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Abstract: Unmanned Aerial Vehicles (UAVs), or drones, provided with camera sensors enable im-
proved situational awareness of several emergency responses and disaster management applications,
as they can function from remote and complex accessing regions. The UAVs can be utilized for
several application areas which can hold sensitive data, which necessitates secure processing using
image encryption approaches. At the same time, UAVs can be embedded in the latest technologies
and deep learning (DL) models for disaster monitoring areas such as floods, collapsed buildings,
or fires for faster mitigation of its impacts on the environment and human population. This study
develops an Artificial Intelligence-based Secure Communication and Classification for Drone-Enabled
Emergency Monitoring Systems (AISCC-DE2MS). The proposed AISCC-DE2MS technique majorly
employs encryption and classification models for emergency disaster monitoring situations. The
AISCC-DE2MS model follows a two-stage process: encryption and image classification. At the initial
stage, the AISCC-DE2MS model employs an artificial gorilla troops optimizer (AGTO) algorithm with
an ECC-Based ElGamal Encryption technique to accomplish security. For emergency situation classi-
fication, the AISCC-DE2MS model encompasses a densely connected network (DenseNet) feature
extraction, penguin search optimization (PESO) based hyperparameter tuning, and long short-term
memory (LSTM)-based classification. The design of the AGTO-based optimal key generation and
PESO-based hyperparameter tuning demonstrate the novelty of our work. The simulation analysis
of the AISCC-DE2MS model is tested using the AIDER dataset and the results demonstrate the
improved performance of the AISCC-DE2MS model in terms of different measures.

Keywords: security; image encryption; emergency monitoring system; drones; data classification;
deep learning
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1. Introduction

Aerial images captured by unmanned aerial vehicles (UAVs) are used for several
applications such as urban planning, real-estate management, disaster evaluation, traffic
congestion management, road network detection, vehicle detection, etc. [1]. Analyzing
aerial images can be useful for pattern recognition and the decision-making process. Re-
cent advances in machine learning (ML) and deep learning (DL) can be used to extract
meaningful data from aerial images. At the same time, Traditional ML methods involve
functions such as feature selection and extraction. Feature selection and extraction layers
were manual processes in traditional ML, and such layer necessities were automated in
ML algorithms related to DL [2,3]. The automation of such layers is regarded as a benefit
of DL networks, but it also has the drawback that DL networks necessitate more training
datasets. The commonly utilized technique in DL-related image classifiers studies is the
convolutional neural network (CNN). CNN with DL-related networks is a hastily emerging
technology and is becoming a more extensive approach for image data-type classifiers
studies [4]. The renowned image classifications competition in recent years is the IMA-
GENET large-scale visual recognition challenge (ILSVRC). The highest-ranked participants
employed CNN-related approaches in ILSVRC. CNN networks have two core structures:
the pooling and convolution layers [5,6]. The convolution layer contains feature maps that
are connected to each other and a series of weights, and connect to functions such as a
rectified linear unit (RELU).

Generally, a UAV has an LTE or Wi-Fi communication device, flight control computers,
and mission computers for sending and receiving drone data to the drone operating system
or ground control station [7]. On the other hand, the aerial images hold useful data relevant
to confidential sites which need secure processing. It is of utmost importance to assure
the security of transmission and processing of images acquired by aerial photography
technologies as these images may contain crucial data concerning national security. Image
encryption is a major and effective means to protect the security of image information [8].
In simple terms, drones without security operations are utilized for criminal acts such as
information theft, safety threats, invasion of privacy, and security threats. For prevention of
such cybersecurity susceptibilities, special purpose drones deployed by military drones or
state agencies for attack purposes, surveillance, and reconnaissance require data encrypting
technology for protecting not just transmission data but also delicate data stored in the
drone [9,10].

The encryption process can be executed by every device within the UAV depending on
the data type that needs encryption [11]. Flight control or communication data encryption
can be processed in the flight control mechanism, and transmission data encrypting for
the mission can be processed in the mission computers. Particularly, the drone has an
encrypting operation in the transmission device, permitting all transmission data to be
encrypted irrespective of data types [12]. In the case of drone data encryption, there
exists a technique of applying encrypting software on particular devices of the drones
or attachment of hardware modules that have an encrypting function in the device for
managing encryption just as in hardware modules. The software encrypting technique
is based on hardware characteristics and the operating system of the mission-and-flight
control computer. Moreover, many drone producers offer data encryption in a simple
method by not altering the source code of prevailing drone flight control systems [13].

