to an actively stabilized alternative. In
a strapdown configuration, the imaging sensor has no control authority over the vehicle,
and therefore requires a larger field of view, and longer exposure intervals, to track stars
during motion. We propose here a method for simulating the imagery captured from such
a strapdown celestial system.

Celestial imagery is commonly used in spacecraft to obtain a highly accurate atti-
tude reference. This technique is less commonly used, however, in low altitude aircraft
navigation. Aircraft are subjected to many sources of noise that spacecraft are not, such
as light pollution, cloud cover, atmospheric diffraction, aerodynamic turbulence, engine
vibration and control/actuation, which all impact the signal strength of a celestial image
obtained from an aircraft. These effects are exacerbated by the need for long-exposure
imagery when operating at low-altitude (less than 500 m). The standard approach to this
problem is to use a stabilized viewing platform with a telescopic lens [1], which limits the
aforementioned attenuation. Such an approach is costly and adds significant weight to
an airframe. The design of this simulation has arisen from the desire for a low cost, low
weight, “strapdown” [4] celestial navigation solution.

As with all avionic navigation solutions, simulation plays an important role in the
system design and precedes the implementation. The intent of this work is to provide
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a means of simulating imagery from a camera with a wide-angle lens, rigidly mounted
to a fixed wing airframe with no active stabilization. Preliminary testing indicated that
despite the increased motion blur, longer exposure images are consistently able to capture
stars at lower levels of illumination. Consequently, the need arises for a simulation that
can replicate the effects of motion blur due to these longer exposure images. In addition,
there is benefit to tuning the simulation based on a reference image captured from the
ground. This provides a quick solution for users to encapsulate their camera sensor and
lens characteristics in the simulation environment, without the logistical constraints of
night flying.

The use of star field simulation is most commonly seen in star identification research
and development [5]. In this field, simulation is used to obtain baseline performance
metrics for newly designed algorithms. An example of star field simulation for this purpose
can be seen in [6], in which, rather than rendering stars, their position and magnitude
are generated directly, with the addition of Gaussian noise. Other works tend to follow a
similar design, seen in [7,8]. These simulations are intended to replicate imagery captured
from spacecraft, which is not typically affected by rotational motion, nor atmospheric
attenuation. Recent work considers the effects of star smearing [9] and the effect this has
on the observability of stars. This work leverages from the simulation concepts presented
in [10], later followed by [11]. These studies assume the angular velocity of the camera to
be constant; however, we can see in Section 3 that for aerial vehicles, this assumption is
invalid. Advancements were made in [12], highlighting the importance of modeling in
star sensor design and calibration. In each of these cases, testing was conducted using a
turntable, and as indicated in [10], this approach is not capable of running in real-time due
to the large number of integral calculations involved.

This work offers two significant contributions to this field of research. We present a
simple and effective framework for the real-time simulation of long-exposure images from
non-stabilized UAV-mounted hardware using spherical linear interpolation, and a method
for calibrating the simulation based on a ground reference image. Concepts from this work
may be extended to aid in simulation design for spacecraft in highly dynamic situations.

2. Simulation Architecture

The position of stars and planets in the sky are represented in the International Celestial
Reference Frame (ICRF). The location of a celestial body is expressed in terms of right
ascension, α, and declination, δ, as seen in Figure 1. Stars are assumed to be infinitely far
away, lying on the celestial sphere. Consequently, translational motion has no effect on the
apparent position of the stars.

Figure 1. Celestial equatorial coordinate system.
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The aircraft position is represented in the Earth-centred, Earth-fixed WGS84 system.
This is the standard reference frame for GPS positional data. Aircraft attitude is represented
in the local North-East-Down (NED) coordinate system. The camera is assumed to be
mounted to the aircraft, sharing a location with the vehicle and differing in orientation by a
single rotational transformation. The camera coordinate system is oriented with z positive
in the optical axis, x positive towards the right of the image plane and y positive towards
the bottom of the image plane.

