A Neural Network Approach to Estimate Transient Aerodynamic Properties of a Flapping Wing System
Abstract
:1. Introduction
2. Data Collection
2.1. Biological Experiment
2.2. Computational Fluid Dynamics Simulation
3. Artificial Neural Network
4. Results and Discussion
4.1. Model Comparison
4.2. Aerodynamic Performance
5. Conclusions
Author Contributions
Funding
Conflicts of Interest
Nomenclature
a | Virtual acceleration |
Aspect ratio | |
b | Scaler of the body pitching angle |
Mean chord | |
Mean lift efficiency | |
f | Frequency |
Nondimensionalised horizontal force | |
Horizontal force | |
Nondimensionalised vertical force | |
Vertical force | |
Nondimensionalised normal force acting on a single wing | |
Normal force acting on a single wing | |
g | Gravity |
k | Consecutive fold number |
P | Nondimensionalised power consumption |
p | Air pressure |
Power consumption | |
Coefficient of determination | |
S | Wingspan |
T | Normalised time |
t | Time |
u | Airflow velocity |
V | Wingtip velocity |
w | Scaler of the wing rotation angle |
Rotation angle | |
Sweeping angle | |
Body pitching angle | |
Air viscosity | |
Air density | |
Activation function | |
Flapping angle |
References
- Fenelon, M.A.; Furukawa, T. Design of an active flapping wing mechanism and a micro aerial vehicle using a rotary actuator. Mech. Mach. Theory 2010, 45, 137–146. [Google Scholar] [CrossRef]
- Perez-Sanchez, V.; Gomez-Tamm, A.E.; Savastano, E.; Arrue, B.C.; Ollero, A. Bio-Inspired Morphing Tail for Flapping-Wings Aerial Robots Using Macro Fiber Composites. Appl. Sci. 2021, 11, 2930. [Google Scholar] [CrossRef]
- Rossi, M.; Brunelli, D.; Adami, A.; Lorenzelli, L.; Menna, F.; Remondino, F. Gas-drone: Portable gas sensing system on UAVs for gas leakage localization. In Proceedings of the IEEE SENSORS, Valencia, Spain, 2–5 November 2014; pp. 1431–1434. [Google Scholar] [CrossRef]
- Lan, B.; Kanzaki, R.; Ando, N. Dropping Counter: A Detection Algorithm for Identifying Odour-Evoked Responses from Noisy Electroantennograms Measured by a Flying Robot. Sensors 2019, 19, 4574. [Google Scholar] [CrossRef] [PubMed]
- Ellington, C.P. The aerodynamics of hovering insect flight. IV. Aerodynamic mechanisms. Philos. Trans. R. Soc. London. Biol. Sci. 1984, 305, 79–113. [Google Scholar] [CrossRef]
- Wakeling, J.; Ellington, C. Dragonfly flight. I. Gliding flight and steady-state aerodynamic forces. J. Exp. Biol. 1997, 200, 543–556. [Google Scholar] [CrossRef]
- Josephson, R.K.; Stevenson, R.D. The efficiency of a flight muscle from the locust Schistocerca americana. J. Physiol. 1991, 442, 413–429. [Google Scholar] [CrossRef]
- Dial, K.P.; Biewener, A.A.; Tobalske, B.W.; Warrick, D.R. Mechanical power output of bird flight. Nature 1997, 390, 67–70. [Google Scholar] [CrossRef]
- Nguyen, T.A.; Vu Phan, H.; Au, T.K.L.; Park, H.C. Experimental study on thrust and power of flapping-wing system based on rack-pinion mechanism. Bioinspiration Biomimetics 2016, 11, 1–16. [Google Scholar] [CrossRef]
- Sato, T.; Fujimura, A.; Takesue, N. Three-DoF Flapping-Wing Robot with Variable-Amplitude Link Mechanism. J. Robot. Mechatronics 2019, 31, 894–904. [Google Scholar] [CrossRef]
- Miyoshi, T.; Nishimura, T.; Shimizu, T. Handling parameters for rotational moment generation with four-wing flapping. J. Aero Aqua-Bio-Mech. 2018, 7, 1–8. [Google Scholar] [CrossRef]
- Eldredge, J.D.; Jones, A.R. Leading-Edge Vortices: Mechanics and Modeling. Annu. Rev. Fluid Mech. 2019, 51, 75–104. [Google Scholar] [CrossRef]
- Lua, K.B.; Lee, Y.J.; Lim, T.T.; Yeo, K.S. Wing–Wake Interaction of Three-Dimensional Flapping Wings. AIAA J. 2017, 55, 729–739. [Google Scholar] [CrossRef]
- Zou, P.Y.; Lai, Y.H.; Yang, J.T. Effects of phase lag on the hovering flight of damselfly and dragonfly. Phys. Rev. E 2019, 100, 063102. [Google Scholar] [CrossRef] [PubMed]
- Lai, Y.H.; Ma, J.F.; Yang, J.T. Flight Maneuver of a Damselfly with Phase Modulation of the Wings. Integr. Comp. Biol. 2021, 61, 20–36. [Google Scholar] [CrossRef]
