
����������
�������

Citation: Lin, T.-J.; Stol, K.A.

Autonomous Surveying of Plantation

Forests Using Multi-Rotor UAVs.

Drones 2022, 6, 256. https://doi.org/

10.3390/drones6090256

Academic Editor: Eben Broadbent

Received: 31 July 2022

Accepted: 8 September 2022

Published: 16 September 2022

Publisher’s Note: MDPI stays neutral

with regard to jurisdictional claims in

published maps and institutional affil-

iations.

Copyright: © 2022 by the authors.

Licensee MDPI, Basel, Switzerland.

This article is an open access article

distributed under the terms and

conditions of the Creative Commons

Attribution (CC BY) license (https://

creativecommons.org/licenses/by/

4.0/).

drones

Article

Autonomous Surveying of Plantation Forests Using
Multi-Rotor UAVs

Tzu-Jui Lin * and Karl A. Stol

Department of Mechanical and Mechatronics Engineering, The University of Auckland,
Auckland 1010, New Zealand
* Correspondence: tlin442@aucklanduni.ac.nz

Abstract: Modern plantation forest procedures still rely heavily on manual data acquisition in
the inventory process, limiting the quantity and quality of the collected data. This limitation in
collection performance is often due to the difficulty of traversing the plantation forest environment
on foot. This work presents an autonomous system for exploring plantation forest environments
using multi-rotor UAVs. The proposed method consists of three parts: waypoint selection, trajectory
generation, and trajectory following. Waypoint selection is accomplished by estimating the rows’
locations within the environment and selecting points between adjacent rows. Trajectory generation
is completed using a non-linear optimization-based constant speed planner and the following is
accomplished using a model predictive control approach. The proposed method is tested extensively
in simulation against various procedurally generated forest environments, with results suggesting
that it is robust against variations within the scene. Finally, flight testing is performed in a local
plantation forest, demonstrating the successful application of our proposed method within a complex,
uncontrolled environment.

Keywords: unmanned aerial vehicle; exploration planning; trajectory planning; plantation forests

1. Introduction

Modern plantation forestry is an industry with the explicit goal of maximizing the yield
of high-quality wood within a managed area. One part of plantation forest management is
the forest inventory process used to estimate the volume of merchandisable timber within
a plot of trees. Successful application of this will provide the forester with data to identify
any issues with the volumetric growth rate and to make an informed decision regarding the
forest harvest date. In New Zealand, forest inventories are conducted using the regression-
based analysis technique MARVL [1], where systematic sampling is used to select small
groups of trees for extrapolating data regarding the entire forest. This sampling process
is known as cruising and is generally completed on foot using manual means [2], which
is subject to cost and labor availability limitations. In pursuit of higher accuracies and
more frequent surveys, modern methods have moved towards better parameter estimation
methods with plot imputation [3], which calibrates large-scale aerial surveys using ground
data. Some existing forms of data collection used are Airborne Laser Scanning (ALS) [4,5],
Terrestial or Mobile Laser Scanning (TLS/MLS) [6,7] to collect the aerial and ground
calibration data.

Unfortunately, the under-canopy environment is a hostile environment for humans
and ground-based robots due to uneven terrain, branching, and undergrowth, all of which
are seen in the plantation forests shown in Figure 1. The presence of these obstacles means
that ground-based traversal within plantation forests is heavily impeded, resulting in slow
and expensive under-canopy data acquisition. Fortunately, recent advancements in UAV
technologies have produced low-cost, high-agility multi-rotor UAVs suitable for operation
within complex environments such as plantation forests. With new sensors and processing
methods capable of accurately capturing surrounding spatial information in real-time,

Drones 2022, 6, 256. https://doi.org/10.3390/drones6090256 https://www.mdpi.com/journal/drones

https://doi.org/10.3390/drones6090256
https://doi.org/10.3390/drones6090256
https://creativecommons.org/
https://creativecommons.org/licenses/by/4.0/
https://creativecommons.org/licenses/by/4.0/
https://www.mdpi.com/journal/drones
https://www.mdpi.com
https://orcid.org/0000-0002-6977-4333
https://orcid.org/0000-0002-1661-167X
https://doi.org/10.3390/drones6090256
https://www.mdpi.com/journal/drones
https://www.mdpi.com/article/10.3390/drones6090256?type=check_update&version=1

Drones 2022, 6, 256 2 of 30

multi-rotor UAVs carrying these sensors are rapidly gaining popularity in recent literature
as remote sensors.

