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Abstract: This paper develops a distributed method, namely, distributed allocation with time win-
dows (DATW) for managing the multi-UAV task assignment problem (MTAP) with complex time
window constraints. By aiming directly to minimize the average task completion time, the pro-posed
DATW intends to achieve a conflict-free result that allocates all tasks within the validity time win-
dows. Based on the decentralized PI (Performance Impact) framework, the proposed algorithm
addresses the MTAP in a three-phase task assignment strategy, which includes task inclusion, conflict
resolution, and task reallocation. The newly introduced task allocation phase achieves a noteworthy
increase in an average number of allocated tasks. Unlike the traditional PI methods, the start time
of each task is broadcasted among agents via communication typology, and the significance value
of each task is directly related to its validity time window, such that the vast majority of tasks are
able to be assigned properly without imposing any extra communication burdens. In the obtained
conflict-free allocation solution by DATW, each task is allocated to a proper UAV with all given
constraints satisfied. Finally, the simulation results demonstrate the effectiveness and superiority of
the proposed DATW. Compared with existing (CBBA-based) solutions, results show up to an 18%
increase in success rate (SR) using the proposed method.

Keywords: multi-UAV system; time window constraint; task allocation; distributed algorithm

1. Introduction

Currently, multiagent systems (e.g., unmanned aerial vehicle systems) have drawn
increasing attention from researchers worldwide [1–6]. In comparison to a single agent,
multiagent systems can achieve more complicated mission objectives and increase execution
efficiency through cooperation. In this paper, we focus on the application of UAVs in
multiagent systems due to the advantages of high flexibility, easy assembly, and low-cost
consumption [7,8]. In particular, UAVs have been widely used in a variety of industries,
including search and rescue, military reconnaissance, and traffic transportation. To date,
there is a growing consensus that the multi-UAV task assignment problem (MTAP) has
become one of the most challenging problems of multiagent systems.

In general, the MTAP is a combinatorial optimization problem with complex con-
straints that aims to coordinate a group of UAVs to accomplish various tasks while opti-
mizing some given overall objectives [9]. Moreover, the MATP is proven to be a nondeter-
ministic polynomial hard (NP-hard) problem [10], and as a result, the scale of the problem
has a direct impact on the complexity of the solving process.

Early studies of the MATP focused on centralized approaches, where each UAV com-
municates situational awareness (SA) to a centralized server that generates a collaborative
plan for the entire UAV swarm. Initially, the problem is modeled as mixed-integer linear pro-
gramming (MILP) [11], which includes multiple processor resource allocation (MPRA) [12],
the multiple traveling salesman problem (MTSP) [13], and the vehicle routing problem
(VRP) [14]. By embedding complicated constraints into the models, the MILP algorithms
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have advantages in describing the mission; however, the tree search method and exhaustive
enumerations in MILP have resulted in an explosion in the computational demands for
large-scale systems. Then, some heuristic algorithms [15–18], namely, swarm intelligence
algorithms (SIAs), are proposed by searching a certain range of solution space in an ac-
ceptable time to obtain feasible solutions for MATP. Common heuristic methods include
the genetic algorithm (GA) [15], ant colony algorithm [16], particle swarm optimization
algorithm [17], wolf swarm algorithm [18], etc. Although these SIAs have a relatively
straightforward structure, their stability is weak and a single point of failure can bring
down the entire system [19].

Recently, some distributed allocation methods have been proposed, which are flexible
and robust, consuming less communication and computational resources than centralized
approaches. Most of these distributed approaches (e.g., contract network protocol) [20–23]
are developed on the basis of market auction mechanisms. The UAVs place bids on
tasks, and the highest bid wins the assignment. Choi et al., in [24], proposed the classical
consensus-based bundle algorithm (CBBA) and introduced a consensus procedure to achieve
agreement on the winning bid values through a consensus routine instead of SA. A series
of modifications to the classical CBBA were made in [25,26] to expand the function and
application of such a method. Then, another distributed approach called performance
impact (PI) was proposed by Whitbrook et al. [27] and Zhao et al. [28], which aims to directly
optimize the overall objective. Such methods introduce a key concept called significance to
assess each task’s contribution to the local time cost of an UAV. In comparison to CBBA, the
PI method is developed on the basis of the heuristic optimization principle and can solve
more time-sensitive MTAP while achieving allocation with lower time costs across tasks.

In realistic situations, the existence of various constraints and uncertainties will cause
significant growth in the complexity of MATP [29]. To this end, most studies on MTAP
describe this problem in terms of ideal mathematical models. For example, [30] proposes
a “closed-loop CBBA” that considers the return of UAVs to the take-off base after the
mission is completed, but ignores existing constraints during the allocation. Ponda et al.,
in [26], proposed an extension algorithm of CBBA to handle MTAP with time window
constraints and vehicle fuel cost constraints; however, the allocated tasks in results notably
decrease when time window constraints between tasks are more complex. In addition,
PI-MaxAss was proposed as an extension of PI by Turner et al. [31], which aims to maximize
the number of task allocations under strict time constraints. This article discusses task
deadlines under a search and rescue scenario, while the time window constraints between
tasks are ignored.