- Johansson, L.C.; Henningsson, P. Butterflies fly using efficient propulsive clap mechanism owing to flexible wings: Butterflies fly using efficient propulsive clap mechanism owing to flexible wings. J. R. Soc. Interface 2021, 18, 20200854. [Google Scholar] [CrossRef] [PubMed]
- He, Y.; Bayly, A.E.; Hassanpour, A. Coupling CFD-DEM with dynamic meshing: A new approach for fluid-structure interaction in particle-fluid flows. Powder Technol. 2018, 325, 620–631. [Google Scholar] [CrossRef]
- Fernandez-Gamiz, U.; Gomez-Mármol, M.; Chacón-Rebollo, T. Computational Modeling of Gurney Flaps and Microtabs by POD Method. Energies 2018, 11, 2091. [Google Scholar] [CrossRef]
- Cravero, C.; Marsano, D. Computational Investigation of the Aerodynamics of a Wheel Installed on a Race Car with a Multi-Element Front Wing. Fluids 2022, 7, 182. [Google Scholar] [CrossRef]
- Bagherzadeh, S.A. Nonlinear aircraft system identification using artificial neural networks enhanced by empirical mode decomposition. Aerosp. Sci. Technol. 2018, 75, 155–171. [Google Scholar] [CrossRef]
- Torregrosa, A.J.; García-Cuevas, L.M.; Quintero, P.; Cremades, A. On the application of artificial neural network for the development of a nonlinear aeroelastic model. Aerosp. Sci. Technol. 2021, 115, 106845. [Google Scholar] [CrossRef]
- Clawson, T.S.; Ferrari, S.; Fuller, S.B.; Wood, R.J. Spiking neural network (SNN) control of a flapping insect-scale robot. In Proceedings of the 2016 IEEE 55th Conference on Decision and Control (CDC), Las Vegas, NV, USA, 12–14 December 2016; pp. 3381–3388. [Google Scholar] [CrossRef]
- He, W.; Yan, Z.; Sun, C.; Chen, Y. Adaptive Neural Network Control of a Flapping Wing Micro Aerial Vehicle with Disturbance Observer. IEEE Trans. Cybern. 2017, 47, 3452–3465. [Google Scholar] [CrossRef] [PubMed]
- Goedhart, M.; Van Kampen, E.J.; Armanini, S.F.; de Visser, C.C.; Chu, Q.P. Machine Learning for Flapping Wing Flight Control. In Proceedings of the 2018 AIAA Information Systems-AIAA Infotech, Kissimmee, FL, USA, 8–12 January 2018; American Institute of Aeronautics and Astronautics: Reston, VA, USA, 2018. Number 209989. [Google Scholar] [CrossRef]
- Kurtulus, D.F. Ability to forecast unsteady aerodynamic forces of flapping airfoils by artificial neural network. Neural Comput. Appl. 2009, 18, 359–368. [Google Scholar] [CrossRef]
- Nguyen, A.T.; Tran, N.D.; Vu, T.T.; Pham, T.D.; Vu, Q.T.; Han, J.H. A Neural-network-based Approach to Study the Energy-optimal Hovering Wing Kinematics of a Bionic Hawkmoth Model. J. Bionic Eng. 2019, 16, 904–915. [Google Scholar] [CrossRef]
- Huang, H.; Sun, M. Forward flight of a model butterfly: Simulation by equations of motion coupled with the Navier-Stokes equations. Acta Mech. Sin. 2012, 28, 1590–1601. [Google Scholar] [CrossRef]
- Zhang, Y.; Wang, X.; Wang, S.; Huang, W.; Weng, Q. Kinematic and Aerodynamic Investigation of the Butterfly in Forward Free Flight for the Butterfly-Inspired Flapping Wing Air Vehicle. Appl. Sci. 2021, 11, 2620. [Google Scholar] [CrossRef]
- Lin, Y.J.; Chang, S.K.; Lai, Y.H.; Yang, J.T. Beneficial wake-capture effect for forward propulsion with a restrained wing-pitch motion of a butterfly. R. Soc. Open Sci. 2021, 8, 202172. [Google Scholar] [CrossRef]
- Senda, K.; Obara, T.; Kitamura, M.; Nishikata, T.; Hirai, N.; Iima, M.; Yokoyama, N. Modeling and emergence of flapping flight of butterfly based on experimental measurements. Robot. Auton. Syst. 2012, 60, 670–678. [Google Scholar] [CrossRef]
- Chang, S.K.; Lai, Y.H.; Lin, Y.J.; Yang, J.T. Enhanced lift and thrust via the translational motion between the thorax-Abdomen node and the center of mass of a butterfly with a constructive abdominal oscillation. Phys. Rev. E 2020, 102, 62407. [Google Scholar] [CrossRef]
- Lai, Y.H.; Chang, S.K.; Lan, B.; Hsu, K.L.; Yang, J.T. Optimal thrust efficiency for a tandem wing in forward flight using varied hindwing kinematics of a damselfly. Phys. Fluids 2022, 34, 061909. [Google Scholar] [CrossRef]
- Lai, Y.H.; Lin, Y.J.; Chang, S.K.; Yang, J.T. Effect of wing–wing interaction coupled with morphology and kinematic features of damselflies. Bioinspiration Biomimetics 2021, 16, 016017. [Google Scholar] [CrossRef]