A star catalogue must be used as a reference for the location of stars. While there are
many star catalogues available, we selected the Yale Bright Star Catalogue (BSC) due to its
minimal size. The BSC contains records of stars down to magnitude 6.5, totalling 9110 stars.
This magnitude threshold is sufficient for most aircraft camera systems (including stabilized
systems) [1]. For ease of implementation, the ASCII-format catalogue was converted into
an SQLite database. Indices were created for magnitude, right ascension and declination,
including additional composite indices to allow fast querying of the database.

This simulation initially corrects for celestial phenomena which perturb the right
ascension and declination in the star catalogue, before entering a simulation loop. The
simulation loop performs the following steps:

1. Update position, time and attitude of simulation;
2. Calculate star homogeneous coordinates in camera frame of reference;
3. Project each star onto the image plane;
4. Render the star.

2.1. Initial Corrections

On initialization, adjustments are made for the right ascension and declination of stars
due to annual proper motion (the apparent motion of stars), precession (changes in the
Earth’s rotational axis over time), nutation (axial changes due to the Moon’s gravitational
pull) and aberration (due to the velocity of the Earth’s orbit).

Proper motion is provided in star catalogues and is compensated by computing the
change in right ascension and declination since the given epoch, such that:

α̂ = α0 + α̇T

δ̂ = δ0 + δ̇T
(1)

where α0 and δ0 are the right ascension and declination at the epoch. α̇ and δ̇ are the annual
proper motion, typically expressed in arcseconds per year, and T is the time (in years) since
the epoch (J2000 in our case). Subsequently, right ascension and declination are corrected
due to precession, following the method outlined in [13]. That is, we use the polynomial
approximation for the precession angles ζ, z and γ:

ζ = 2306.2181t + 0.30188t2 + 0.017998t3

z = 2306.2181t + 1.09468t2 + 0.018203t3

γ = 2004.3109t− 0.42665t2 − 0.041833t3

(2)

where t is the number of centuries since the J2000 epoch. Right ascension α and declination δ
are then found given:

tan(α− z) =
sin(α̂ + ζ)

cos γ cos(α̂ + ζ)− sin γ̂ tan δ̂

sin(δ) = sin γ cos δ̂ cos(α̂ + ζ) + cos γ sin δ̂

(3)
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Following [13], we correct for the effects of nutation. Nutation is comprised of nutation
in longitude, ∆λn, and nutation in obliquity, ∆ε. These quantities can be approximated to
within 0.5 arcseconds by the following equations (expressed in arcseconds):

∆λn = −17.20 sin Ω + 1.32 sin 2L− 0.23 sin 2L′ + 0.21 sin 2Ω (4)

∆ε = 9.2 cos Ω + 0.57 cos 2L + 0.10 cos 2L′ − 0.09 cos 2Ω (5)

where Ω, the longitude of the ascending node of the Moon’s mean orbit on the ecliptic,
expressed in degrees, is approximated as:

Ω = 125.04452− 1934.136261t (6)

where t is expressed in Julian centuries, as above. L and L′, the mean longitudes of the Sun
and Moon, respectively, expressed in degrees, are given by:

L = 280.4665 + 36000.7698t

L′ = 218.3165 + 481267.8813t
(7)

The mean obliquity of the ecliptic can be found given the following equation, expressed
in degrees:

ε0 = 23.439291− 13.004166 t× 10−3 − 0.1639 t2 × 10−6 + 0.50361 t3 × 10−6 (8)

Subsequently, the true obliquity of the ecliptic ε is given by:

ε = ε0 + ∆ε (9)

The resulting corrections due to nutation, ∆αn, ∆δn for the star’s right ascension and
declination, respectively, are given by:

∆αn =(cos ε + sin ε sin α tan δ)∆λn − (cos α tan δ)∆ε (10)

∆δn =(sin ε cos α)∆λn + (sin α)∆ε (11)

We also consider the effects of aberration, as presented in [13]. Given the constant
of aberration, κ = 20.29552 arcseconds, the true longitude of the Sun λs, eccentricity of
the Earth’s orbit e, and the longitude of the perihelion, ρ, we can compute the corrections
∆αa, ∆δa for the star’s right ascension and declination with the following equations:

∆αa = −κ

(
cos α cos λs cos ε + sin α sin λs

cos δ

)
+ eκ

(
cos α cos ρ cos ε + sin α sin ρ

cos δ

)
(12)