In this paper, common constraints such as time windows and UAV capabilities are
combined to build a complex MTAP model. We propose an algorithm, namely, distributed
allocation with time windows (DATW), which aims to achieve conflict-free allocation with
a minimum average task completion time. The proposed DATW embeds time window
constraints into the PI-based framework and iterates between three phases: the task inclusion
phase, conflict resolution phase, and task reallocation phase. The first phase selects the optimal
task within validity time windows for each UAV. The second reaches a consensus based on
the significance value over all UAVs. The last allocates the tasks that remain unassigned
after the former two phases due to time window constraints. Note that the time window
constraints in this paper are “hard constraints”, i.e., each task must start within its time
window constraints; otherwise, the task is not allowed to be assigned. The key contributions
of this paper are summarized as follows:

1. The time window constraints are first embedded into the PI-based framework. That is,
the significance value of each task is directly related to its validity time window. In the
obtained allocation, the vast majority of tasks are assigned by achieving a minimum
average task completion time.

2. Compared with the PI method in [22], a new task reallocation phase that only con-
siders the marginal significance value is proposed. The number of allocated tasks is
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effectively improved by the aid of this third phase, where simulation results show
that the average rate of feasible tasks has exceeded 70%.

3. The experiments reveal that the proposed DATW assigns more tasks within validity
time windows than the existing E-CCBA method in [26]. In addition, the DATW has
facilitated an 18% increase in success rate when assigning all tasks for UAVs.

This paper is organized as follows. Section 2 presents the description of MTAP and
depicts the mathematical model of the distributed allocation with time window constraints.
Section 3 proposes the PI-based distributed method DATW to solve the studied task
allocation problem. Section 4 presents numerical simulations to demonstrate the merits of
DATW. Finally, Section 5 concludes the paper.

2. Problem Description

This paper studies the multi-UAV task assignment problem (MTAP) with time window
constraints. Let Nt = {t1, t2, . . . , tm} be the set of m tasks and Nu = {u1, u2, . . . , un} be a set of
n UAVs. A list of key symbols used hereafter is provided in Table 1. The properties of each
tj ∈ Nt are denoted by a tuple <loc(tj), Dj>, where loc(tj) = (xj, yj, zj) is the coordinate of the
task in the 3-D spatial plane and Dj is the duration required to perform task tj. Meanwhile,
an UAV ui ∈ Nu is denoted by <loc(ui), vi>, where loc(ui) = (xi, yi, zi) is the initial position of
ui, and vi is the flight velocity. UAVs communicate through a local communication topology
denoted by a symmetric adjacency matrix G, where Gih = 1 means ui and uh are capable of
communicating with each other, while Gih = 0 otherwise. We use Pi = <ti

1, ti
2, . . . , ti

|Pi|> to
denote an ordered sequence of tasks assigned to ui; UAV ui starts from its initial coordinate
loc(ui) and performs tasks in Pi sequentially. Once UAV ui completes task ti

j in Pi, it
immediately flies to the location of the next task ti

j+1. The assigned task sequences for all
UAVs constitute a task allocation P = [P1, P2, . . . , Pn]T of MTAP under consideration.

Table 1. Symbol Definitions.

Symbol Definitions

Nt Set of m tasks
Nu Set of n UAVs
Dj The duration required to perform task tj
loc(tj) The spatial location of task tj, loc(tj) = (xj, yj, zj)
loc(ui) The initial position of UAV ui, loc(ui) = (xi, yi, zi)
vi The flight velocity of UAV ui
G The communication topology between UAVs
Pi An ordered sequence of tasks for UAV ui
Φ(p, Pi) The task which locates at the p-th position in the sequence Pi
Tj(Pi) The time at which ui starts to execute tj

F (Pi)
The sum of the completion times for all tasks in Pi, i.e., the
local time cost of ui

Li The execution capacity of ui
[Tj_start, Tj_end ] The execution time window of task tj

Zi
A task list stored on agent ui that keeps track of which task
is assigned to which UAV

Qi
A list stored on ui that records the significance value for
each task

Ti A list stored on ui that records the start time for each task
si A list of timestamps for ui
Pi	tj Pi with task tj removed
qij(Pi	tj) The significance value of task tj for ui
Pi⊕k tj Pi with task tj inserted into the kth position
qij*(Pi⊕tj) The marginal significance value of task tj for ui

On the basis of the above-mentioned information, the general working mechanism
of the multi-UAV systems with time window is illustrated in Figure 1. Herein, the initial
information board inputs all the relevant information of tasks and the underlying time
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window constraints which should be satisfied by all UAVs. Specifically, for each UAV
ui, its reason system generates an allocation plan Pi consisted of tasks assigned to ui and
their ordered sequence. Whenever a ui includes a new task, it updates the task’s time
information and transmits this information to another UAV uj with Gij = 1 via communi-
cation link. This reasoning system continuously updates the allocation plan according to
newly received information. Based on such a dynamic reasoning system, all UAVs work
in parallel and interact with each other. Thus, one key problem of our paper is to design
an effective reasoning system to achieve a conflict-free allocation by satisfying all time
window constraints.
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Figure 1. General system architecture for distributed multi-UAV systems with time windows.