(a) (b)

Figure 1. Examples of plantation forests which are (a) traversable, and (b) untraversable on foot in
Kaingaroa Forest, Rotorua, New Zealand. Note the presence of an available flight corridor in both
environments.

Existing literature regarding the operation of UAVs within under-canopy environ-
ments can be approximately split into two categories; the first category generally focuses on
the mapping or data extraction aspects, and the second consists of works related to enabling
autonomous flight or navigation within the forest. In general, works related to data capture
in this area use manual flight with either LiDAR [8–10], or Stereo Vision/Structure from Mo-
tion [11–13]. These works usually aim to produce a survey-grade map so that parameters
such as tree count, diameter at breast height, and tree taper can be extracted. The second
set of works consists of those attempting to fly in forests autonomously; production of
survey-grade maps and extraction of parameters are secondary in these works, with the
main focus on safely traversing through the forest. Literature regarding the autonomous
navigation of multi-rotor UAVs within under-canopy environments is relatively scarce,
likely due to the niche use case and lack of advanced see and avoid capabilities of commer-
cial multi-rotor systems. Nevertheless, projects such as [14] used a Hokuyo UTM-30LX
2D Planar LiDAR and an Artificial Potential Field (APF) controller for obstacle avoidance
with a target velocity vector. A similar approach is followed in [15] using the same 2D
LiDAR setup with a vector field-based controller for navigation. Both of these systems
achieved autonomous flight between two rows of trees without collision. Similarly, [16,17]
both also use a rigidly mounted 2D LiDAR for environmental sensing, coupled with Graph-
SLAM [18] for motion estimation in the environment. However, all of the previously noted
projects only attempt to localize and implement see-and-avoid systems as opposed to fully
navigating the environment for a complete survey.

Outside of the forestry space, general-purpose trajectory planning and exploration is
an active area of research in robotics. In particular, optimization-based methods are rapidly
gaining popularity as they can rapidly produce safe, dynamically feasible trajectories.
The general methodology followed is to formulate a cost function related to the trajectory,
its derivatives, and some form of collision penalty. Various approaches are used throughout
literature, for example, discrete waypoints [19], high-order polynomials with quadratic
programming [20], b-splines with a local [21] or global [22] map, fixed-duration piecewise
polynomials [23], and safe-corridors [24–26]. In particular, [20,22,24] demonstrate the ability
to traverse unknown forest environments without collision autonomously but still require
manual waypoint selection. General exploration of unknown environments is also an active
area of research with many existing works; for example, [27,28] use a two-tiered approach,
where frontiers are first extracted, and the order they are visited is decided by solving a
traveling salesman problem. In [29], a library of motion primitives is used to search for
positions with maximum information gain, while in [30–32] the search is instead conducted
using rapidly-exploring random-trees (RRT) to sample the already explored region. More

Drones 2022, 6, 256 3 of 30

recently, probabilistic roadmaps (PRM) have also been explored in [33]. Unfortunately,
generalized exploration methods often do not offer the best coverage performance, as
shown in our previous paper [34].