∆δa = −κ
[

cos λs cos ε(tan ε cos δ− sin α sin δ) + cos α sin δ sin λs
]

+ eκ
[

cos ρ cos ε(tanε cos δ − sin α sin δ) + cos α sin δ sin ρ
]

(13)

where:

e = 16.708634× 10−3 − 42.037t× 10−6 − 0.1267t2 × 10−6 (14)

ρ = 102.9375 + 1.71946t + 0.46t2 × 10−3 (15)

and the true longitude of the Sun is calculated as:

λs = L0 + C (16)

where the mean longitude of the Sun, L0, is given by:

L0 = 280.46646 + 36000.76983t + 0.3032t2 × 10−3 (17)
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and the Sun’s equation of the center, C, is given by:

C =
[
(1914.602− 4.817t− 0.014t2) sin M

+(19.993− 0.101t) sin 2M

+ 0.289 sin 3M
]
× 10−3 (18)

and the mean anomaly of the Sun, M, is given by:

M = 357.52911 + 35999.05029t− 0.1537t2 × 10−3 (19)

The correction terms, ∆αa, ∆δa, ∆αn and ∆δn are added to α and δ, yielding the
corrected celestial coordinates of the star.

2.2. Updating Position and Time

Conversion from terrestrial time (as measured with the Gregorian calendar) to celestial
time (typically expressed in Julian days) is a necessary step in simulating celestial bodies.
The BSC represents the location of stars with respect to the J2000 epoch. The conversion from
Gregorian date to Julian day is detailed in [13]. The basic steps are shown in Algorithm 1.

Algorithm 1 Conversion from Gregorian date to Julian day

let Y be the current year . Integer, Gregorian
let M be the current month . Integer [1..12], Gregorian
let D be the current day . Decimal, Gregorian
if M ≤ 2 then

Y = Y− 1
M = M + 12

end if

let A = int
(

Y
100

)
let B =2− A + int

(
A
4

)
J = int(365.25(Y + 4716)) + int(30.6001(M + 1)) + D + B− 1524.5 . Julian Days

This conversion expresses the current time with respect to the number of Julian days
that have elapsed since 4716 BC. Furthermore, the J2000 epoch is expressed in relation to
the Gregorian date 1 January 2000 and can be found by subtracting the Julian day at that
time from the current Julian date:

J2000 = JD − 2451545.0 (20)

Sidereal local time, analogous to celestial longitude, can be calculated given WGS84
longitude and the current time of day expressed in decimal hours. Given longitude λ,
Julian date JD expressed in the J2000 epoch, and decimal hours HD, the local sidereal time
LST is given by [13]:

LST = 100.46 + (0.985647JD) + λ + 15HD (21)

LST is typically limited to the range [0, 360] degrees. The hour-angle ω of a celestial
body can then be simply calculated from LST and right ascension α as:

ω = LST − α (22)
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The hour-angle of a body can be used to compute its azimuth and elevation, expressed
in local NED coordinates. The local elevation θ of a celestial body given hour angle ω,
declination δ and latitude φ is given by:

θ = asin(sin δ sin φ + cos δ cos φ cos ω) (23)

Subsequently, using elevation from Equation (23), the local azimuth ψ is given by the
following equation:

ψ = atan2(sin ω , cos ω sin φ − tan δ cos φ) + π (24)

where the addition of π radians converts azimuth to a representation that is positive East
of North [13].

The observed elevation of a celestial body is altered due to the effects of atmospheric
refraction. Consequently, objects in the sky appear at a greater elevation than they would
without the atmospheric effects. This effect is exaggerated at lower elevations (closer to the
horizon), which leads to an angular displacement of up to 0.5◦. For cameras in the visible
light spectrum, the refractive distance R (expressed in arcminutes) can be approximated to
within 4 arcseconds [14], given the following formula:

R =
1.02

tan
(

θ +
10.3

θ + 5.11

) (25)

If a greater level of accuracy is required, alternative methods such as that seen in [15]
can be used. The apparent elevation θ′ is then given by:

θ′ = θ + R (26)

The inverse of this formula, Equation (27) [16], allows for the correction of observations:

R =
1

tan
(

θ′ +
7.31

θ′ + 4.4

) (27)

Formulas (25) and (27) assume an atmospheric pressure of 1010 millibars, and an air
temperature of 10 ◦C. According to [13], an approximate scale factor may be applied given
pressure P at the Earth’s surface, and air temperature T ◦C, given by the following formula:

P
1010

× 283
273 + T

(28)

Finally, we map the celestial sphere onto a unit sphere for the purposes of image plane
projection. Given the azimuth and elevation of a star, the corresponding unit vector in local
NED coordinates is given by:

x = cos ψ cos θ′

y = sin ψ cos θ′

z = − sin θ′
(29)

For resource constrained systems, the rate at which these unit vectors are updated
should be chosen relative to the precision required by the simulation. For reference, a
geostationary camera with an update rate of 1 Hz will be accurate to within±15 arcseconds
(4.17 × 10−3 degrees). For an aircraft at a latitude of ±45 ◦, travelling East/West at mach 1,
an update rate of 1Hz will be accurate to within ±30 arcseconds ( 8.37◦ × 10−3 ).
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2.3. Updating Attitude

Representing celestial bodies in the local NED frame of reference simplifies the trans-
formation from aircraft attitude to camera attitude. Aircraft attitude should come either
directly from the onboard attitude reference or from a simulator. The work presented here
uses the open source Ardupilot toolchain. Attitude log data collected from real flights
were used for this research, so as to correlate real images with their simulated counterparts.
The roll pa, pitch qa and yaw ra Euler angles of the aircraft in local NED coordinates were
logged at 30 Hz. These Euler angles can be represented as a rotation matrix, through a
yaw–pitch–roll rotation sequence. The rotation matrix, Ca/l , transforms objects in the local
NED frame to the aircraft body frame, where Ca/l is given by:

 c(qa)c(ra) c(qa)s(ra) −s(qa)
−c(pa)s(ra) + s(pa)s(qa)c(ra) c(pa)c(ra) + s(pa)s(qa)s(ra) s(pa)c(qa)
s(pa)s(ra) + c(pa)s(qa)c(ra) −s(pa)c(ra) + c(pa)s(qa)s(ra) c(pa)c(qa)

 (30)

where c(x) and s(x) represent cos x and sin x, respectively. The camera is mounted to the
aircraft, with roll pc, pitch qc and yaw rc expressed in the aircraft body frame. The z axis of
the camera is parallel to the optical axis, positive in the direction of the image plane. The
y and x axes are orthogonal and directed towards the bottom and the right of the image
plane, respectively. The rotation matrix, Cc/a, transforms objects in the aircraft body frame
to the camera frame, where Cc/a is given by: c(qc)c(rc) c(qc)s(rc) −s(qc)

−c(pc)s(rc) + s(pc)s(qc)c(rc) c(pc)c(rc) + s(pc)s(qc)s(rc) s(pc)c(qc)
s(pc)s(rc) + c(pc)s(qc)c(rc) −s(pc)c(rc) + c(pc)s(qc)s(rc) c(pc)c(qc)

 (31)

Given rotation matrices Ca/l and Cc/a, the transformation of a unit vector, u, from the
local NED frame to the camera frame, can be computed as:

uc = Cc/aCa/lu (32)

Equation (32) allows the unit vectors of the celestial bodies computed in Section 2.2 to
be represented in the camera frame of reference.

2.4. Projection

We assume that the camera intrinsic matrix, K, is known. The intrinsic properties
of a camera can be found through a calibration method such as that described in [17],
yielding matrix:

K =

 fx s x0
0 fy y0
0 0 1

 (33)

where fx and fy are the x and y focal lengths in pixel units, x0 and y0 are the x and y pixel
locations of the principal point, respectively, and s describes the sensor skewness (typically
0 for digital sensors).