- Suhaimi, S.; Shuib, S.; Yusoff, H.; Kadarman, A.H. Aerodynamic Performance of a Flapping Wing Inspired by Bats. Appl. Mech. Mater. 2020, 899, 42–49. [Google Scholar] [CrossRef]
- Zhang, Z. Artificial Neural Network. In Multivariate Time Series Analysis in Climate and Environmental Research; Springer International Publishing: Cham, Switzerland, 2018; pp. 1–35. [Google Scholar] [CrossRef]
- Sola, J.; Sevilla, J. Importance of input data normalization for the application of neural networks to complex industrial problems. IEEE Trans. Nucl. Sci. 1997, 44, 1464–1468. [Google Scholar] [CrossRef]
- Daubechies, I.; DeVore, R.; Foucart, S.; Hanin, B.; Petrova, G. Nonlinear Approximation and (Deep) ReLU Networks. Constr. Approx. 2019, 55, 127–172. [Google Scholar] [CrossRef]
- Thirumalainambi, R.; Bardina, J. Training data requirement for a neural network to predict aerodynamic coefficients. In Proceedings of the Independent Component Analyses. Wavelets, and Neural Networks, SPIE, Orlando, FL, USA, 21 April 2003; Volume 5102, p. 92. [Google Scholar] [CrossRef]
- Kingma, D.P.; Ba, J. Adam: A Method for Stochastic Optimization. In Proceedings of the 3rd International Conference on Learning Representations, ICLR 2015, San Diego, CA, USA, 7–9 May 2015; Available online: https://arxiv.org/abs/1412.6980 (accessed on 10 July 2022).
- Goh, A. Back-propagation neural networks for modeling complex systems. Artif. Intell. Eng. 1995, 9, 143–151. [Google Scholar] [CrossRef]
- Hornik, K. Approximation capabilities of multilayer feedforward networks. Neural Netw. 1991, 4, 251–257. [Google Scholar] [CrossRef]
- Boger, Z.; Guterman, H. Knowledge extraction from artificial neural network models. In Proceedings of the 1997 IEEE International Conference on Systems, Man, and Cybernetics. Computational Cybernetics and Simulation, Orlando, FL, USA, 12–15 October 1997; Volume 4, pp. 3030–3035. [Google Scholar] [CrossRef]
- Wang, S.C. Artificial Neural Network. In Interdisciplinary Computing in Java Programming; Springer: Boston, MA, USA, 2003; Volume 725, pp. 81–100. [Google Scholar] [CrossRef]
- Xu, S.; Chen, L. A novel approach for determining the optimal number of hidden layer neurons for FNN’s and its application in data mining. In Proceedings of the 5th International Conference on Information Technology and Applications, ICITA 2008, Cairns, QLD, Australia, 23–26 June 2008; Number ICITA. pp. 683–686. [Google Scholar]
- Sheela, K.G.; Deepa, S.N. Review on Methods to Fix Number of Hidden Neurons in Neural Networks. Math. Probl. Eng. 2013, 2013, 425740. [Google Scholar] [CrossRef]
- Cawley, G.C.; Talbot, N.L. Preventing over-fitting during model selection via bayesian regularisation of the hyper-parameters. J. Mach. Learn. Res. 2007, 8, 841–861. [Google Scholar]
Parameters | Measurement | Simulation |
---|---|---|
Mass (mg) | 350 | |
Wing Area (mm) | 925 | |
Wingspan (mm) | 46.04 | |
Mean Chord (mm) | 20.11 | |
Aspect Ratio | 2.29 |
Parameters | ReLU | Sigmoid | ||
---|---|---|---|---|
Publisher’s Note: MDPI stays neutral with regard to jurisdictional claims in published maps and institutional affiliations. |
© 2022 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Lan, B.; Lin, Y.-J.; Lai, Y.-H.; Tang, C.-H.; Yang, J.-T. A Neural Network Approach to Estimate Transient Aerodynamic Properties of a Flapping Wing System. Drones 2022, 6, 210. https://doi.org/10.3390/drones6080210
Lan B, Lin Y-J, Lai Y-H, Tang C-H, Yang J-T. A Neural Network Approach to Estimate Transient Aerodynamic Properties of a Flapping Wing System. Drones. 2022; 6(8):210. https://doi.org/10.3390/drones6080210
Chicago/Turabian StyleLan, Bluest, You-Jun Lin, Yu-Hsiang Lai, Chia-Hung Tang, and Jing-Tang Yang. 2022. "A Neural Network Approach to Estimate Transient Aerodynamic Properties of a Flapping Wing System" Drones 6, no. 8: 210. https://doi.org/10.3390/drones6080210
APA StyleLan, B., Lin, Y. -J., Lai, Y. -H., Tang, C. -H., & Yang, J. -T. (2022). A Neural Network Approach to Estimate Transient Aerodynamic Properties of a Flapping Wing System. Drones, 6(8), 210. https://doi.org/10.3390/drones6080210