For the sake of convenience, we use the notation Φ(Pi, g) = tj to denote the fact that
task tj is the g-th (g > 1) task in Pi, i.e., tj = ti

g. If task tk is tj’s preorder task, Φ(Pi, g−1) = tk.
Then, the time parameter Tj(Pi), when ui starts to execute tj, is calculated as follows:

Tj(Pi) =

 Tk(Pi) + Dk +
dis(loc(tk),loc(tj))

vi
, g > 1

dis(loc(ui),loc( tj))
vi

, g = 1
(1)

where dis(•) represents the distance between two different locations. Moreover, the comple-
tion time Fj(Pi) for task tj is calculated as follows:

Fj(Pi) = Tj(Pi) + Dj (2)

In the rest of this paper, let F (Pi) = ∑tk∈Pi
Fk(Pi) be the sum of the completion time

for all tasks in Pi; herein, F (Pi) is called the local time cost of UAV ui.
The practical MTAP is subject to the constraints related to UAVs and tasks:

1. Conflict-freeness: each task is only assigned to one UAV.
2. Capability constraints: each UAV can execute at most Li tasks at a time. That is,

|Pi| ≤ Li (1 ≤ i ≤ n) (3)

3. Time window constraints: each task must be started during the interval of a time
window. Let Tj_start be the earliest start time of task tj, and Tj_end be the latest start
time so that the validity interval for tj is given as

Tj(Pi) ∈
[

Tj_start , Tj_end

]
(4)

4. Power consumption constraints: the remaining fuel mass Fri for each UAV must be more
than a threshold ∆. Let Foi be the initial fuel mass of UAV ui, and ui consumes the fuel
at a nominal rate vmi, such that the power consumption constraint is given as follows

Fri = Foi − vmi ×F (Pi) ≥ ∆ (5)
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This paper aims to find the optimal task allocation for MATP with the goals of satisfy-
ing the above-mentioned constraints and minimizing the global time cost, which is the sum
of all local time costs across all UAVs. The sought MTAP can be modeled mathematically
as follows:

J = min
{
∑n

i=1 F (Pi)
}

(6)

s.t.
⋃n

i=1 Pi = Nt, Pi
⋂

Pj = ∅, i 6= j (7)

|Pi| ≤ Li, ∀ui ∈ Nu (8)

Tj_start ≤ Tj(Pi) ≤ Tj_end, ∀tj ∈ Pi, ∀ui ∈ Nu (9)

Fri = Foi − vmi ×F (Pi) ≥ ∆, ∀ui ∈ Nu (10)

where objective (6) minimizes the global time cost; (7) ensures that the allocation includes
all tasks and each task is assigned to only one UAV, indicating conflict-freeness; (8) ensures
that the number of tasks assigned to each UAV ui does not exceed the execution capacity Li;
(9) guarantees the satisfaction of the time window constraint for all tasks; (10) ensures that
each UAV satisfies the power consumption constraints.

3. Distributed Allocation with Time Window Constraints

This section proposes a heuristic method, namely, distributed allocation with time win-
dows (DATW), for solving the MATP under consideration. The DATW algorithm is run
concurrently on all UAVs that transmit information to each other via local communication.
The proposed DATW algorithm consists of three phases: task inclusion, conflict resolution,
and task reallocation. The first two phases are performed iteratively until an initial allocation
is agreed upon by all UAVs, although some tasks may remain unassigned. Then, the last
phase aims to maximize the allocation of these unassigned tasks to UAVs under the time
window constraints.

Before introducing the DATW algorithm, some message or information stored on each
UAV ui is defined as follows.

• Task list: Zi = [Zi1, . . . , Zim]T is a vector that keeps track of which task is assigned
to which UAV. The entry Zij = k if ui thinks that task tj is assigned to uk, while Zij is
infinity, i.e., Zij → ∞, if ui deems tj to be unassigned;

• Task significance list: Qi = [Qi1, . . . , Qim]T is a vector recording the significance values
of all tasks; the concept of the significance of tasks will be given in Section 3.1. If Zij →
∞, we set Qij → ∞;

• Task start time list: Ti = [Ti1, . . . , Tim]T is a vector recording the begin-execute time for
each task. When Zij = k, Tij reflects the time when UAV uk starts to execute task tj.
Note that if Zij → ∞, Tij → ∞;

• Timestamp list: si = [si1, . . . , sin]T records the timestamp when ui obtains the latest
message from each of the other UAVs. Once a message is passed, the timestamp sih is
calculated as follows:

sih =

{
τr, Gih = 1

maxα:Giα=1sαh − 1, Gih 6= 1
(11)

where τr represents the time when ui receives the information.

3.1. Task Inclusion Phase

In the first phase, each UAV ui selects the optimal task that can minimize ui’s local
time cost and inserts this task into a proper position of list Pi so that the time window
constraints are satisfied. The concepts of “significance” and “marginal significance” are
given to describe how tasks affect the local time cost of an UAV.



Drones 2022, 6, 226 6 of 18

1. Significance

Consider a task tj ∈ Pi; let Pi	tj represents the remaining task sequence after removing
tj from Pi. Then, the significance value of tj with regard to ui is formulated as follows:

qij
(
Pi 	 tj

)
=
[
F (Pi)−F

(
Pi 	 tj

)]
×
[
Tj(Pi)− Tj_start

]
(12)

By definition, qij(Pi	tj) is composed of two parts: F (Pi)−F (Pi	tj) and Tj(Pi) − Tj_start.
The first part equals the decrease in ui’s local time cost by removing tj from Pi, directly
reflecting the contribution of tj to the local time cost of ui. Meanwhile, the second is the
interval between the earliest start time allowed for tj to start under the time window con-
straints and the time ui starts to execute tj. That is, agent ui gives preference to tasks that
are performed immediately upon meeting the time window constraints. In this case, both
Tj(Pi) and Fj(Pi) for task tj are further decreased, and thus, the contribution of tj to the local
time cost of ui is logically decreased. Note that if tj /∈ Pi, let qij(Pi	tj)→∞.