We first convert each celestial body unit vector into homogeneous coordinates. For
components x, y and z of unit vector uc, the homogeneous point P in the camera frame of
reference is calculated as:

P =


x
z
y
z
1

 (34)
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Objects whose depth value, z, is less than 0 are ignored due to being positioned behind
the camera object. Finally, given no translational component to our camera, the pixel
location, x, of the object is found as:

x = KP (35)

Lens distortion may also be included in the model. Lens distortion models are typically
non-linear, and expressed as a function of displacement from the principal point. Various
models exist for lens distortion, and should be chosen according to the level of precision
required [18]. If using a lens distortion model, this should be applied after the star is
rendered, so as to capture the resultant eccentricities from the distortion. We do not model
lens distortion in our simulation; instead, we rectify all images prior to analysis, such that
any residual distortion is negligible.

2.5. Calibration

The apparent pixel intensity of a star is determined by the apparent star magnitude,
atmospheric conditions, lens properties and sensor properties. We present here a method
which precludes the need for detailed modeling, through a single-image calibration process.
We use a reference image captured from a stationary aircraft on the ground and fit an
exponential curve to define the relationship between star magnitude and pixel intensity.

The relationship between observed brightness and apparent star magnitude is given
by the equation:

mx −mr = −2.5 log10

(
Bx

Br

)
(36)

where mx is the observed star magnitude, mr is the reference star magnitude, Bx is the
observed star brightness and Br is the reference star brightness. This magnitude scale is
designed such that a magnitude difference of −5 correlates with a brightness factor of 100.
That is to say, a magnitude 1 star is 100 times brighter than a magnitude 6 star. For this
work, we take the brightness of a star to be its maximum pixel value. Images are converted
from the blue–green–red (BGR) colour space to the hue–saturation–value (HSV) colour
space, and the value channel is used as a greyscale image.

By rearranging Equation (36) we can compute the brightness of an observed star, given
that we have a reference brightness Br, reference magnitude mr and observed magnitude mx:

Bx = Br 10

mx −mr

2.5 (37)

The choice of reference star is an important factor, as the magnitude of stars are
typically considered to be unreliable [19]. Many factors can cause the apparent magni-
tude of a star to differ from the catalogue, including spectral attenuation caused by the
atmosphere, camera characteristics, atmospheric refraction, as well as the luminescent
characteristics of the star itself. We assume that the magnitude error follows a zero-mean
Gaussian distribution. Following this assumption, we select the star with magnitude and
brightness that minimizes the Frobenius norm of the difference between observed and
calculated brightness:

min
(
[∑

i
abs(B′i − Bi)

2]1/2
)

(38)

where B′i is a vector containing all calculated star brightnesses, and Bi is a vector containing
all measured star brightnesses. The vector B′i is computed for each star in the reference
image by choosing Br and mr from the reference star, and recomputing Bx for all stars in
the image using Equation (37). Stars whose brightness is saturated (i.e., have a maximum
pixel value of 255) are excluded from this process. Figure 2 shows the output from this
calibration process, conducted on an image captured from a grounded aircraft, using a
PiCamHQ with 500 ms exposure interval. We note that this procedure is most effective
with a larger number of visible stars, such that the sample better represents the population.
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In this example, stars were automatically detected and matched to the database using a star
identification algorithm. As an alternative to this automated process, one could manually
label each star in the reference image.

Figure 2. Calibration curve of image brightness using a PiCamHQ, 500 ms exposure time.

Stars are effectively point light sources. The camera lens will tend to defocus a star,
such that it appears larger than one pixel. The apparent size of a star is affected by
magnitude only to the extent that otherwise-undetectable pixels exceed the noise floor.
Consequently, we can treat each star as having constant size, and changes to the star’s
brightness will yield a larger or smaller effective area. We assume that the pixel intensity of
a star follows a two-dimensional Gaussian point spread function, with diagonal covariance
matrix whose elements are equal. That is, a star image is circularly symmetric about its
center. In practice, this may not be the case, and we note that such methods might be
used for calibrating lens and sensor distortion (this is, however, out of scope for this work).
Following this assumption, we measure the standard deviation across the x and y axes of
each normalized star detection in the reference image and use the median value across all
stars as the reference size for rendering in the simulation. We normalize by scaling the peak
pixel value to 1. The standard deviation σB is calculated as:

σB =
1
n ∑

n
std
(

Bn �
1

max(Bn)

)
(39)

where Bn is the histogram of intensities with respect to pixel position, std(x) is the standard
deviation of sample set x, the symbol � represents element-wise multiplication, and
max(Bn) is a scalar value equal to the maximum-valued element of Bn.

