Factors Associated with the Adoption of Drones for Product Delivery in the Context of the COVID-19 Pandemic in Medellín, Colombia
Abstract
:1. Introduction
2. Narrative Literature Review
2.1. Model and Hypotheses
2.1.1. Relative Advantages
2.1.2. Complexity
2.1.3. Compatibility
2.1.4. Perceived Risks
2.1.5. Individual Characteristics
2.1.6. Attitude and Intention
3. Materials and Methods
4. Results
4.1. Convergent Validity and Discriminant Validity
4.2. Realiability
4.3. Hypothesis Testing
5. Discussion
6. Conclusions
Author Contributions
Funding
Institutional Review Board Statement
Informed Consent Statement
Data Availability Statement
Conflicts of Interest
References
- Genc, E.; Dayan, M.; Genc, O.F. The impact of SME internationalization on innovation: The mediating role of market and entrepreneurial orientation. Ind. Mark. Manag. 2019, 82, 253–264. [Google Scholar] [CrossRef]
- Hong, A.; Nam, C.; Kim, S. What will be the possible barriers to consumers’ adoption of smart home services? Telecommun. Policy 2020, 44, 101867. [Google Scholar] [CrossRef]
- Farah, M.F.; Mrad, M.; Ramadan, Z.; Hamdane, H. Handle with Care: Adoption of Drone Delivery Services. In Advances in National Brand and Private Label Marketing; Martinez-Lopez, F., Gázquez-Abad, J., Breugelmans, E., Eds.; Springer: Cham, Switzerland, 2020; pp. 22–29. [Google Scholar] [CrossRef]
- Lopes, J.M.; Gomes, S.; Pacheco, R.; Monteiro, E.; Santos, C. Drivers of sustainable innovation strategies for increased competition among companies. Sustainability 2022, 14, 5471. [Google Scholar] [CrossRef]
- Zeng, Z.; Chen, P.-J.; Lew, A.A. From high-touch to high-tech: COVID-19 drives robotics adoption. Tour. Geogr. 2020, 22, 724–734. [Google Scholar] [CrossRef]
- Almalki, F.A.; Alotaibi, A.A.; Angelides, M.C. Coupling multifunction drones with AI in the fight against the coronavirus pandemic. Computing 2022, 104, 1033–1059. [Google Scholar] [CrossRef]
- Kim, J.J.; Kim, I.; Hwang, J. A change of perceived innovativeness for contactless food delivery services using drones after the outbreak of COVID-19. Int. J. Hosp. Manag. 2021, 93, 102758. [Google Scholar] [CrossRef]
- Euchi, J. Do drones have a realistic place in a pandemic fight for delivering medical supplies in healthcare systems problems? Chin. J. Aeronaut. 2021, 34, 182–190. [Google Scholar] [CrossRef]
- Lamptey, E.; Serwaa, D. The Use of Zipline Drones Technology for COVID-19 Samples Transportation in Ghana. HighTech Innov. J. 2020, 1, 67–71. [Google Scholar] [CrossRef]
- Demuyakor, J. Ghana Go Digital Agenda: The impact of Zipline Drone Technology on Digital Emergency Health Delivery in Ghana. Shanlax Int. J. Arts Sci. Humanit. 2020, 8, 242–253. [Google Scholar] [CrossRef]
- Zapper, G. How robots became essential workers: They disinfected hospital rooms. They delivered medical supplies. They swabbed people’s throats. Next time around, they’ll be treating patients. IEEE Spectr. 2020, 57, 36–43. [Google Scholar] [CrossRef]