This study develops an Artificial Intelligence-based Secure Communication and Clas-
sification for Drones Enabled Emergency Monitoring Systems (AISCC-DE2MS). The pro-
posed AISCC-DE2MS technique applies an artificial gorilla troops optimizer (AGTO) algo-
rithm with an ECC-Based ElGamal Encryption technique to assure security. For emergency
situation classification, the AISCC-DE2MS model encompasses densely connected network
(DenseNet) feature extraction, penguin search optimization (PESO)-based hyperparameter
tuning, and long short-term memory (LSTM)-based classification. The simulation analysis
of the AISCC-DE2MS model is tested using the AIDER dataset.
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2. Literature Review

Sarkar et al. [14] introduced a new Energy-aware Secure Internet of Drone (ESIoD)
structure. A decisive research complexity tackled by this study is the way in which faster on-
board processing can be accomplished and diminishes battery use for a drone for extending
the flight duration while retaining data security of drone-captured images. In particular,
UAV-captured realistic images were encoded by utilizing either RSA or AES techniques and
offloaded by the on-board computers to a server to process cognitive activities, leveraging
advanced faster R-CNN and standard Haar cascade classifiers. Ismael [15] modelled an
authentication and security mechanism related to the stream cipher lightweight HIGHT
method and chaotic maps. The presented mechanism is particularly projected with an aim
to decrease the less and computational use of UAV resources, and handles one drone and
one ground control station (GCS) with several fly sessions. In [16], the author indicates the
drone map planner is a fog-related and service-oriented drone management mechanism
that communicates, controls, and monitors drones across the network. Such a planner
permits interaction with many UAVs on the internet that can be controlled anytime and
anywhere without long-distance boundaries. The abovementioned planner offers access to
fog computing sources for UAVs to heavy load computation.

Bera et al. [17] devised a new access control technique for unauthorized drone detection
and mitigation in an IoD environment, named ACSUD-IoD. By using the blockchain (BC)-
related solution inculcates in ACSUD-IoD, the transaction data with the abnormal data for
detecting unlicensed drones by the GSS were saved in a private BC, which are genuine and
normal secure data from drones to the Ground Station Server (GSS). Ajmal [18] presents an
enhanced version of HEVC for encryption of multimedia data based on motion and texture
energy estimation. For every frame of the video, the quantized and transformed coefficients
were computed along with motion vectors. In the presented method, the energy can be
computed for every block, and a comparison is made for threshold values in selecting the
suitable encrypting method. Here, the author has employed the Advanced Encryption
Standard (AES) as an encrypting method and devised for encrypting the most significant
bits (MSB) as most of the data exist in MSB.

Zhang et al. [19] propose a lightweight AKA method where there were only bitewise
XOR operations and secure one-way hash functions when users and drones jointly authen-
ticate one another. The presented method could reach AKA-security in the random oracle
method and endure several renowned assaults. At the same time, the security comparison
validates this presented method and offers security in a better way. Khan et al. [20] designed
an identity-related proxy signcryption method for addressing such complexities. At the
time of data transfer among UAVs and to cloud servers, the devised method supports
member revocation and outsourcing decryption. The projected technique depends upon
the notion of Hyper-Elliptic-Curve-Cryptography (HECC) that enhances the efficiency
of network computations. The author employs the Random Oracle Model (ROM) along
with formal security analysis for assessing security toughness. Though several methods
have been available in the literature, it is still needed to develop effective models for drone
communication security and classification. Besides, the hyperparameter tuning of the DL
models is not taken into account in the existing models, which needs to be addressed.
Therefore, this work makes use of the PESO algorithm for the hyperparameter tuning of
the DenseNet model.