A graph showing the standard deviation in pixel intensity vs. star magnitude can
be seen in Figure 3, demonstrating the approximate uniformity of apparent projected star
size across various magnitudes. Figure 4 shows an example of a Gaussian star render,
reconstructed from the standard deviation and star brightness.

Simulation noise levels are calibrated from the reference image. Sources such as
moonlight and atmospheric light pollution contribute to Gaussian noise observed in an
image and consequently reduce the signal-to-noise ratio and observability of stars. The
mean and standard deviation is measured in the value channel of the image. We ignore
sections of the image in which stars have been detected so as to avoid bias introduced by
the stars themselves. Thus, we have the noise function:

X ∼ N(µ, σ2) (40)



Drones 2022, 6, 207 10 of 17

Figure 3. Calibration of standard deviation in star brightness using a PiCamHQ, 500 ms exposure time.

Figure 4. Pixel intensity of a measured star (red wireframe), with the simulated pixel intensity
overlaid (blue solid).

2.6. Rendering

A long exposure image can be generated by superimposing multiple short-exposure
images. Doing so requires a fast attitude update so as to reproduce the motion of the
aircraft throughout the exposure period. The required temporal resolution is affected by
the aircraft dynamics; however we found that a 5 ms (200 Hz) attitude update results in the
contiguous rendering of stars for wide-angled lenses, even during aggressive maneuvers.
A 200 Hz attitude measurement is not typically available on low-cost hardware, so we inter-
polate attitude measurements using the spherical linear interpolation algorithm described
in [20] to achieve the desired rate. This method requires orientations to be represented as
quaternions. The details are omitted here for brevity; however, most computer graphics
libraries support this operation, transforming the direction cosine matrix in Equation (32)
to quaternion format. We can retrieve any arbitrary orientation between two quaternions
with the following equation:

Slerp(q1, q2, u) = q1
(
q−1

1 q2
)u, {u ∈ R : 0 ≤ u ≤ 1} (41)

where Slerp is the spherical linear interpolation function; a value of u = 0 returns q1, a value
of u = 1 returns q2 and intermediate values of u provide interpolation along the shortest
path between q1 and q2 on the unit sphere. Interpolation is performed such that attitudes



Drones 2022, 6, 207 11 of 17

are captured at 5 ms intervals from the beginning of the camera exposure interval, to the
end, yielding a total of n = 200∆t attitude references, where ∆t is the camera exposure time
in seconds.

The long-exposure image is constructed by superimposing n floating point images.
For each attitude ai, the pixel location x of each star Sj in the database is found from
Equation (35). A discrete Gaussian kernel, G is constructed using the standard deviation
found in Equation (39). The kernel is programmatically generated (see [21]) such that the
value Gi of element i is given by:

Gi = α exp
(−(i− (k−1)

2 )2

(2σ2)

)
, {i ∈ Z : 0 ≤ i < k} (42)

where the kernel size k = d6σ2e is odd and is selected to contain a minimum of 99.7%
of the total star energy, and α is selected such that ∑i Gi = 1. The kernel is subsequently
scaled, such that the maximum element at index i = k−1

2 is equal to the peak pixel value,
Bx, calculated from Equation (37) using the magnitude mx of star Sj, as well as the reference
magnitude and intensities, mr and Br respectively. Finally, the kernel is scaled down by a
factor of n. Assuming the photon flux density is constant across the exposure window, a
single short-exposure window contains a fraction 1

n of the total star energy. This scaling of
kernel G generated in Equation (42) is given by:

Gi = Gi

(
Bx

n ∗ Gmax

)
, {i ∈ Z : 0 ≤ i < k} (43)

Note that G is stored as a floating point array. The short-exposure star is drawn to
the image canvas by centering the kernel G on pixel x and rotating 180◦ about the centre,
adding the values of G to the canvas, so as to render the star symmetrically. This process is
repeated for each star in the database Sj at the current attitude.

Once each of the short-exposure images have been rendered, the Gaussian noise
defined in Equation (40) is added to the canvas. Finally, the image is converted from a
single-channel floating point image to an 8-bit single-channel image. The resulting image
contains stars rendered with the motion blur caused by camera movement throughout the
exposure interval.