2. Marginal significance

Considering a task tj /∈ Pi, the local time cost of UAV ui is increased after inserting
tj into Pi. Then, the marginal significance, denoted by qij*(Pi⊕tj), is required to reflect
the minimum increase in ui’s local time cost by adding tj into Pi, which is formulated
as follows:

q∗ij
(
Pi ⊕ tj

)
= min|Pi |+1

k=1

[
F
(
Pi ⊕k tj

)
−F (Pi)

]
×
[
Tj(Pi)− Tj_start

]
(13)

where Pi⊕k tj represents the task sequence after inserting tj into the kth position of Pi. Note
that qij*(Pi⊕tj)→ ∞ if tj ∈ Pi. Moreover, if tj ∈ Pi, Zij= i and Qij= qij(Pi	tj).

In this task inclusion phase, a task tj is allowed to be assigned to the UAV ui if the
following conditions hold:

(a). Zij 6= i and qij*(Pi⊕tj) < Qij;
(b). Let p = argqij*(Pi⊕tj); after inserting tj into the p-th position of Pi, all tasks in the

sequence Pi⊕ptj satisfy the underlying time window constraints;
(c). Foi – vmi × F (Pi⊕tj) ≥ ∆.
The above condition (a) ensures that tj is unassigned to ui and requires that the

marginal significance value qij*(Pi⊕tj) for tj is strictly less than its significance Qij stored
on ui, such that the global time cost might be decreased by assigning tj to ui. Condi-
tion (b) guarantees the satisfaction of time window constraints after inserting tj into Pi,
while condition (c) ensures the satisfaction of power consumption constraints.

Let ℘(Pi) = {tj ∈ Nt | Conditions (a), (b), and (c) both hold for tj and ui} be the set of
tasks that satisfy the above conditions. This phase chooses the task tk ∈ ℘(Pi) expressed in
(14) and inserts it into the position p = argqik*(Pi⊕tk) of list Pi.

tk = argmaxtj∈℘(Pi)
(Qij − q∗ij

(
Pi ⊕ tj

)
) (14)

The corresponding information related to task tk is updated as Zik = i, Qik = qik*(Pi⊕tk),
and the start time for all tasks in Pi is recalculated.

The above task addition process is repeated until ℘(Pi) = ∅ or |Pi| = Lt, which
indicates that no task can be included in Pi. Since the inclusion of new tasks may change
the significance of other existing tasks in Pi, the list Qi is required to update accordingly
(12) after inclusion. The whole procedure is depicted in Algorithm 1.
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Algorithm 1: ui execution task adding process at iteration λ.

Initialization: Pi(λ) = Pi(λ − 1), Zi(λ) = Zi(λ − 1), Qi(λ) = Qi(λ − 1), Ti(λ) = Ti(λ − 1).
1: while |Pi| ≤ Li do
2: For each task tj ∈ Pi compute the marginal significance value qij*(Pi⊕tj);
3: Compute ℘(Pi)← {tj ∈ Nt | Conditions (a), (b) and (c) both hold for tj and ui};
4: if ℘(Pi) 6= ∅ then
5: tk ← argmaxtj∈℘(Pi)(Qij − qij*(Pi⊕tj));
6: p← argqij*(Pi⊕tk);
7: Insert task tk into p − th of Pi;
8: Zik← i;
9: Qik ← qij*(Pi⊕tj);
10: Update Ti;
11: end if
12: else
13: break;
14: end if
15: end while
16: Update Qi;

3.2. Conflict Resolution Phase

In the previous task inclusion phase, a task may be assigned to more than one UAV,
as Algorithm 1 runs concurrently on all UAVs, leading to a conflict. Thus, the second
phase is conducted to obtain a conflict-free allocation via local communication topology.
In particular, the conflict resolution phase is composed of two stages: (i) consensus, where
UAVs communicate with each other for consensus, and (ii) task removal, where UAVs
determine whether to remove a task from its current task list. These two stages are repeated
alternately on each UAV until the global consensus is achieved across all UAVs, i.e., Qi = Qh,
∀ui, uh ∈ Nu, and ui 6= uh.

3.2.1. Consensus Stage

To search for the smallest significance value for every task, in this stage, each UAV
ui transmits the relevant information, including Zi, Qi, Ti, and si, to its neighbor UAV uj
through local communications.

Suppose that UAV ui receives a message from uh where Gih = 1. It determines whether
the received message is the latest for task tj based on lists Zi and si, and then, three possible
actions are taken on task tj:

• Update: Zij = Zhj, Qij = Qhj, Tij = Thj;
• leave: Zij = Zij, Qij = Qij, Tij = Thj;
• reset: Zij → ∞, Qij → ∞, Tij → ∞.

Specifically, agents select actions according to the decision rules given in Table 2. The
first two columns of Table 2 record the executor of task tj believed by sender uh and receiver
ui, respectively. The third column outlines the action taken on tj with respect to receiver
ui. Note that once a piece of message is passed, timestamp gi is updated according to
Formula (11) to obtain the latest time information.

3.2.2. Task Removal Stage

After the consensus stage, each UAV ui checks the current task sequence Pi and
removes tasks in two sets A = {tj ∈ Pi | Zij 6= i } and B = {tj ∈ Pi | Tj(Pi) <Tj_start or
Tj(Pi) >Tj_end}. Herein, A denotes the set of tasks in Pi whose corresponding information
Zij has been changed after the communication, while B represents the set of tasks in Pi
violating the time window constraints.
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Table 2. UAVs communication rule.