This paper details the development of a UAV platform capable of autonomously
exploring under-canopy environments within plantation forests to produce faster surveys.
To achieve this goal, the navigation strategy outlined in our previous work [34] is extended
to function in the absence of any structural assumptions about the forest. Specifically,
the contributions of this work are as follows:

• A method for online waypoint placement for autonomous coverage planning in
plantation forests

• A nonlinear optimization-based trajectory generation method to rapidly plan constant-
speed, dynamically feasible, and safe trajectories within complex environments

• Experimental flight testing results in both simulation and a local plantation forest to
verify the proposed method

Towards these contributions, Section 2 details the flown UAV hardware and method-
ologies used for autonomous navigation within the plantation. Section 3 details simulation
environments and experiments used to determine the theoretical performance of the pro-
posed system. Finally Section 4 details flight tests performed in an outdoor plantation
environment to validate the proposed methods.

2. Materials and Methods

Because autonomous flight within plantation forests is a novel task, no sufficiently
compact off-the-shelf hardware capable of carrying an appropriate LiDAR with sufficient
onboard computer and endurance exists. As a result, a prototype multi-rotor UAV has
been developed for flight testing of the proposed methodology, mainly out of necessity
as it would allow a significantly larger margin of error before any collisions occurred.
Unfortunately, the smaller UAV and comparatively heavy payload result in somewhat
poor endurance, which can only be improved with lighter sensors or batteries with higher
energy density. Figure 2 shows this survey UAV, consisting of a quadrotor with slightly
tilted propellers for increased yaw authority. A Livox MID-70 LiDAR, along with an
Intel Realsense T265 completes the sensor setup, and an Intel NUC handles onboard
processing for autonomous flight. ROS Noetic [35] is used as the middleware for the
software implementation, and R3Live [36] is used for pose estimation.

Figure 2. UAV used for flight testing. The carried payload consists of a Livox MID-70 LiDAR, Intel Re-
alsense T265, and an Intel NUC. The body and inertial frames are denoted as {B} and {I} respectively.

Drones 2022, 6, 256 4 of 30

For clarity, the notation {FX}, {FY}, {FZ} represents the right-hand X, Y, and Z axes
in the ENU frame F. Position, orientation, and transformations to frame {Y} from with
respect to frame {X} is denoted as YPX , YRX , and YTX respectively. The inertial frame {I}
is used as the fixed world frame, while {B} defines the location of the flight controller.
While additional fixed LiDAR and camera frames are used during the computation of pose
estimates and mapping information, they are excluded for clarity.

For autonomous navigation, three tasks must be completed: waypoint selection,
trajectory generation, and trajectory following. The first task generates the sequence
of waypoints to be visited to explore the environment fully, the second task produces
a collision-free and dynamically feasible flight plan to reach the goal, and the last task
executes the generated trajectory. An overview of the proposed system is shown in Figure 3.

Ground
Estimation

Row
Segmentation

Waypoint
Generation

Mapping

Trajectory
Generation

Trajectory
Following

Pose
Estimation

Figure 3. Overall task flow during the survey process. Pose estimation and mapping are not within
the scope of this work.

To ensure robust operations within any plantation environment, the proposed method
does not use any priori information regarding the structure of the plantation environment.
All mapping data used in a single flight is generated onboard and online during that flight
using ranging data from the onboard LiDAR, and pose estimates are generated using
R3Live. This work does not use Global Navigation Satellite Systems (GNSS) due to the lack
of sufficient accuracy without a clear line of sight to the sky.

2.1. Waypoint Generation

Typical New Zealand plantation forests consist of Radiata pine ideally planted on
a regularly spaced square grid to allocate an approximately equal land area to each tree.
However, planting in a grid pattern is difficult, so real plantations are typically established
on a row-by-row basis where trees are sequentially planted in parallel rows. This planting
process produces distinct rows of trees with relatively consistent spacing between them
but no consistent structure in the orthogonal direction, the effects of which can be seen in
Figure 4.

Figure 4. Horizontal slice of a point cloud in a typical New Zealand plantation forest with rows
labeled. Note the lack of consistent structure in the orthogonal direction.