3. Results

We compare here the simulation output with images captured during a flight to
evaluate the performance of the simulator. Attitude logs from the flight test were recovered,
and used to generate these simulation images. We followed the procedure outlined in
Section 2 for image generation. We used a Phantom FX-61 airframe (Figure 5), with a
PixHawk v2 autopilot, a Raspberry Pi 4 companion computer for image capture and
storage and a Raspberry Pi High Quality Camera sensor, mounted with the official 6mm
wide-angle lens. The camera was rigidly mounted to the autopilot, so as to mechanically
couple sources of vibration and deflection. An approximate transform from aircraft body
frame to camera frame is used for this test, at a yaw angle of −90◦, pitch angle of 90◦ and
roll angle of 0◦ (given a yaw-pitch-roll Euler sequence).

A flight was conducted capturing images every 3 s, with an exposure interval of 500 ms
and ISO set to 800. Ground images were captured prior to launching the aircraft. The
aircraft climbed to an altitude of 150 m above ground level, and loitered for several minutes
before landing. A total of 130 images were captured for analysis. Attitudes throughout each
exposure window were recorded as image metadata at a rate of 30 Hz, and retrieved from
the flash logs after the flight. A ground image was selected for performing the simulation
calibration outlined in Section 2.5. Simulation images were subsequently generated using
these calibration parameters.
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Figure 5. Phantom FX-61 with camera mounted in fuselage.

A visual comparison of simulation output against in-flight images can be seen in
Figures 6 and 7. By observation, we can see that the shape and trajectory of the simulated
light trail closely matches reality. Figure 6 shows a cluster of stars, captured while the
aircraft was yawing at a rate of 8◦ per s. The difference in star trail direction between stars
is due to alignment of the yaw axis, approximately directed toward the centre of the image.
Figure 7 pictures the brightest visible stars in the image, highlighting the effectiveness
of the spherical linear interpolation, and its ability to reproduce trajectories with visual
magnitude similar to what is observed in reality.

Figure 6. Lower magnitude stars captured in-flight (4× increased brightness for display purposes).

We evaluate the performance of the simulator based on its ability to replicate in-flight
star intensities, given a ground calibration image. Figure 8 shows individual stars which
were identified across multiple images in-flight. The intensity of the simulated star was
plotted against the intensity of the observed star, such that points lying on the line y = x
represent a perfect match between reality and simulation. Three stars are shown here; these
stars were identified frequently in both reality and simulation. We can see that, in practice,
there tends to be error in the pixel intensity. The mean error is near-zero with a value of
3.38 pixels. The mean absolute percentage error in pixel intensity is measured at 47.4%
(this is an average of per-star absolute percentage errors), which is similar to the mean
absolute percentage error of 51% in the brightness ground calibration, as expected. Using
Equation (36), a 47.4% error in star magnitude correlates to an absolute magnitude error
of 0.42. This is within comparable range to the noise level simulated in other works, such
as [7,8], which artificially add magnitude noise with standard deviation in the range of
0.3–0.9 to their simulation.
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(a)

(b)

(c)

(d)
Figure 7. Close-up of bright stars captured in motion. Real images (left) are paired with their
simulated counterpart (right). (a) Image captured during aerial manoeuvre; (b) Image captured
during constant-rate turn; (c) Image captured with high pitch-rate; (d) Image captured during
aerial manoeuvre.
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(a)

(b)

(c)
Figure 8. Individual stars over multiple images, comparing measured intensity to simulated intensity.
Red crosses indicate the peak pixel intensity for a given observation. (a) Visual magnitude: 1.5, mean
error: −23.6, mean percentage error: 37.5%; (b) Visual magnitude: 2.25, mean error: 12.2, mean
percentage error: 82.3%; (c) Visual magnitude: 2.45, mean error: −6.3, mean percentage error: 38.0%.