Zhj (uh is Sender) Zij (ui is Receiver) ui’s Action

h

i if Qhj < Qij: update

h update

α/∈{h,i} if shα > siα or Qhj < Qij: update

∞ update

i

i leave

h reset

α/∈{h,i} if shα > siα: reset

∞ leave

α/∈{h,i}

i if shα > siα and Qhj < Qij: update

h
if shα > siα: update

other case: reset

α if shα > siα: update

β /∈ {h,I,m}

if shα > siα and shβ > siβ: update

if shα > siα and Qhj < Qij: update

if shβ > siβ and siα > shα: reset

∞ if shα > siα: update

∞

i leave

h update

α/∈{h,i} if shα > siα: update

First, a task in A can be removed from Pi and A, according to the following criterion:

maxtj∈A
(
qij −Qij

)
> 0 (15)

where qij = F (Pi) − F (Pi	tj) represents the significance of tj computed from the current
task sequence Pi, while Qij denotes tj’s significance obtained from the consensus stage.

We release a task tk from Pi and A such that tk = argmaxtj∈A
(
qij −Qij

)
. This removal

process is continued until (15) is not satisfied or A is empty. When this process is terminated
but A 6= ∅, each remaining task tk ∈ A should be returned to agent ui by setting Zik = ui.

Next, each UAV ui checks its sequence Pi and releases the tasks in B sequentially.
Specifically, once there is a task tj ∈ Pi that does not meet the time window constraint, tj
is removed from the sequence Pi immediately, and the related information is updated as
Zij → ∞, Qij → ∞, Tij → ∞. Note that each time ui removes a task from Pi, the start time
for other tasks in Pi is updated. Thus, we need to update set B after each removal. Such
a removal process is repeated alternately until all tasks in all Pi satisfy the time window
constraint. At the end of the task removal stage, the relevant information Qij and Tij for
each tj ∈ Pi is updated correspondingly.

In the conflict resolution phase, the algorithm iterates over the consensus stage and
task removal stage until a global consensus is achieved across all UAVs. To this end, we
obtain a conflict-free allocation where tasks are assigned by meeting the time window
constraints. The whole procedure is illustrated by Algorithm 2.
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Algorithm 2: Conflict resolution phase of UAV ui at iteration λ.

Initialization: Pi(λ) = Pi(λ − 1), Zi(λ) = Zi(λ − 1), Qi(λ) = Qi(λ − 1), Ti(λ) = Ti(λ − 1), set si to
zero vector.
1: Send Qi, Ti,Zi and si to uh where Gih=1;
2: Receive Qh,Th,Zh and sh from uh where Ghi=1;
3: Update Qi, Ti,Zi and si according to the rules in Table 2;
4: A←{tj ∈ Pi |Zij 6= i, tj ∈ Pi};

5: while maxtj∈A

(
qij −Qij

)
> 0 do

6: tk ← argmaxtj∈A

(
qij −Qij

)
;

7: Remove task tk from Pi and A;
8: end while
9: if A 6=∅ then
10: let Zij = i, ∀tj ∈A;
11: end if
12: B←{tj ∈ Pi |Tj(Pi) <Tj_start or Tj(Pi) >Tj_end};
13: while B 6=∅ do
14: Remove task tk∈B from Pi;
15: Set Zij, Qij, Tij as infinity values
16: Update B;
17: end while

3.3. Task Reallocation Phase

After completing iterations between the above phases, the obtained allocation gener-
ally covers all tasks. However, in some cases, a few tasks may remain unassigned due to
the strict time window constraints. Let Cai be the set of these unassigned tasks for each
UAV ui, i.e., Cai ={tk | Zik→∞}. This phase intends to reassign tasks in Cai to some UAVs to
increase the number of allocated tasks. That is, for each UAV ui, only tasks in Cai can be
added to or removed from the current list Pi, while assigned task tj /∈ Cai is not allowed
to be moved. This phase is composed of two stages: secondary inclusion and secondary
conflict resolution.

3.3.1. Secondary Inclusion

We define a vector Mi = [mi1, mi2, . . . , mi|Cai|]T for all tasks in Cai with regards to
UAV ui, where the entry mij = 1 if a task tj ∈ Cai has been added to Pi but removed from the
same sequence for violating time window constraint, and mij = 0 otherwise. By definition,
a task tj ∈ Cai can be assigned to UAV ui according to the following conditions:

(d). Zij 6= i and mij = 0;
(e). let p = argqij*(Pi⊕tj); after inserting tj into the p-th position of Pi, all tasks in the

sequence Pi⊕ptj satisfy the underlying time window constraint.
(f). Foi – vmi × F (Pi⊕tj) ≥ ∆.
Condition (d) ensures that tasks are not repeatedly added or removed by the same UAV,

condition (e) ensures that all tasks in Pi⊕tj satisfy the time window constraints after inserting
tj into Pi, and condition (f) ensures the satisfaction of power consumption constraints.

Let <(Pi, Cai) = {tj ∈ Cai | Conditions (d), (e) and (f) both hold for tj and ui} denote
the set of tasks that satisfies the above conditions. To minimize the significance value, each
UAV ui chooses the task tk∈<(Pi, Cai), according to (16), and inserts it into the position
p = argqik*(Pi⊕tk) of list Pi.

tk = argmintj∈<(Pi , Cai)
q∗ij(Pi ⊕ tj) (16)

Different from criterion (14), (16) requires that the UAV only selects out the unassigned
task tk with the minimum marginal significance value. The above process is repeated until
no task can be included in Pi, i.e., <(Pi, Cai) = ∅ |Pi| = Li.
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3.3.2. Secondary Conflict Resolution

To obtain a conflict-free allocation, the secondary conflict resolution stage iterates
between the consensus process and the task removal process until global consensus is
achieved across all UAVs.