- Smith, H.; García-Ferrari, S.; Medero, G.; Rivera, H.; Coupé, F.; Caballero, H.; Castro, W.; Abiko, A.; Marinho, F.A.M.; Ferreira, K. Chapter 10: Learning From Co-Produced Landslide Risk Mitigation Strategies in Low-Income Settlements in Medellín (Colombia) and São Paulo (Brazil). In Housing and Human Settlements in a World of Change; Ley, A., Rahman, M.A.U., Fokdal, J., Eds.; Transcript Verlag: Bielefeld, Germany, 2020; Volume 25, pp. 243–265. [Google Scholar]
- Soto-Estrada, E.; Correa-Echeveri, S.; Posada-Posada, M.I. Thermal analysis of urban environments in Medellin, Colombia, using an Unmanned Aerial Vehicle (UAV). J. Urban Environ. Eng. 2017, 11, 142–149. [Google Scholar] [CrossRef]
- Herrera, R.; Trujillo, A.; Madrigal, J.; Estrada, J.I.; Giraldo, P.A.; Serna, J.A. Uso de herramientas tecnológicas para la solicitud y entrega domiciliaria de medicamentos en el marco de la pandemia por COVID-19. In Proceedings of the VI Congreso Colombiano de Atención Farmacéutica, Medellín, Colombia, 11–13 November 2021. [Google Scholar]
- Urrea-Arroyave, N.; Cañon-Montañez, W. Impactos sociales de las medidas de cuarentena y poscuarentena por COVID-19 en contextos de inequidad. Rev. Cienc. Cuidado 2021, 18, 5–8. [Google Scholar] [CrossRef]
- Risberg, A. A systematic literature review on e-commerce logistics: Towards an e-commerce and omni-channel decision framework. Int. Rev. Retail. Distrib. Consum. Res. 2022, 1–25. [Google Scholar] [CrossRef]
- Bosona, T. Urban freight last mile logistics—Challenges and opportunities to improve sustainability: A literature review. Sustainability 2020, 12, 8769. [Google Scholar] [CrossRef]
- Knobloch, M.; Schaarschmidt, M. What impedes Consumers’ Delivery Drone Service Adoption? A Risk Perspective. Arb. Fachbereich Inform. 2020, 1–18. [Google Scholar]
- Candas, M.F.; Kutanoglu, E. Integrated location and inventory planning in service parts logistics with customer-based service levels. Eur. J. Oper. Res. 2020, 285, 279–295. [Google Scholar] [CrossRef]
- Jiang, H.; Ren, X. Comparative Analysis of Drones and Riders in On-Demand Meal Delivery Based on Prospect Theory. Discret. Dyn. Nat. Soc. 2020, 2020, 9237689. [Google Scholar] [CrossRef]
- Raj, A.; Sah, B. Analyzing critical success factors for implementation of drones in the logistics sector using grey-DEMATEL based approach. Comput. Ind. Eng. 2019, 138, 106118. [Google Scholar] [CrossRef]
- Ali, S.S.; Kaur, R.; Gupta, H.; Ahmad, Z.; Elnaggar, G. Determinants of an Organization’s Readiness for Drone Technologies Adoption. IEEE Trans. Eng. Manag. 2021, 1–15. [Google Scholar] [CrossRef]
- Escobar, J.E.C.; Rollins, M.; Unger, S. Preliminary data on an affordable uav system to survey for freshwater turtles: Advantages and disadvantages of low-cost drones. J. Unmanned Veh. Syst. 2020, 9, 67–74. [Google Scholar] [CrossRef]
- Pugliese, L.D.P.; Guerriero, F.; Macrina, G. Using drones for parcels delivery process. Procedia Manuf. 2020, 42, 488–497. [Google Scholar] [CrossRef]
- Abdel-Basset, M.; Chang, V.; Nabeeh, N.A. An intelligent framework using disruptive technologies for COVID-19 analysis. Technol. Forecast. Soc. Change 2021, 163, 120431. [Google Scholar] [CrossRef] [PubMed]
- Muricho, M.W.; Mogaka, C.O. Drone technology and performance of retail logistics. J. Sustain. Dev. Transp. Logist. 2022, 7, 73–81. [Google Scholar] [CrossRef]