3. Materials and Methods

In this study, a new AISCC-DE2MS technique has been developed for secure commu-
nication and classification of drone-based emergency monitoring systems. The proposed
AISCC-DE2MS technique performed image encryption at the preliminary stage using the
AGTO algorithm with an ECC-Based ElGamal Encryption technique in which the optimal
key generation procedure takes place via the AGTO algorithm. To classify the images, the
AISCC-DE2MS model encompasses DenseNet feature extraction, PESO-based hyperpa-
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rameter tuning, and LSTM-based classification. Figure 1 depicts the block diagram of the
AISCC-DE2MS approach.
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Figure 1. Block diagram of AISCC-DE2MS approach.

3.1. Data Used

In this work, the experimental validation of the AISCC-DE2MS model is tested using
the AIDER dataset [21]. The aerial images for disaster events are gathered from several
online sources (for instance, news agencies, YouTube, Google images, web sites, bing
images, and so on) utilizing the keywords “UAV” or “Drone” or “Aerial View” and events
such as “Earthquake”, “Highway accident”, “Fire”, and so on. Images were primarily of
distinct sizes compared to the standardized ones prior to training. Every image examined
primarily comprises the events concerned. Next, the event was centered in the image so
that some geometric transformations in augmentation could not eliminate it in the image
view. In the data gathering method, several disaster events with distinct resolutions are
taken, and in several conditions, in terms of viewpoint and illumination. In this study, a
total of 8540 images under five classes are used for experimentation. Table 1 provides a
detailed description of the dataset.



Drones 2022, 6, 222 5 of 18

Table 1. Dataset details.

Class Description No. of Samples

C-1 Collapsed Building/Rubble 700

C-2 Fire/Smoke 740

C-3 Flood 700

C-4 Traffic Accidents 700

C-5 Normal 5700

Total No. of Samples 8540

3.2. Image Encryption Suing AGTO-ElGamal Technique

In this study, the AISCC-DE2MS technique makes use of AGTO with the ECC-based
ElGamal encryption technique to accomplish security. The ECC-based ElGamal encryption
with several parameters and steps utilized are given as follows [22].

The additive homomorphic approach grasps by succeeding Equation (1),

E(m1) + E(m2) = E(m1 + m2) (1)

whereas + symbol is intended for the additive homomorphic and the public key is E. InECC,
additive homomorphic encryption can be assumed. According to the elliptic curve’s (ECs)
algebraic infrastructure on finite domains, ECC-based ElGamal was explained. The finite
fields were separated into two types such as prime and binary fields 2n. During this current
analysis, ECs over prime fields were examined. The special class of EC demonstrated in
Equation (2) was utilized in EC over real numbers as

y2 = x3 + ax + b (2)

Er(a, b) refers to the resultant curve where modulus is r, and the altered co-efficient
of formula assumed a and b. The value of x ranges from 0 to r but not on every point
on the curve. Even with lesser bit size, the ECC also projected a similar security level by
processing an overhead decrease when compared to homomorphic and RSA techniques.
For the optimal key generation process, the AGTO algorithm is used in this study.

The AGTO approach consists of exploitation and exploration phases [23].
Equations (3)–(13) describe the major concept of the presented model. The exploration
phase is used primarily to implement a global search for space. It makes use of three
major models such as moving to the position of other gorillas, migrating to an unknown
position, and migrating to a known position. The exploitation phase can be expressed in
the following:

GX(t + 1) =


(ub− lb)× r1 + lb, r < p,
(r2 − C)× Xr(t) + L× H, r ≥ 0.5,
X(i)− L× (L× (X(t)− GXr(t)) + r3 × (X(t)− GXr(t))), r < 0.5.

(3)

Here, X(t) is the gorilla’s existing location, and GX(t + 1) represents the gorilla’s
location in the t + 1 iteration. p defines a variable among [0, 1] that defines the migration
method to be selected. lb and ub refer to the lower and upper limits, correspondingly. Xr
stands for a randomly designated gorilla member from the population and GXr denotes
the randomly chosen gorilla candidate location vector. r1, r2, r3, and r show the random
value within [0, 1] upgraded on all the iterations. Furthermore, C, L, and H are evaluated
as follows:

C = F×
(

1− It
Max It

)
, (4)

F = cos(2× r4) + 1, (5)
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L = C× l, (6)

H = Z× X(t), (7)

Z = [−C, C]. (8)

From the expression, It stands for the existing iteration count and Max It refers to the
overall iteration amount. In Equations (5) and (6), r4 and l denotes random values among
[0, 1] upgraded on all the iterations. In Equation (8), Z shows the random number that lies
within −C to C. Eventually, in the exploration stage, the algorithm evaluates the fitness
value of each GX solution, and the fitness value is GX(t) < X(t), and the X(t) solution is
substituted with the GX(t) solution.