In the consensus process, the heuristic consensus rule proposed in Section 3.2.1 is used
to obtain a conflict-free allocation. Note that each UAV only exchanges the information
related to tasks in Cai with its neighboring UAVs through local communications. According
to the decision rules given in Table 2, once ui receives a message, it updates, resets, or leaves
the stored information Zij, Qij, Tij, and sij for each task tj ∈ Cai.

Then, in the task removal process, each UAV ui checks its current task sequence Pi and
removes tasks belonging to two sets A′={tj ∈ Pi | Zij 6= i} and B′={tj ∈ Pi | Tj(Pi)<Tj_start or
Tj(Pi)>Tj_end} from Pi. Herein, A′ denotes the set of tasks whose information Zij is changed
after the consensus process, while B′ represents the set of tasks violating the time window
constraints. The tasks in A′ and B′ are sequentially removed from Pi using the same method
as in Section 3.2.2. In addition, each time a task tj ∈ B′ is removed, we update its related
information as Zij → ∞, Qij → ∞, Tij → ∞, and we also set mij = 1 such that task tj is
prevented from repeatedly assigning to Pi, according to condition c). These requirements
not only avoid invalid task inclusion and removal, but also improve the performance of the
entire system.

The secondary inclusion and secondary conflict resolution are repeated alternately
until no actions can be made for a period of time. That is, the task reallocation phase has
already converged, and an optimized global conflict-free task assignment that satisfies all
time window constraints is obtained.

3.4. Convergence Analysis

The first two phases of the DATW algorithm alternate until an initial allocation is
obtained, and then, the last phase is performed to reallocate these unassigned tasks. In
the ideal case, the system deems to be converged when no changes can be made in the
first two phases. However, due to the strict time window constraints, some tasks may be
repeatedly included and removed by the same UAV, and thus, an infinite cycle arises. To
avoid such reiteration and reallocate those tasks in the last phase, iterations between the
first two phases are terminated, provided that the allocations obtained after the second
phase remain the same for a specified period.

Moreover, each UAV always aims to decrease the global time cost at each iteration.
Specifically, the significance value of a task is highly related to its current contribution to
the local time cost of its assigned UAV. In the first two phases, each UAV ui exchanges the
significance of all tasks with its neighbor UAVs, and then, based on these significance values,
ui tries to decrease the global time cost ∑n

n=1 F (Pi) by recursively adding or removing tasks
from its task sequence. The last phase reassigns tasks in Cai, which collects all unassigned
tasks after the first two phases, to agents. In particular, each ui selects unassigned tasks
in Cai with the minimum significance value in each iteration of the last phase. Note that
the initial significance value for each task is set to infinity and is continuously updated as
the significance of a task is highly correlated with the current allocation. Consequently, the
DATW algorithm converges when the task significance list of each UAV is not changed for
a specified period of time.

Formally, the proposed DATW running on each UAV can be expressed in detail
as follows.

Step 1: Performing the task inclusion phase, according to Algorithm 1.
Step 2: Running Algorithm 2. The conflict resolution phase is repeated until global

consensus is achieved over all UAVs.
Step 3: Step 1 and Step 2 are repeated until the allocation obtained after Step 2 remains

the same for a specified period of time.
Step 4: Carrying out the secondary inclusion stage to assign tasks in Cai to agents.
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Step 5: Carrying out the secondary conflict resolution stage, performing the consensus
process and the task removal process alternately, until the global consensus is achieved
over all UAVs.

Step 6: Step 4 and Step 5 are repeated until no changes have been made in the task
significance list Qi for a specified period of time, and then, the algorithm is completed.

Moreover, we obtain the working architecture of the DATW by integrating the above
6steps through the process in Figure 2.
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4. Simulation

In this section, numerical simulations are conducted to assess the effectiveness of
the proposed DATW algorithm. The proposed method is first verified across search and
rescue scenarios with different settings generated randomly. Then, the proposed method
is compared with an extension of the CBBA (E-CBBA) method in [26] in terms of various
parameter settings.

4.1. Scenario and Simulation Setup

The performance of the DATW method is evaluated based on the search and rescue
scenarios proposed in [28]. Suppose that a number of survivors are discovered in a specific
area, and a group of UAVs are required to perform rescue tasks on these survivors. The
survivors are classified as A-type, B-type, and C-type according to their health condition.
All survivors are considered to have equal priority but must be rescued within the different
time window constraints summarized in Table 3. It is assumed that one-quarter of the
survivors are A-type, one-quarter are B-type and the remaining ones are C-type. The goal
is to minimize the average time cost across all rescue tasks and to rescue as many survivors
as possible upon the validity time interval. Moreover, in such a scenario, all UAVs and
survivors are randomly initialized in a 10,000 × 10,000 × 1000 m 3-D spatial plane. The
UAVs’ speeds are assumed to always be 50 m/s, and each UAV takes 30 s to rescue a
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survivor but executes at most five tasks at a time. Moreover, the UAVs’ initial fuel masses
are set as 400kg, and each UAV consumes the fuel at 0.05kg/s.

Table 3. Time Window Constraints [Tj_strart, Tj_end] of rescue missions for A, B, and C survivors.