Drones 2022, 6, 256 5 of 30

Our previous work [34] introduces the concept of using a lawnmowing pattern aligned
with the row direction to produce faster surveys, as shown in Figure 5. This work extends
this concept to enable outdoor operation in realistic forests with irregular spaced rows. This
task aims to produce a set of waypoints along the corridor between two adjacent rows of
trees and to generate a new set of waypoints when the trajectory follower finishes executing
the desired trajectory. The process of determining goal waypoints broadly consists of
ground plane estimation and removal, tree clustering, row extraction, and finally, waypoint
placement. It should be noted that while multi-UAV systems have the potential to greatly
increase the coverage area through partitioning of the exploration space, they are outside
of the scope of this work.

Figure 5. Approximate survey plan consisting of a lawnmowing pattern aligned with
plantation rows.

The first task of this process is ground plane estimation to remove the influence of
ground elevation in the clustering process. The ground mesh is first estimated using Cloth
Simulation Filter (CSF) [37] with the global occupancy grid serving as the input point cloud.
Ground elevation can then be removed from the global point cloud by subtracting the
corresponding estimated elevation, resulting in all estimated ground points occupying an
elevation of 0m. Next, individual parallel rows of trees are identified through clustering to
produce an estimate of the flight corridor between adjacent rows. A slice can then be taken
from the elevation corrected point cloud and flattened to form a planar view of the forest at
the current UAV altitude. DBSCAN [38] is then used to cluster these points to produce a
list of estimated tree locations Cs. A search-based approach is used to determine the most
likely direction of rows; consider the scenario presented in Figure 6, the stem locations can
be collapsed along {IX} to form distinct clusters, as shown.

Drones 2022, 6, 256 6 of 30

{ }

{ }

{ }

{ }

(a) (b)

Figure 6. Top-down views of (a) good, and (b) poor alignment between {IX} and the principle row
directions of the plantation forest.

Given the good alignment of the row direction with {IX}, distinct clusters will be
observed in the collapsed state as shown in Figure 6a. Alternatively, if the row alignment is
poor, the case in Figure 6b will be present, with fewer large clusters present in the scene.
Thus, the most probable row direction consists of the direction that minimizes the spread
of each present cluster. Using the sum of the spread of each cluster as a cost function,
a search can be performed to determine the best alignment between {IX} and the estimated
row directions. The functions for this are shown in Equations (1) and (2), optimizing for
minimum cost.

argminJ(θ) =
nc

nv

nc

∑
j=0

((max(Lj)−min(Lj))/nj)
2 (1)

where

L = DBSCAN(Cs ×
[

sin(θ)
cos(θ)

]
); Cs =

x1 y1
x2 y2
...

xnc ync

 [xi, yi] =
Ci PI (2)

where Lj denotes the list of transformed tree locations corresponding to cluster j, nj
denotes the number of trees in cluster j, nv denotes the number of clusters with more
than five trees, and nc denotes the number of clusters. Since row estimates are generated
based on identified cluster information, the accuracy of the θ estimate does not need to be
high. Because this work does not consider initial traversal to the survey starting location,
an assumption is made that the inertial frame {Ix} is approximately aligned with the row
direction. Therefore, a coarse search is performed for θ ∈ [−30◦, 30◦] in 1° increments.
The cluster labels from the minimum cost θ value are used to label the unmodified tree
locations C, resulting in clusters of tree locations corresponding to independent rows.
Finally, a least-squares fit is used to determine the estimated rows present within the scene
and converted into the r, θ representation, as shown in Equations (3) and (4).