The exploitation stage of AGTO makes use of two strategies, competing for adult
female gorillas and following silverback gorillas. The approach is chosen by comparing the
C value with the variable W set. When C ≥W, the AGTO exploits the following silverback
gorilla strategy; when C < W, competing for adult female gorillas is preferred. Following
the silverback gorilla is formulated as follows:

GX(t + 1) = L×M× (X(t)− Xsilverback) + X(t), (9)

M = (| 1
N

N

∑
i=1

GXi(t)|g)
1
g

, (10)

g = 2L. (11)

In Equation (9), Xsilverback denotes the silverback gorilla location. In Equation (10),
GXi(t) indicates the location of every candidate gorilla in the t iteration and N refers to the
overall amount of gorillas. Competition with adult female gorillas is expressed below.

GX(i) = Xsilverback − (Xsilverback ×Q− X(t)×Q)× A, (12)

Q = 2× r5 − 1, (13)

A = β× E, (14)

E =

{
N1, r ≥ 0.5,
N2, r < 0.5.

(15)

In Equation (13), r5 denotes a random value within [0, 1] upgraded on all the iterations.
In Equation (14), β refers to a variable. In Equation (15), when rand ≥ 0.5, E denotes a
random number in the standard distribution and the dimension of the problem; when
rand < 0.5, E indicates a random number selected from a standard distribution. Eventually,
in the exploitation stage, the algorithm evaluates the fitness value of each GX solution.
Where GX(t) < X(t), then the X(t) solution is substituted with the GX(t) solution, and the
optimum solution chosen in the whole population is considered as a silverback gorilla.

In this study, the AGTO algorithm derives a fitness function for the maximization of
the PSNR value.

Fitness = max (PSNR) (16)

3.3. Image Classification Model

In this study, the AISCC-DE2MS model performs image classification via three major
processes such as DenseNet feature extraction, PESO-based hyperparameter tuning, and
LSTM-based classification.

3.3.1. DenseNet Feature Extraction

DenseNet is a novel addition to the NN applied to visual object detection. DenseNet169
is a procedure of DenseNet [24,25]. DenseNet is intended for the implementation of an im-
age classifier. DenseNet169 is higher than the remaining DenseNet. Generally, in DenseNet,
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each image has been trained. An ImageNet image database is trained using the methodol-
ogy and tested and stored by loading that saved methodology instead of ImageNet. Now,
the outcomes of the initial layer are attained and concatenated with the upcoming layer
in DenseNet. DenseNet has demonstrated an ability to decrease the accuracy from a high
level NN generated by gradient vanishing, whereas there exists a long path between the
input and output layers and the information attained vanishes just prior to accomplishing
its target. DenseNet is a kind of typical network. According to the novel statistics, a
convolutional layer is accurate and more effective once it is short and connected amongst
layers such as input and closer output. Now, DenseNet was applied to connect each layer
in feedforward manner. Usually, a traditional convolutional network contains L layers.
Furthermore, L linking exists amongst the L layer. That characterizes one link amongst
each layer and the subsequent layers.