- Martins, B.O.; Lavallée, C.; Silkoset, A. Drone Use for COVID-19 Related Problems: Techno-solutionism and its Societal Implications. Glob. Policy 2021, 12, 603–612. [Google Scholar] [CrossRef]
- Angurala, M.; Bala, M.; Bamber, S.S.; Kaur, R.; Singh, P. An internet of things assisted drone based approach to reduce rapid spread of COVID-19. J. Saf. Sci. Resil. 2020, 1, 31–35. [Google Scholar] [CrossRef]
- González Jorge, H.; González de Santos, L.M.; Fariñas Álvarez, N.; Martínez Sánchez, J.; Navarro Medina, F. Operational Study of Drone Spraying Application for the Disinfection of Surfaces against the COVID-19 Pandemic. Drones 2021, 5, 18. [Google Scholar] [CrossRef]
- Alsamhi, S.H.; Lee, B.; Guizani, M.; Kumar, N.; Qiao, Y.; Liu, X. Blockchain for decentralized multi-drone to combat COVID-19 and future pandemics: Framework and proposed solutions. Trans. Emerg. Telecommun. Technol. 2021, 32, e4255. [Google Scholar] [CrossRef]
- Yaprak, Ü.; Kılıç, F.; Okumuş, A. Is the Covid-19 pandemic strong enough to change the online order delivery methods? Changes in the relationship between attitude and behavior towards order delivery by drone. Technol. Forecast. Soc. Change 2021, 169, 120829. [Google Scholar] [CrossRef]
- Hwang, J.; Kim, D.; Kim, J.J. How to Form Behavioral Intentions in the Field of Drone Food Delivery Services: The Moderating Role of the COVID-19 Outbreak. Int. J. Environ. Res. Public Health 2020, 17, 9117. [Google Scholar] [CrossRef]
- Beninger, S.; Robson, K. The disruptive potential of drones. Mark. Lett. 2020, 31, 315–319. [Google Scholar] [CrossRef]
- Mathew, T.M. Aerospace Medicine sans Frontières: Improving Passenger and Personnel Safety. Aerosp. Med. Hum. Perform. 2020, 91, 611–614. [Google Scholar] [CrossRef] [PubMed]
- Liao, S.; Wu, J.; Li, J.; Bashir, A.K.; Yang, W. Securing collaborative environment monitoring in smart cities using blockchain enabled software-defined internet of drones. IEEE Internet Things Mag. 2021, 4, 12–18. [Google Scholar] [CrossRef]
- Choe, J.Y.; Kim, J.J.; Hwang, J. Innovative marketing strategies for the successful construction of drone food delivery services: Merging TAM with TPB. J. Travel Tour. Mark. 2021, 38, 16–30. [Google Scholar] [CrossRef]
- Hwang, J.; Kim, W.; Kim, J.J. Application of the value-belief-norm model to environmentally friendly drone food delivery services: The moderating role of product involvement. Int. J. Contemp. Hosp. Manag. 2020, 32, 1775–1794. [Google Scholar] [CrossRef]
- Lokhande, A.P.; Shaikh, A.N.; Patil, O.S. Drones in Production, Supply Chain and Logistics. Int. Res. J. Eng. Technol. (IRJET) 2018, 5, 2179–2182. [Google Scholar]
- Johannessen, K.A.; Comtet, H.; Fosse, E. A Drone Logistic Model for Transporting the Complete Analytic Volume of a Large-Scale University Laboratory. Int. J. Environ. Res. Public Health 2021, 18, 4580. [Google Scholar] [CrossRef]
- Sah, B.; Gupta, R.; Bani-Hani, D. Analysis of barriers to implement drone logistics. Int. J. Logist. Res. Appl. 2021, 24, 531–550. [Google Scholar] [CrossRef]
- Perera, S.; Dawande, M.; Janakiraman, G.; Mookerjee, V. Retail Deliveries by Drones: How Will Logistics Networks Change? Prod. Oper. Manag. 2020, 29, 2019–2034. [Google Scholar] [CrossRef]