Furthermore, we consider the difference between the centroids of stars detected in
both simulation and reality. A region of interest (ROI), R, is chosen for each star such that
R is the smallest grayscale image that contains the star. We compute the weighted centre
Dx, Dy for both real and simulated images, expressed with respect to the centre of the ROI:

[
Dx
Dy

]
=


w
2
h
2

− 1
M ∑

x,y
Rx,y

[
x
y

]
(44)
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M = ∑
x,y

Rx,y (45)

where w and h are the width and height of the region of interest, respectively, x and y
are the column and row indices of image R and scalar Rx,y is the pixel intensity of R at
pixel (x, y).

We compute the L2 norm of the difference between simulation centroid and real
centroid to find the distance L:

L =
√
(Ds

x − Dr
x)

2 + (Ds
y − Dr

y)
2 (46)

for simulation centroid Ds
x, Ds

y and real centroid Dr
x, Dr

y. A histogram containing the
computed centroid errors can be seen in Figure 9. For reference, we also compute a baseline
estimate, which assumes the centroid is located at the centre of the ROI (analagous to
simulating stars as a straight line with uniform intensity). The mean simulation error
is measured to be 0.92 pixels, with a median error of 0.68 pixels. By comparison, the
mean baseline error is measured at 1.23 pixels, with a median error of 0.93 pixels. This
corresponds to a 25.2% reduction in mean centroid error.

Figure 9. Histogram of absolute differences in star centroids between real and simulated images.

4. Discussion

The temporal correlation between the camera and attitude sensor, as well as the
attitude sensor’s accuracy and resolution, and individual differences between the database
and observed star magnitudes, pose limitations to the accuracy with which simulation
images can be generated. The tendency towards a low mean error, however, is an indication
that there is little systematic error propagating from the simulation architecture, and that
large sample sets will provide a statistically accurate representation of star intensity.

We can see in Figure 8 that despite a low mean error across the sample set, individual
stars tend to be subjected to biases in intensity. Future work could make use of multiple
ground images to map the intensity of individual stars, so as to reduce bias within indi-
vidual stars. Furthermore, it is apparent that brighter stars will tend to be detected more
frequently than dimmer stars. One may be able to determine an appropriate magnitude
threshold for the observability of stars in-flight and bias the calibration towards the brighter
stars, which are more likely to be detected.
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We note that the ground calibration process is effective only for low-altitude appli-
cations. The simulation does not account for changes in atmospheric attenuation due
to altitude. Higher-altitude flight will also result in changes to atmospheric refraction.
Furthermore, the ground calibration process is subjected to light pollution, which again
is a function of altitude. The simulation of higher altitude flight should make use of
atmospheric models to account for these disparities between ground and high-altitude
observations. The level of image noise due to moonlight is assumed to be constant here;
however, in practice there is some degree of variation as the viewing angle changes with
respect to the position of the moon. This is most noticeable within a 5◦ viewing angle [22],
but less significant at greater angles.

Validation of this simulation was conducted with a fixed wing aircraft; however, the
simulation architecture is applicable for any airframe which is capable of reporting its
attitude. This might also be used for simulating motion artefacts from two-axis gimbals.
While the Raspberry Pi Camera HQ is fit with a rolling shutter, long exposure images are
achieved by a series of shorter exposures, similar to the process followed in this simulation.
The intra-frame motion is not captured by this simulation; however, this effect appears to
be negligible. If the characteristics of a rolling shutter are known, one could replicate this
effect by interpolating at a faster rate and selecting an appropriate attitude given the time at
which the shutter exposes the star. It is common, however, for charged-couple device (CCD)
cameras to be used for celestial imaging. These cameras utilize a global shutter, which
exposes all pixels simultaneously and hence are not subjected to the rolling shutter effect.

5. Conclusions

The intent of this work was to design and validate a simulation architecture to support
the development of strapdown celestial navigation solutions in lightweight, low-altitude
aircraft. An architecture for replicating the effects of long-exposure imagery was designed
and implemented by superimposing multiple short-exposure images from aircraft attitude
data. Additionally, a method for augmenting low-rate attitude data was proposed and
validated. Simulation calibration was achieved through a single ground reference image,
producing results which match reality within reasonable tolerance. The simulation architec-
ture provides a tool for baseline testing star detection and identification algorithms. Future
work will extend the capability of this simulator from low-altitude to high altitude through
atmospheric modeling.
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