Survivors’ Type
Range of Values for the

Earliest Start Time Tj_strart of
a Rescue Mission

Range of Values for the
Latest Start Time Tj_end of

Rescue Missions

A [0 s, 20 s] [100 s, 120 s]

B [50 s, 200 s] [300 s, 400 s]

To better describe the problem size of various scenarios, we introduce a new parameter,
namely, the task-to-UAV ratio (TUR), represented by δ ≡ m/n, where m (resp. n) is the
number of tasks (resp. UAVs). Table 4 shows the parameters of all testing scenarios where
the UAV number is denoted by n ∈ {3, 4, 9, 10, 15, 16} and the corresponding TUR is set as
δ ∈ {1, 2, 3}. Hence, there are 18 = 6 × 3 combinations of scenarios to consider. The time
windows for all these combinations are randomly generated, according to Table 3.

Table 4. Parameter Size for Each Instance Type.

Instance Type UAV Num TUR

Small
3

δ = 1, 2, 3

4

Medium
9

10

Large
15

16

4.2. Simulation Steps

In this paper, all experiments are performed on an Intel(R) Core (TM) i9-10900CPU@3.70
GHz PC, and the simulation program is executed with Python under the Windows 10
operating system. Four basic libraries in Python are employed to simulate the entire pro-
cess: NumPy, Pandas, Matplotlib, and Time. Specifically, the NumPy is used to handle
the calculations of a matrix; the Pandas is used to export the generated data in the simu-
lation and perform further analysis; the Matplotlib is used for drawing two-dimensional
diagrams, while the Time is added for addressing problems with time information.

The simulation program consists of a clock module, a data generation module, a task
assignment module, and an output module. The clock module, which uses functions from
the Time library, is the first component of the simulation. The clock module keeps track
of the start and end time of each simulation, which aids in evaluating the computational
complexity of the whole algorithm. Meanwhile, the clock module also records the times-
tamp si when each UAV ui obtains the latest message from the other UAVs. Then, the
data generation module is introduced and is based on the functions in the NumPy library.
In particular, this module randomly generates the initial scenario for each simulation,
according to the settings in Section 4.1. To this end, the task assignment module imports
the above-mentioned data and obtains the proper allocation for each UAV. Ultimately, the
output module is employed based on the functions in the Pandas and the Matplotlib, such
that the visual output of the allocation results is achieved.

4.3. Simulation Results
4.3.1. Validation Experiments

A series of validation experiments are conducted to evaluate the performance of
DATW; there are four performance parameters to consider:
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• G: the average completion time of all tasks, which is the objective of the studied MTPA
and can be obtained from (6);

• Λ: the number of iterations, which is determined by the last time an allocation change
is made;

• Π: the number of communications, which depends on the passed messages summed
over all UAVs during the consensus phases in Section 3.2 and the secondary conflict
resolution in Section 3.3.2.;

• Ψ: the percentage of feasible tasks that are allocated to UAVs and the given time window
constraints are satisfied.

The above parameter G reflects the objective of MATP, Λ determines the computation
time of the whole algorithm, Π implies the communication cost of performing DATW, and
Ψ illustrates the effectiveness of DATW in handling the time window constraints.

In this section, all experiments are conducted based on the scenarios summarized in
Table 4. For each combination in Table 4, 30 instances are created under randomly generated
initialization settings. A mesh communication topology is used such that each UAV can
communicate with every other UAV. The simulation results are presented in Table 5.

Table 5. Result of the DATW Method in Search and Rescue Scenario.

UAV Num Task Num TUR
Ave.

Completion
Time (G)

Ave. Iteration
Times (Λ)

Ave.
Communication

Num (Π)

Percentage of
Feasible Tasks (Ψ)

3

3 1 103.88 1.27 5.83 100.0%

6 2 149.05 2.47 9.07 93.8%

9 3 149.02 3.13 11.03 74.1%

4

4 1 128.01 2.2 13.5 96.7%

8 2 143.66 2.87 16.53 92.5%

12 3 146.02 3.67 16.43 75.6%

9

9 1 110.37 3.03 42.4 99.3%

18 2 132.89 5.1 67.73 96.7%

27 3 139.16 6.4 65.47 84.7%

10

10 1 104.42 3.67 58.83 99.3%

20 2 129.91 5.8 86.9 96.0%

30 3 139.31 6.3 72.33 85.8%

15

15 1 100.87 4.8 114.23 98.4%

30 2 123.82 6.83 147.37 97.0%

45 3 135.28 8.07 142.27 87.7%

16

16 1 100.64 4.87 130.07 99.8%

32 2 124.27 6.8 156.5 96.4%

48 3 135.42 7.93 160.3 86.6%

According to Table 5, the average rate of feasible tasks exceeds 70% for each combina-
tion, which means that DATW is capable of finding a solution that allocates most tasks to
UAVs properly. Moreover, we observe that the parameter TUR directly affects the average
completion time and the number of iterations. In particular, the average completion time G
logically rises with TUR as there are more tasks required to be performed. Additionally,
as TUR becomes larger, each agent has increasingly available task options, such that the
algorithm must iterate more times to select the valuable allocation. Hence, parameter Λ is
enlarged. Moreover, the parameter Π increases with an increasing UAV number since more
communications are required to reach consensus when the number of UAVs is increasing.
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In addition, Π appears to take its minimum value at δ = 1 when the number of UAVs is not
changed. The reasons seem simple: the number of tasks is relatively small with δ = 1, and
hence, the allocated tasks are much easier to satisfy with the time window constraints. In
this case, DATW may achieve its optimal allocation before the task reallocation phase.

4.3.2. Comparisons on the Task Reallocation Phase

Task reallocation, the third phase of DATW, aims to allocate the tasks to UAVs that
are unassigned after the first two phases. To validate the effectiveness of this reallocation
phase, we carry out our experiments to compare and analyze the allocations before and
after this phase. Herein, each scenario combination in Table 4 is simulated 50 times under
random initialization settings.