It takes L (L + 1)/2 direct connections from the network. For each layer as input,
each presiding layer is exploited. To input each subsequent layer, the FM is employed.
Various advantages are attained from DenseNet. It reduces the gradient vanishing problem.
The feature propagation is reinforced, feature reprocessing is stimulated, and it reduces
the parameter number. The suggested method is evaluated on the highly competitive
image detection benchmark ImageNet and also it uses the load and saved function. The
incorporation of the layer was possible as described when there is whole similarity from
the FM dimension during addition or concatenation. DenseNet is separated into Dense-
Block with a dissimilar filter count, but within the block, the dimension is similar. Batch
normalization (BN) was implemented with the help of down-sampling with transition
layers and it is considered to be a crucial phase with CNN. As per the development of the
channel dimension, the number amongst the DenseBlocks of filter variation, and growth
rate can be denoted as K. It acts as a significant part of the generalizing Ith layer. Further,
the data count is essential from each layer and has been evaluated as follows:

kl = k0 + k × (l − 1) (17)

3.3.2. Hyperparameter Tuning Using PESO Algorithm

For optimal tuning of the hyperparameters related to the DenseNet model, the PESO
algorithm is exploited. A beneficial search activity of an animal is described as search
activity from which the energy gain is moderately significant to that of the energy con-
sumed [26]. For penguins, breathing ability remains a base factor while diving since the
dive is based on reserve oxygen. The more they consume oxygen, the more depth and
speed they gain, and the trip time begins to decrease. Food needed by a massive amount
of groups differs by availability of food, species, and age within the area of concern. An
optimization has been straightforwardly developed using the hunting strategy of penguins.
To design the model, the penguin position within the area of concern is represented by
“i”. The distribution of the group is accomplished by the existence of food sources within
the area of interest. Fundamental steps are established by employing these rules and are
summarized as a pseudo-code demonstrated in Algorithm 1.

By considering the search space as a multi-dimension search space, the optimal solu-
tion is proposed by utilizing the food distribution probability to accomplish an optimum
value and attain the maximal food quantity. Each member of a group utilizes a similar
solution within the searching space. Generally, all the groups perform different dives on
the basis of the probability of food expediency and the amount of reserve oxygen within
the search space.

Penguins tends to switch essential data for determining an optimum solution and relo-
cate the groups afterward carrying out multiple dives within the area of concern. The accom-
plishment of the global optimal without trapping in the local optimum after multiple itera-
tions allows the PESO to implement better than traditional population-based techniques.
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Algorithm 1: Penguin Search Optimization Algorithm (PESO)

1: Produce a random population of P penguins in groups
2: Initialize the probability of the existence of fish in the levels and holes
3: For i = 1 to the number of generations
4: For every individual i ∈ P
5: While oxygen reserves are not exhausted
6: Take a random step
7: Enhance the penguin position using the location upgrade formula
8: Upgrade the quantity of fish eaten using this penguin
9: End While
10: End For
11: Upgrade the quantity of eaten fish in the levels, holes, and best groups
12: Reallocate the probability of penguins in the levels and holes
13: Upgrade the optimal solution
14: End For

The PESO method makes a derivation of a fitness function (FF) that results in enhanced
classifier performance. In this article, the reduction of the classifier error rate can be
regarded as the FF, as presented in Equation (18).

f itness(xi) = Classi f ierErrorRate(xi) =
number o f misclassi f ied samples

Total number o f samples
× 100 (18)

3.3.3. LSTM Based Classification

Finally, the LSTM model is applied to allocate proper diverse class labels such as
Collapsed Building, Fire/Smoke, Flood, Traffic Accident, and Normal. This is a gradient-
based recurrent neural network structure that resolves the gradient disappearing problem.
Long-term dependency in texts is a problem that advances at the training stage of a
traditional RNN, whereas backpropagation through the time gradient descent tends to
evaporate, or in rare situations, exponentially explode.

Figure 2 demonstrated the architecture of LSTM, and is capable of accurately managing
long-term dependency in the text. Every LSTM is composed of forget, output, and input
gates. Every gate is composed of pointwise multiplication operations and a sigmoid neural
network layer. The input from the existing and hidden states of the preceding cell is first
passed to the forget gate by utilizing X as an input vector at time t and N as a number
of LSTM cells in the forward pass, to decide whether to discard it with an output of 0 or
store the data with an output of 1 (Equation (19)). The main objective of the forget gate is
to define either forget knowledge or not. The sigmoid function output (σ) of the product
between the weights (W f ) and the sum of bias (b f ) and input (ht−1, Xt) that encompasses
the input from the preceding state (ht−1) and the existing input (Xt) is the forget value ( ft)
that lies within [0, 1].