Let x =

[
m
c

]
be the least squared solution to Ax = B

A =

x1 1
x2 1
...

xn 1

; B =

y1
y2
...

yn

For L = {L1, L2, · · · , Ln}, xi, yi ∈ Lj

θ = atan2(1,−m) (3)

r = c× sin(θ) (4)

Drones 2022, 6, 256 7 of 30

As all segmented rows are approximately parallel, their relative position in the envi-
ronment can be determined by sorting the list of rows by their associated r. Consider the
environment shown in Figure 7, consisting of two approximately parallel rows ordered by
r. Defining

rij = 0.5(ri + rj) (5)

θij = 0.5(θi + θj) (6)

where rij, θij defines the estimated parameters of the traversal corridor between the tree
rows defined by ri, rj. Since each corridor needs to be traversed at least once to fully explore
the environment, the traversal order for N corridors then becomes {r12, r23, · · · , rN−1,N}.
Lastly, a set of waypoints can be established for traversal down a single corridor using
Equations (7)–(9).

{ }
{ }

Row i

Corridor ij

Row j

Figure 7. Sample environment consisting of two rows with r, θ labeled. The dotted yellow line
denotes the traversable corridor.

Let ws = {0, Y(0), Z(0, Y(0)) + Zr}T , we = {0, Y(m), Z(m, Y(m)) + Zr}T

Y(x) = x× tan(90◦− θij) +
rij

sin(θij)
(7)

wi = |wd| ×minc + ws For i > 0, i ≤ m
minc

(8)

wd =

{
we−ws mod(i, 2) = 1
ws−we otherwise

(9)

where Z(x, y) is the estimated ground elevation at {Ix, Iy} = {x, y}, Zr is the reference
altitude above ground, minc is the spacing between successive waypoints, wi denotes the
ith waypoint down a single corridor, and ws, we denotes the start and end coordinates for
a single corridor. Each successive corridor is traversed in the reverse direction to remove
the need to return before each traversed row. The generated list of waypoints is passed
to the trajectory planner, where any occupied waypoints are skipped; the traversal of a
single corridor is considered complete when the entire generated trajectory has been fully
executed, or no additional waypoints can be visited. Exploration is terminated when the
required number of rows is surveyed, and a waypoint at {0, 0, Z(0, 0)} is sent to command
a return to the origin.

2.2. Trajectory Generation

The trajectory planner performs three tasks; maintaining an up-to-date global map
of the environment, generating the actual flight trajectory, and finally replanning if the

Drones 2022, 6, 256 8 of 30

trajectory becomes unsafe. The pipeline overview is presented in Figure 8 and uses an
optimization-based approach to generate high-quality trajectories rapidly. In line with
many other optimization-based trajectory planners, a Euclidean Signed Distance Field
(ESDF) is used for mapping information. The ESDF is built online with point cloud data
from the MID-70 LiDAR using FIESTA [39].

A* Seeding Path

Generation

B-Spline

Conversion

Non-linear

Optimization
Safety Checks

Path
Non-optimal

B-Spline

Waypoint

Optimal

B-Spline

Desired

Trajectory

ESDF Map

Figure 8. Overall trajectory planner pipeline.

Trajectories are represented as uniform clamped B-Splines, which are often used to
define smooth curves using a small number of discrete points. A B-Spline is defined by
the evenly spaced knot vector t with interval tint and control points P0, P1, · · ·Pn where Pi
represents a position in 3D space such that Pi ∈ R3, where:

t = {t0, t1, · · · tm}, ti+1− ti = tint ; i ∈ [0, m− 1] (10)

P = {P0, P1, · · ·Pn} (11)

Departing from how B-Splines are typically defined, the knot vector is not constrained
to [0, 1) and is instead defined such that ti ∈ [0, tm). This definition of the knot vector is
convenient because it allows for direct time allocation of the trajectory during optimization.
B-Splines offer some beneficial properties in the context of trajectory planning, particularly
CN-1 continuity, and the strong convex hull property. A degree 3 B-Spline guarantees C2

continuity at all points, which means that the trajectory is guaranteed to be continuous
up to the 2nd derivative. The convex hull property also guarantees that any points of the
spline will fall within the convex hull formed by the neighboring control points. Specifically,
if t ∈ [ti, ti + 1), all points in that piecewise portion of the B-Spline are contained entirely
in the convex hull formed by control points Pi−2, Pi−1, Pi. These properties greatly simplify
the enforcement of collision constraints and dynamic limits.