- Tadić, S.; Kovač, M.; Čokorilo, O. The Application of Drones in City Logistics Concepts. Promet 2021, 33, 451–462. [Google Scholar] [CrossRef]
- Wu, Y.; Dai, H.N.; Wang, H.; Choo, K.K.R. Blockchain-based privacy preservation for 5g-enabled drone communications. IEEE Netw. 2021, 35, 50–56. [Google Scholar] [CrossRef]
- Mathew, A.O.; Jha, A.N.; Lingappa, A.K.; Sinha, P. Attitude towards Drone Food Delivery Services—Role of Innovativeness, Perceived Risk, and Green Image. J. Open Innov. Technol. Mark. Complex. 2021, 7, 144. [Google Scholar] [CrossRef]
- Choe, J.Y.; Kim, J.J.; Hwang, J. Perceived risks from drone food delivery services before and after COVID-19. Int. J. Contemp. Hosp. Manag. 2021, 33, 1276–1296. [Google Scholar] [CrossRef]
- Hwang, J.; Choe, J.Y.(J.). Exploring perceived risk in building successful drone food delivery services. Int. J. Contemp. Hosp. Manag. 2019, 31, 3249–3269. [Google Scholar] [CrossRef]
- Merkert, R.; Beck, M.J.; Bushell, J. Will It Fly? Adoption of the road pricing framework to manage drone use of airspace. Transp. Res. Part A Policy Pract. 2021, 150, 156–170. [Google Scholar] [CrossRef]
- Zhu, X. Segmenting the public’s risk beliefs about drone delivery: A belief system approach. Telemat. Inform. 2019, 40, 27–40. [Google Scholar] [CrossRef]
- Yoo, W.; Yu, E.; Jung, J. Drone delivery: Factors affecting the public’s attitude and intention to adopt. Telemat. Inform. 2018, 35, 1687–1700. [Google Scholar] [CrossRef]
- Rogers, E.M. Diffusion of Innovations, 3rd ed.; A Division of Macmillan Publishing: New York, NY, USA, 1983. [Google Scholar]
- Davis, F.D. Perceived Usefulness, Perceived Ease of Use, and User Acceptance of Information Technology. MIS Q. Manag. Inf. Syst. 1989, 13, 319–340. [Google Scholar] [CrossRef]
- Silva, P. Davis’ Technology Acceptance Model (TAM) (1989). In Information Seeking Behavior and Technology Adoption: Theories and Trends, 1st ed.; Al-Suqri, M.N., Al-Aufi, S., Eds.; IGI Global: Hershey, USA, 2015; pp. 205–219. [Google Scholar]
- Conrad, E.D. Willingness to use strategic IT innovations at the individual level: An empirical study synthesizing DOI and TAM theories. Acad. Inf. Manag. Sci. J. 2013, 16, 99–110. [Google Scholar]
- Min, S.; So, K.K.F.; Jeong, M. Consumer adoption of the Uber mobile application: Insights from diffusion of innovation theory and technology acceptance model. J. Travel Tour. Mark. 2019, 36, 770–783. [Google Scholar] [CrossRef]
- Ferguson, D.A.; Greer, C.F. Assessing the Diffusion of Drones in Local Television News. Electron. News 2019, 13, 23–33. [Google Scholar] [CrossRef]
- Park, J.; Kim, S.; Suh, K. A Comparative Analysis of the Environmental Benefits of Drone-Based Delivery Services in Urban and Rural Areas. Sustainability 2018, 10, 888. [Google Scholar] [CrossRef]
- Bharadwaj, S.; Deka, S. Behavioural intention towards investment in cryptocurrency: An integration of Rogers’ diffusion of innovation theory and the technology acceptance model. Forum Sci. Oecon. 2021, 9, 137–159. [Google Scholar] [CrossRef]