From Figure 3, when the TUR is set as δ ∈ {1, 2, 3}, the line graphs depict the average
number of allocated tasks before and after the task reallocation phase. The bar graphs
depict the average increase in the number of allocated tasks during that phase. Notably,
the task reallocation phase can significantly improve the total number of allocated tasks
from the solution achieved by the first two phases with various UAV numbers and TURs.
Comparing (a), (b), and (c) in Figure 3, for combinations with the same UAV numbers,
more tasks are allocated during the third phase as the value of TUR increases. This is
because when the value of TUR grows, there are more tasks involved, such that the time
window constraints between tasks are more likely to overlap. As this situation leads to
greater difficulties in assigning tasks, the task reallocation phase is necessary for obtaining
a well-performed allocation. Moreover, we can observe that the number of tasks allocated
through the third phase logically increases with the number of UAVs for each value of TUR.
In the best case, the average increase in the number of allocated tasks is up to 8.04 when
allocating 45 tasks to 15 UAVs.
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4.3.3. E-CBBA Versus DATW

Since the proposed DATW and the E-CBBA algorithm in [26] both aim to allocate
tasks within validity time windows, we conduct a range of comparisons to determine the
merit of the assignments achieved. Herein, we assume that the obtained allocation deems
to be a success if each task is assigned to a proper UAV and complies with time window
constraints. Then, based on this assumption, we introduce a new parameter, namely, the
success rate (SR), to assess the performance of these two algorithms. All comparisons are
conducted based on the search and rescue scenarios, where the UAV number is varied as a
parameter from two to thirty and TUR is set as δ = 2. Each combination of these scenarios
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is simulated 50 times under random initialization settings, such that the success rate of a
combination is calculated as follows:

SR = Nsa/50 (17)

where Nsa denotes the number of successful allocations over all simulations and 50 is the
total number of simulations.

Figure 4 compares the success rate of the DATW and the E-CBBA with different
numbers of UAVs. The line graphs show the success rate of the two algorithms, while
the bar graphs show the increase in success rate achieved by the DATW. Obviously, it
demonstrates that the DATW consistently outperforms the E-CBBA algorithm in terms of
success rate. Specifically, the average success rate for DATW is 52.7%, while the average
success rate for E-CBBA is 34.7%, which means that the proposed DATW achieves an 18%
(=52.7% − 34.7%) increase in the average success rate. Notably, in the combination of
22 UAVs and 44 tasks, all tasks are successfully allocated within validity time windows
32 times by DATW, but only 10 times by E-CBBA.
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4.3.4. Topology Comparison

The dynamic environment with moving UAVs incurs various changes in communica-
tion typologies between UAVs, and thus, the proposed algorithm is required to perform
effectively in different communication topologies. Figure 5 depicts four basic communica-
tion topologies with nondirected graphs: a fully connected mesh topology, a row topology,
a circular topology, and a star topology. Specifically, we aim to analyze how these different
typologies affect the performance of DATW based on a search and rescue scenario and assess
the DATW with respect to the number of communications (Π) and the percentage of feasible
tasks (Ψ). All experiments are conducted on a scenario combination with 16 UAVs and
32 tasks, where the combination is simulated 50 times under random initialization settings.

The scatterplot in Figure 6 shows the result of over 50 simulations, which compares
the PI, E-CBBA, and DATW in terms of parameters Π and Ψ. Obviously, the parameter Ψ is
independent of the specific topology, while the parameter Π appears to vary according to
the type of topology. In particular, the circular topology and the star topology have a similar
degree of communication, such that Π and Ψ are similar across topologies for PI, E-CBBA,
and DATW. Moreover, for each algorithm, the parameter Π decreases notably with fully
connected mesh topology and increases with the row topology. Such an increase in Π is due
to information requiring multiple communications among UAVs to reach a consensus when
the network is not fully connected. Moreover, the PI algorithm cannot effectively handle
the task allocation problem under various time window constraints, while the proposed
DATW based on PI always achieves well-performing allocations. Additionally, we observe
that under each communication topology, the distributions of the parameter Π are always
similar, in terms of the DATW and PI algorithms. That is, the DATW achieves superior
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allocations without imposing any extra communication burdens and allocates the most
tasks to UAVs within time window constraints.
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resolution phase, and task reallocation phase. Herein, the average number of allocated tasks
exceeds 70% by the aid of the newly introduced task reallocation phase. Another novel idea
is to correlate the significance value of tasks with the time window constraints, such that
each task can be completed as early as possible during its validity interval. Moreover, the
start time of each task is broadcasted among agents via communication typology to allocate
tasks in a validity time interval without imposing any extra communication burdens. To
this end, a conflict-free allocation with a minimum average task completion time can be
obtained by the proposed DATW algorithm, where the vast majority of tasks are assigned
within the validity time window. A series of simulations are conducted under a search
and rescue scenario. The experimental results confirm that the DATW is effective and
superior in increasing the total number of allocated tasks as well as minimizing the average
completion time of the tasks. Moreover, compared with existing (CBBA-based) solutions,
results show up to an 18% increase in success rate (SR) using the DATW. Thus, the DATW
can successfully enable a team of UAVs to perform complex missions under various time
window constraints.

Future work will focus on facilitating real-time task allocation in dynamic environ-
ments, which indicates integrating the presented DATW into the asynchronous framework
and addressing the MTAP with latency in task computation and communication.
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