The first step in the trajectory generation process is producing a seeding path, with the
only requirement being that this path is collision-free and approximately optimal, since the
shape and dynamic properties of the trajectory will be heavily modified during optimiza-
tion. It should be noted, however, that this solution should ideally be close to the optimal
path to increase the probability of the optimized trajectory converging on the global minima
instead of less optimal local minima. Because these requirements are very loose, an A*
search [40] in 3D using 26-way connectivity is performed with the Manhattan distance
heuristic to rapidly generate a traversal path to the goal. For speed reasons, the A* search
grid has the same voxel resolution as the ESDF (0.2m), allowing direct ESDF lookups to be
used for occupancy checking. The output of this search is a discrete set of poses O which
encodes no discrete positions in the inertial frame {I} containing a collision-free path to
the goal, namely

O = {o1, o2, · · · , ono}T where oi = {oi PI} (12)

The generated path is used to seed the initial trajectory by creating a B-Spline with
control points P = O, spaced equally at time interval tint, initially set to 0.1 s.

It should be noted that A* is used in this work only for ease of implementation,
therefore many other polynomial-time path-finding algorithms such as D* Lite, θ*, JPS,
Kinodynamic A*, etc. can be used in place of A* to generate the initial seeding path.
However, probabilistic methods such as RRT(*) are less suitable as any initial solutions
tend to be poor quality, and compute times are less predictable depending on the source

Drones 2022, 6, 256 9 of 30

and quality of available randomness, both of which affect the generation time and quality
of the resulting trajectory.

Once the seeding B-Spline is created, the next step is to refine the trajectory to satisfy
safety and dynamic constraints, as the only guarantee at this part of the process is collision
safety. To refine the quality of this seeding trajectory, a non-linear optimization problem can
be formulated around the B-Spline’s control points and time interval. Leveraging Google
Ceres’ [41] Levenberg-Marquardt solver as a least-squares solver, the cost function F(x) is
defined as:

F(x) = Fcollision(x) + Fvelocity(x) + Facceleration(x) + Ftime(x) + Fcontinuity(x) (13)

where the parameter vector x is defined as:

x = {P0, P1, P2, · · · , tint} (14)

Because the B-Splines are uniform with a fixed interval of tint between each successive
control point, the trajectory can be re-timed during the optimization process by including
the time interval as an optimization parameter. This decouples the time of the trajectory
with the number of waypoints, allowing for more flexibility in the number of control
points used. The inclusion of Fcontinuity(x) is used to enforce end-to-end continuity when
multiple waypoints are provided to the planner; this is set to 0 when only a single waypoint
is supplied. When a single trajectory consists of multiple sequentially visited waypoints,
the optimization problem becomes one with multiple end-to-end joined B-Splines, which
appends additional control points and time intervals to the parameter vector, namely

x = {P0,0, P0,1, · · · , P1,0, P1,1, · · · , tint0 , tint1 , · · · } (15)

where Pi,j denotes the ith control point, and tintj denotes the time interval of the jth B-Spline.
Collision constraints in the planner are formulated by exploiting the strong convex

hull property to guarantee a safe trajectory without needing to conduct expensive collision
checks across the entire trajectory. Consider the scenario presented in Figure 9, where
a degree 3 B-Spline trajectory tightly wraps around a corner. The initial portion of the
B-Spline must be contained within the triangle formed by P0 to P2. Suppose the distance
between any two control points Pi and Pj is denoted di,j, the convex hull of the initial
portion is guaranteed to collision-free if the ESDF distance at Pi is greater than ∑i+1

j=i dj,j+1.
Unfortunately, calculating di,j becomes expensive quickly as it needs to be recomputed at
every step, so a relaxed variant of this constraint is used; di,j is assumed to be the same
as the voxel grid resolution. Given voxel resolution dvox, the seeding control points O
are separated by dvox due to the A* search resolution; as the seeding path is non-optimal,
the actual distance between control points post-optimization will likely be less than dvox.
Therefore, it is likely that the trajectory will be collision-free as long as the ESDF distance
dPi