- Ayodele, A.A.; Nwatu, C.B.; Moses Chigbata, O. Extending the Diffusion of Innovation Theory to Predict Smartphone Adoption Behaviour Among Higher Education Institutions’ Lecturers in Nigeria. Eur. J. Bus. Manag. 2020, 12, 14–21. [Google Scholar] [CrossRef]
- Shirowzhan, S.; Sepasgozar, S.M.E.; Edwards, D.J.; Li, H.; Wang, C. BIM compatibility and its differentiation with interoperability challenges as an innovation factor. Autom. Constr. 2020, 112, 103086. [Google Scholar] [CrossRef]
- Nordhoff, S.; Malmsten, V.; van Arem, B.; Liu, P.; Happee, R. A structural equation modeling approach for the acceptance of driverless automated shuttles based on constructs from the Unified Theory of Acceptance and Use of Technology and the Diffusion of Innovation Theory. Transp. Res. Part F Traffic Psychol. Behav. 2021, 78, 58–73. [Google Scholar] [CrossRef]
- Hwang, J.; Kim, J.J. Expected benefits with using drone food delivery services: Its impacts on attitude and behavioral intentions. J. Hosp. Tour. Technol. 2021, 12, 593–606. [Google Scholar] [CrossRef]
- Hwang, J.; Kim, H.; Kim, J.J.; Kim, I. Investigation of perceived risks and their outcome variables in the context of robotic restaurants. J. Travel Tour. Mark. 2021, 38, 263–281. [Google Scholar] [CrossRef]
- Zhu, X.; Pasch, T.J.; Bergstrom, A. Understanding the structure of risk belief systems concerning drone delivery: A network analysis. Technol. Soc. 2020, 62, 101262. [Google Scholar] [CrossRef]
- Leon, S.; Chen, C.; Ratcliffe, A. Consumers’ perceptions of last mile drone delivery. Int. J. Logist. Res. Appl. 2021. [Google Scholar] [CrossRef]
- Ezzaouia, I.; Bulchand-Gidumal, J. Factors influencing the adoption of information technology in the hotel industry. An analysis in a developing country. Tour. Manag. Perspect. 2020, 34, 100675. [Google Scholar] [CrossRef]
- Ciftci, O.; Berezina, K.; Kang, M. Effect of Personal Innovativeness on Technology Adoption in Hospitality and Tourism: Meta-analysis. In Information and Communication Technologies in Tourism 2021; Wörndl, W., Koo, C., Stienmetz, J.L., Eds.; Springer: Cham, Switzerland, 2021; pp. 162–174. [Google Scholar] [CrossRef]
- Adnan, N.; Nordin, S.M.d.; Bahruddin, M.A.; Tareq, A.H. A state-of-the-art review on facilitating sustainable agriculture through green fertilizer technology adoption: Assessing farmers behavior. Trends Food Sci. Technol. 2019, 86, 439–452. [Google Scholar] [CrossRef]
- Gharaibeh, M.K.; Arshad, M.R.; Gharaibeh, N.K. Using the UTAUT2 Model to Determine Factors Affecting Adoption of Mobile Banking Services: A Qualitative Approach. Int. J. Interact. Mob. Technol. 2018, 12, 123–134. [Google Scholar] [CrossRef]
- Rashid, M.T.; Wang, D. CovidSens: A vision on reliable social sensing for COVID-19. Artif. Intell. Rev. 2021, 54, 1–25. [Google Scholar] [CrossRef]
- Wu, J.; Liao, H.; Wang, J.W.; Chen, T. The role of environmental concern in the public acceptance of autonomous electric vehicles: A survey from China. Transp. Res. Part F Traffic Psychol. Behav. 2019, 60, 37–46. [Google Scholar] [CrossRef]