ft = σ(W f · [ht−1, Xt] + b f ) (19)

The next process is to exploit the update of cell state (C) based on Equation (20)

Ct = Ct−1 · ft + Nt · it (20)

Let Nt be the output of the tan h function that exploits Wn, ht−1, Xt, and bn, expressed by

Nt = tan h (Wn · [ht−1, Xt] + bn) (21)

In Equation (21), it denotes the output of the sigmoid layer as follows:

it = σ(Wi · [ht−1, Xt] + bi) (22)
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Then, the sigmoid activation output (O) is calculated by utilizing Equation (23) and
based on bias (b0), the existing input (Xt), prior state (ht−1), and weights (W0),

Ot = σ(W0 · [ht−1, Xt] + b0) (23)

The next step is to upgrade the hidden state (h) by utilizing the below formula.

ht = Ot · tan h (Ct) (24)
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This section inspects the encryption and classification performance of the AISCC-
DE2MS model [27]. A few sample images are demonstrated in Figure 3. The results are
investigated in terms of mean square error (MSE), and peak signal-to-noise ratio (PSNR). It
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Table 2 offers a detailed encryption outcome of the AISCC-DE2MS model with other
optimization algorithms. Figure 4 provides a comparative MSE examination of the AISCC-
DE2MS model with other models. The experimental values inferred that the AISCC-DE2MS
model gained minimal MSE values under all images. For instance, on image-1, the AISCC-
DE2MS model obtained a lower MSE of 0.042, whereas the genetic algorithm (GA), crow
search algorithm (CSA), and artificial bee colony (ABC) algorithms attained a higher MSE of
0.060, 0.120, and 0.165, respectively. Additionally, on image-2, the AISCC-DE2MS approach
achieved a lesser MSE of 0.086 whereas the GA, CSA, and ABC algorithms gained a superior
MSE of 0.096, 0.153, and 0.202 correspondingly. In line with, image-3, the AISCC-DE2MS
approach reached a minimal MSE of 0.063, whereas the GA, CSA, and ABC systems attained
a higher MSE of 0.078, 0.099, and 0.166, correspondingly.

Table 2. Encryption result analysis of AISCC-DE2MS approach with distinct images.

No. of Test
Images

AISCC-DE2MS Genetic Algorithm Cat Swarm Algorithm Artificial Bee Colony
Algorithm

MSE PSNR MSE PSNR MSE PSNR MSE PSNR

Image-1 0.042 61.898 0.060 60.349 0.120 57.339 0.165 55.956

Image-2 0.086 58.786 0.096 58.308 0.153 56.284 0.202 55.077

Image-3 0.063 60.137 0.078 59.210 0.099 58.174 0.166 55.930

Image-4 0.091 58.540 0.131 56.958 0.211 54.888 0.254 54.082

Image-5 0.101 58.088 0.142 56.608 0.219 54.726 0.244 54.257
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A comprehensive PSNR inspection of the AISCC-DE2MS model with recent models
under diverse images is given in Figure 5. The results reported that the AISCC-DE2MS
model showed improved values of PSNR under every image. For instance, on image-1,
the AISCC-DE2MS model depicted a maximum PSNR of 61.898 dB, whereas the GA, CSA,
and ABC algorithms exhibited a minimal PSNR of 60.349 dB, 57.339 dB, and 55.956 dB,
respectively. Moreover, on image-2, the AISCC-DE2MS approach illustrated a maximal
PSNR of 58.786 dB, whereas the GA, CSA, and ABC algorithms showcased a reduced
PSNR of 58.308 dB, 56.2849 dB, and 55.077 dB, correspondingly. Eventually, in image-
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3, the AISCC-DE2MS approach depicted a maximum PSNR of 60.137 dB, whereas the
GA, CSA, and ABC systems outperformed the lower PSNR of 59.210 dB, 58.174 dB, and
55.930 dB, correspondingly.