- Mosquera-González, D.; Valencia-Arias, A.; Benjumea-Arias, M.; Palacios-Moya, L. Factores asociados al uso de tecnologías de la información y la comunicación (TIC) en los procesos de aprendizaje de estudiantes de ingeniería. Form. Univ. 2021, 14, 121–132. [Google Scholar] [CrossRef]
- Hair, J.F.; Anderson, R.E.; Tatham, R.L.; Black, W.C. Análisis Multivariante, 5th ed.; Prentice Hall: Madrid, España, 1999. [Google Scholar]
- Guad, R.M.; Mangantig, E.; Low, W.Y.; Taylor-Robinson, A.W.; Azzani, M.; Sekaran, S.D.; Sim, M.S.; Azizan, N. Development and validation of a structured survey questionnaire on knowledge, attitude, preventive practice, and treatment-seeking behaviour regarding dengue among the resident population of Sabah, Malaysia: An exploratory factor analysis. BMC Infect. Dis. 2021, 31, 893. [Google Scholar] [CrossRef] [PubMed]
- Gallego, L.; Araque, O. Variables de Influencia en la Capacidad de Aprendizaje. Un Análisis por Conglomerados y Componentes Principales. Inf. Tecnol. 2019, 30, 257–264. [Google Scholar] [CrossRef]
- García-Cano, L.; Colás-Bravo, P. Factores pedagógicos asociados con el compromiso de los universitarios con sus estudios. Form. Univ. 2020, 13, 181–190. [Google Scholar] [CrossRef]
- Anderson, J.C.; Gerbing, D.W. Structural equation modeling in practice: A review and recommended two-step approach. Psychol. Bull. 1988, 103, 411–423. [Google Scholar] [CrossRef]
- Hayes, A.F.; Coutts, J.J. Use Omega Rather than Cronbach’s Alpha for Estimating Reliability. But… Commun. Methods Meas. 2020, 14, 1–24. [Google Scholar] [CrossRef]
- Taber, K.S. The Use of Cronbach’s Alpha When Developing and Reporting Research Instruments in Science Education. Res. Sci. Educ. 2018, 48, 1273–1296. [Google Scholar] [CrossRef]
- Bermeo-Giraldo, M.C.; Álvarez-Agudelo, L.; Ospina-Rúa, M.I.; Acevedo-Correa, Y.; Montoya-Restrepo, I.A. actores que influyen en la intención de uso de las tarjetas de crédito por parte de los jóvenes universitarios. Rev. CEA 2019, 5, 77–96. [Google Scholar] [CrossRef]
- Sagaró del Campo, N.M.; Zamora Matamoros, L. Técnicas estadísticas para identificar posibles relaciones bivariadas. Rev. Cuba Anestesiol. Y Reanim. 2020, 19, e603. [Google Scholar]
- Chen, C.; Leon, S.; Ractham, P. Will customers adopt last-mile drone delivery services? An analysis of drone delivery in the emerging market economy. Cogent Bus. Manag. 2022, 9, 2074340. [Google Scholar] [CrossRef]
- Hwang, J.; Choe, J.; Choi, Y.G.; Kim, J.J. A comparative study on the motivated consumer innovativeness of drone food delivery services before and after the outbreak of COVID-19. J. Travel Tour. Mark. 2021, 38, 368–382. [Google Scholar] [CrossRef]
- Osakwe, C.N.; Hudik, M.; Říha, D.; Stros, M.; Ramayah, T. Critical factors characterizing consumers’ intentions to use drones for last-mile delivery: Does delivery risk matter? J. Retail. Consum. Serv. 2022, 65, 102865. [Google Scholar] [CrossRef]
- Ganjipour, H.; Edrisi, A. Applying the integrated model to understanding online buyers’ intention to adopt delivery drones in Iran. Transp. Lett. 2022, 1–13. [Google Scholar] [CrossRef]
- Michels, M.; von Hobe, C.F.; Weller von Ahlefeld, P.J.; Musshoff, M. The adoption of drones in German agriculture: A structural equation model. Precis. Agric. 2021, 22, 1728–1748. [Google Scholar] [CrossRef]