Drones 2022, 6, x FOR PEER REVIEW 11 of 18 
 

respectively. Moreover, on image-2, the AISCC-DE2MS approach illustrated a maximal 

PSNR of 58.786 dB, whereas the GA, CSA, and ABC algorithms showcased a reduced 

PSNR of 58.308 dB, 56.2849 dB, and 55.077 dB, correspondingly. Eventually, in image-3, 

the AISCC-DE2MS approach depicted a maximum PSNR of 60.137 dB, whereas the GA, 

CSA, and ABC systems outperformed the lower PSNR of 59.210 dB, 58.174 dB, and 55.930 

dB, correspondingly. 

 

Figure 5. PSNR analysis of AISCC-DE2MS approach with distinct images. 

The confusion matrices created by the AISCC-DE2MS model during the classification 

process are demonstrated in Figure 6. The figures reported that the AISCC-DE2MS model 

accurately classified all the samples into different classes under all runs. 

Table 3 and Figure 7 exhibit an overall classification performance of the AISCC-

DE2MS model under distinct runs. The experimental outcomes highlighted that the 

AISCC-DE2MS model reached enhanced results under all classes. For instance, on run-1, 

the AISCC-DE2MS model offered an average �..�h, ��M.
, �M.�8, &6=i�:, and Hj�6=i�: 

of 95.24%, 83.91%, 74.66%, 78.56%, and 84.66%, respectively. In line with run-2, the 

AISCC-DE2MS algorithm has an obtainable average �..�h , ��M.
 , �M.�8 , &6=i�: , and Hj�6=i�:  of 93.90%, 82.16%, 66.28%, 72.38%, and 79.38%, correspondingly. Afterward, on 

run-3, the AISCC-DE2MS system had an accessible average �..�h, ��M.
, �M.�8, &6=i�:, 

and Hj�6=i�: of 92.23%, 82.10%, 54.49%, 61.75%, and 71.97%, correspondingly. At last, on 

run-4, the AISCC-DE2MS methodology provided an average �..�h, ��M.
, �M.�8, &6=i�:, 

and Hj�6=i�: of 92.94%, 81.30%, 59.62%, 66.44%, and 75.24%, correspondingly. 

Figure 5. PSNR analysis of AISCC-DE2MS approach with distinct images.

The confusion matrices created by the AISCC-DE2MS model during the classification
process are demonstrated in Figure 6. The figures reported that the AISCC-DE2MS model
accurately classified all the samples into different classes under all runs.

Table 3 and Figure 7 exhibit an overall classification performance of the AISCC-DE2MS
model under distinct runs. The experimental outcomes highlighted that the AISCC-DE2MS
model reached enhanced results under all classes. For instance, on run-1, the AISCC-
DE2MS model offered an average accuy, precn, recal , Fscore, and AUCscore of 95.24%, 83.91%,
74.66%, 78.56%, and 84.66%, respectively. In line with run-2, the AISCC-DE2MS algorithm
has an obtainable average accuy, precn, recal , Fscore, and AUCscore of 93.90%, 82.16%, 66.28%,
72.38%, and 79.38%, correspondingly. Afterward, on run-3, the AISCC-DE2MS system had
an accessible average accuy, precn, recal , Fscore, and AUCscore of 92.23%, 82.10%, 54.49%,
61.75%, and 71.97%, correspondingly. At last, on run-4, the AISCC-DE2MS methodology
provided an average accuy, precn, recal , Fscore, and AUCscore of 92.94%, 81.30%, 59.62%,
66.44%, and 75.24%, correspondingly.

The training accuracy (TRA) and validation accuracy (VLA) acquired by the AISCC-
DE2MS approach on the test dataset is in Figure 8. The experimental result exposed that
the AISCC-DE2MS system gained higher values of TRA and VLA. Specifically, the VLA
looked superior to that of the TRA.

The training loss (TRL) and validation loss (VLL) accomplished by the AISCC-DE2MS
approach on the test dataset are recognized in Figure 9. The experimental result stated
that the AISCC-DE2MS system has reached decreased values of TRL and VLL. When
predefined, the VLL is lesser than TRL.

An obvious precision-recall investigation of the AISCC-DE2MS system on test dataset
is represented in Figure 10. The figure revealed that the AISCC-DE2MS algorithm has
resulted in maximal values of precision-recall values under all classes.

A detailed ROC examination of the AISCC-DE2MS algorithm on the test dataset
is demonstrated in Figure 11. The outcomes representing the AISCC-DE2MS system
outperformed its capability in classifying various classes of test dataset.
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Table 3. Result analysis of AISCC-DE2MS approach with distinct measures and runs.

Labels Accuracy Precision Recall F-Score AUC Score

Run-1

C-1 94.82 76.54 53.14 62.73 75.84

C-2 95.96 83.53 66.49 74.04 82.62

C-3 96.50 82.82 72.29 77.19 85.47

C-4 97.60 86.56 83.71 85.11 91.28

C-5 91.30 90.12 97.67 93.74 88.09

Average 95.24 83.91 74.66 78.56 84.66

Run-2

C-1 94.34 74.60 47.00 57.67 72.79

C-2 94.65 79.54 51.49 62.51 75.12

C-3 95.75 84.74 58.71 69.37 78.89

C-4 97.06 86.27 76.29 80.97 87.60

C-5 87.68 85.67 97.93 91.39 82.52

Average 93.90 82.16 66.28 72.38 79.38

Run-3

C-1 93.07 84.62 18.86 30.84 59.28

C-2 92.86 66.33 35.68 46.40 66.98

C-3 95.97 89.04 58.00 70.24 78.68

C-4 96.25 90.43 60.71 72.65 80.07

C-5 83.02 80.10 99.21 88.64 74.87

Average 92.23 82.10 54.49 61.75 71.97

Run-4

C-1 93.97 75.62 39.00 51.46 68.94

C-2 93.61 81.09 34.19 48.10 66.72

C-3 95.55 86.70 54.00 66.55 76.63

C-4 96.29 80.45 72.29 76.15 85.36

C-5 85.29 82.67 98.65 89.95 78.57

Average 92.94 81.30 59.62 66.44 75.24

Run-5

C-1 94.13 72.67 45.57 56.01 72.02

C-2 94.63 82.30 48.38 60.94 73.70

C-3 95.57 83.68 57.14 67.91 78.07

C-4 96.69 84.92 72.43 78.18 85.64

C-5 87.53 85.16 98.47 91.34 82.02

Average 93.71 81.75 64.40 70.88 78.29

Finally, a detailed comparative study of the AISCC-DE2MS model with other existing
models is offered in Table 4 [28]. The experimental values implied that the SCNet, SCFCNet,
baseNet, and MobileNet models have shown lower performance over other models. Next
to that, the ERNet and VGG16 models have certainly demonstrated improved outcomes.

However, the AISCC-DE2MS model has ensured better performance over other mod-
els with higher accuy of 95.24% and processing time of 11.13 ms. Therefore, the presented
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AISCC-DE2MS model can be employed for the effectual classification model on the
drone’s environment.
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Table 4. Comparative analysis of the AISCC-DE2MS approach with recent algorithms.

Methods Accuracy (%) Processing Time (ms)

AISCC-DE2MS 95.24 11.13

ERNet Model 90.16 19.46

SCFCNet Model 87.11 14.14

SCNet Model 85.70 14.18

baseNet Model 88.34 21.12

VGG16 Model 91.25 347.22

ResNet50 Model 89.61 257.48

MobileNet Model 88.55 47.63

5. Conclusions

In this study, a new AISCC-DE2MS algorithm was projected for secure communi-
cation and classification on drone-based emergency monitory systems. The proposed
AISCC-DE2MS technique performed image encryption at the preliminary stage using
the AGTO algorithm with an ECC-Based ElGamal Encryption technique in which the
optimal key generation procedure takes place via the AGTO algorithm. To classify the
images, the AISCC-DE2MS model encompasses DenseNet feature extraction, PESO-based
hyperparameter tuning, and LSTM-based classification. The simulation analysis of the
AISCC-DE2MS model is tested by making use of the AIDER dataset and the results demon-
strate the improved performance of the AISCC-DE2MS model with an accuracy of 95.24%
and a processing time of 11.13 ms. Thus, the AISCC-DE2MS method can be utilized
as a proficient tool for secure communication and classification in the drone’s environ-
ment. In the future, the performance of the presented model can be extended by image
steganographic techniques.
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