Construct | Variable |
---|---|
Attitude Towards Drone Delivery (ADD) | Drone delivery is easy to use. |
Using drones suits my lifestyle. | |
Complexity (CX) | My interaction with drone delivery is clear and understandable. |
Drone delivery can provide me with a better service. | |
Using drone delivery fulfills my delivery service expectations. | |
Mass Media Channel (MMC) | I have a lot of information from the media about drone delivery. |
The media have helped me to better understand drone delivery. | |
Compatibility (CM) | Drones emit less carbon dioxide during delivery. |
Using drone delivery is compatible with all the aspects of my work. | |
Intention to Use Drone Delivery (IUD) | Using the drone delivery technology is a good idea. |
Receiving parcels delivered by drones is something that will happen in the long term. | |
Personal Innovativeness (PI) | I have often seen articles about drone parcel delivery. |
Drone delivery is desirable. | |
Delivery Risk (DR) | The package carried by the drone can be stolen. |
The package carried by the drone can be damaged by others. | |
Privacy Risk (PVR) | Drone delivery will result in a loss of my privacy. |
Drone delivery might be used in a way that violates my privacy. | |
Performance Risk (PMR) | The package carried by the drone might arrive late or be incomplete. |
Drone delivery will make me lose control over my privacy. | |
Relative Advantage of Environmental Friendliness (RAEF) | Drone delivery helps the environment. |
Drone delivery allows me to receive products in an environmentally friendly way. | |
Relative Advantage of Speed (RAS) | Drone delivery is a fast way to deliver packages. |
Drone technology is useful for fast goods delivery. |
Factor | Item | Standardized Factor Loading | Average of Standardized Factor Loadings |
---|---|---|---|
Attitude Towards Drone Delivery (ADD) | ADD1 | 0.812 | 0.812 |
ADD2 | 0.812 | ||
Complexity (CX) | CX1 | 0.838 | 0.870 |
CX2 | 0.909 | ||
CX3 | 0.863 | ||
Mass Media Channel (MMC) | MMC1 | 0.928 | 0.928 |
MMC2 | 0.928 | ||
Compatibility (CM) | CM1 | 0.761 | 0.761 |
CM2 | 0.761 | ||
Intention To Use Drone Delivery (IUD) | IUD1 | 0.900 | 0.900 |
IUD2 | 0.900 | ||
Personal Innovativeness (PI) | PI1 | 0.872 | 0.872 |
PI2 | 0.872 | ||
Delivery Risk (DR) | DR1 | 0.951 | 0.951 |
DR2 | 0.951 | ||
Privacy Risk (PVR) | PVR1 | 0.955 | 0.955 |
PVR2 | 0.955 | ||
Performance Risk (PMR) | PMR1 | 0.731 | 0.731 |
PMR2 | 0.731 | ||
Relative Advantage of Environmental Friendliness (RAEF) | RAEF1 | 0.886 | 0.886 |
RAEF2 | 0.886 | ||
Relative Advantage of Speed (RAS) | RAS1 | 0.967 | 0.967 |
RAS2 | 0.967 |
Factor | KMO Value | Bartlett Value | Meets Criteria |
---|---|---|---|
Attitude Towards Drone Delivery | 0.500 | 0.000 | Yes |
Complexity | 0.697 | 0.000 | Yes |
Maas Media Channel | 0.500 | 0.000 | Yes |
Compatibility | 0.500 | 0.000 | Yes |
Intention to Use Drone Delivery | 0.500 | 0.000 | Yes |
Personal Innovativeness | 0.500 | 0.000 | Yes |
Delivery Risk | 0.500 | 0.000 | Yes |
Privacy Risk | 0.500 | 0.000 | Yes |
Performance Risk | 0.500 | 0.000 | Yes |
Relative Advantage of Environmental Friendliness | 0.500 | 0.000 | Yes |
Relative Advantage of Speed | 0.500 | 0.000 | Yes |
ADD | CX | MMC | CM | IUD | PI | DR | PVR | PMR | RAEF | RAS | |
---|---|---|---|---|---|---|---|---|---|---|---|
ADD | … | ||||||||||
CX | [0.179;0.576] | … | |||||||||
MMC | [0.209;0.616] | [0.256;0.626] | … | ||||||||
CM | [0.367;0.684] | [0.208;0.579] | [0.075;0.493] | … | |||||||
IUD | [0.318;0.622] | [0.115;0.516] | [0.220;0.556] | [0.411;0.706] | … | ||||||
PI | [0.312;0.687] | [0.261;0.631] | [0.489;0.754] | [0.325;0.656] | [0.274;0.595] | … | |||||
DR | [0.406;0.030] | [0.263;0.141] | [0.292;0.088] | [0.094;0.505] | [0.077;0.328] | [0.063;0.397] | … | ||||
PVR | [0.152;0.567] | [0.065;0.338] | [0.143;0.483] | [0.111;0.489] | [0.021;0.415] | [0.139;0.263] | [0.094;0.312] | … | |||
PMR | [0.712;0.345] | [0.200;0.218] | [0.194;0.557] | [0.115;0.554] | [0.164;0.559] | [0.002;0.440] | [0.473;0.751] | [0.473;0.751] | … | ||
RAEF | [0.260;0.606] | [0.016;0.377] | [0.036;0.391] | [0.430;0.717] | [0.121;0.506] | [0.126;0.527] | [0.082;0.471] | [0.099;0.319] | [0.013;0.445] | … | |
RAS | [0.127;0.555] | [0.184;0.603] | [0.126;0.306] | [0.187;0.618] | [0.127;0.507] | [0.208;0.603] | [0.206;0.227] | [0.027;0.379] | [0.042;0.406] | [0.227;0.641] | … |
Factor | Cronbach’s Alpha |
---|---|
Attitude Towards Drone Delivery | 0.811 |
Complexity | 0.910 |
Mass Media Channel | 0.943 |
Compatibility | 0.745 |
Intention to Use Drone Delivery | 0.912 |
Personal Innovativeness | 0.890 |
Delivery Risk | 0.963 |
Privacy Risk | 0.964 |
Performance Risk | 0.707 |
Relative Advantage of Environmental Friendliness | 0.896 |
Relative Advantage of Speed | 0.973 |
Publisher’s Note: MDPI stays neutral with regard to jurisdictional claims in published maps and institutional affiliations. |
© 2022 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Valencia-Arias, A.; Rodríguez-Correa, P.A.; Patiño-Vanegas, J.C.; Benjumea-Arias, M.; De La Cruz-Vargas, J.; Moreno-López, G. Factors Associated with the Adoption of Drones for Product Delivery in the Context of the COVID-19 Pandemic in Medellín, Colombia. Drones 2022, 6, 225. https://doi.org/10.3390/drones6090225
Valencia-Arias A, Rodríguez-Correa PA, Patiño-Vanegas JC, Benjumea-Arias M, De La Cruz-Vargas J, Moreno-López G. Factors Associated with the Adoption of Drones for Product Delivery in the Context of the COVID-19 Pandemic in Medellín, Colombia. Drones. 2022; 6(9):225. https://doi.org/10.3390/drones6090225
Chicago/Turabian StyleValencia-Arias, Alejandro, Paula Andrea Rodríguez-Correa, Juan Camilo Patiño-Vanegas, Martha Benjumea-Arias, Jhony De La Cruz-Vargas, and Gustavo Moreno-López. 2022. "Factors Associated with the Adoption of Drones for Product Delivery in the Context of the COVID-19 Pandemic in Medellín, Colombia" Drones 6, no. 9: 225. https://doi.org/10.3390/drones6090225
APA StyleValencia-Arias, A., Rodríguez-Correa, P. A., Patiño-Vanegas, J. C., Benjumea-Arias, M., De La Cruz-Vargas, J., & Moreno-López, G. (2022). Factors Associated with the Adoption of Drones for Product Delivery in the Context of the COVID-19 Pandemic in Medellín, Colombia. Drones, 6(9), 225. https://doi.org/10.3390/drones6090225