ESDF at every Pi is greater than at least two times dvox. Therefore, collision threshold dcol
can be used as a tuning factor trading off speed for safety; smaller values allow the UAV to
take faster routes at the expense of a higher probability of unsafe trajectories. To prevent the
execution of unsafe trajectories, a collision check is performed at discrete intervals, and the
trajectory is rejected if any point fails this check. The collision cost is, therefore, defined as:

Fcollision(x) =
n

∑
i=0

(G(Pi)) (16)

G(Pi) =

{
Wcollision((dcol)− dPi

ESDF)
2 if dPi

ESDF < dcol

0 otherwise
(17)

dcol ≥ 2× dvox

where Wcollision is the collision weight.

Drones 2022, 6, 256 10 of 30

,

,

,

,

Figure 9. Worst case B-Spline collision scenario with degree 3. The trajectory is guaranteed to be
collision-free if the three convex hulls shown in blue, orange, and green are obstacle free.

Velocity constraints are handled as a combination of initial/final state constraints,
maximum velocity constraints, and speed constraints, namely:

Fvelocity(x) = FinitialVel(x) + Ff inalVel(x) + Fspeed(x) + FmaxVel(x) (18)

Because the B-Spline is C2 continuous, the velocity at any point can be determined by
inspecting the derivative of the B-Spline. The control point defining the velocity profile
at index i can be computed based on the position control points Pi and Pi+1 using the
derivative of the position B-Spline. Because the convex hull property similarly constrains
the velocity B-Spline, the profile’s maximum velocity is also constrained by the magnitude
of the velocity control points. The velocity control points are defined by:

Pvel
i =

3
int

(Pi+1− Pi) (19)

where

int =

tinti × (i + 1) if i < 3
tinti × (n− i− 1) if i > (n− 4)
tinti × 3 otherwise

Therefore, the velocity state at control point Pi, and the initial and final velocity can be
constrained by Equation (20). The velocity weight WvelState is set to a relatively large value
to encourage constant speed traversal in the environment.

FvelState(Pvel
i , Vre f) = WvelState||Pvel

i − Vre f ||2 (20)

FinitialVel(x) = FvelState(Pvel
0 , Vinitial) (21)

Ff inalVel(x) = FvelState(Pvel
n−1, Vf inal) (22)

Because forest surveying is the intended use case of this trajectory planner, there is
an additional speed constraint to encourage a constant trajectory speed for more even
coverage of the environment. The speed constraint is implemented by Fspeed, which

Drones 2022, 6, 256 11 of 30

penalizes the planner when the speed at any particular control point differs from the
desired survey speed.

Fspeed(x) =
n−1

∑
i=0

Wspeed(||Pvel
i || − Sre f) (23)

where Sre f is the scalar reference speed for the survey. Finally, the maximum velocity can
be constrained by defining:

FvelMax(x) =
n−1

∑
i=0

swWvelMax(|Pvel
i | − Vmax)

2 (24)

sw =

{
1 if ||Pvel

i || > Vmax

0 otherwise

where WvelMax is the velocity feasibility penalty weight; deliberately set large to discourage
trajectories that violate dynamic limits.

Similarly, the acceleration B-Spline is simply the derivative of the velocity B-Spline,
and the convex hull property still applies. Therefore, the acceleration control points and,
by extension, maximum accelerations are defined as:

Pacc
i =

2
inth

(Pvel
i+1)−

2
intl

(Pvel
i) (25)

intl =

tinti × i if i < 3
tinti × (n− i) if i > (n− 3)
tinti × 2 otherwise

inth =

tinti × (i + 1) if (i− 1) < 3
tinti × (n− i− 1) if i > (n− 4)
tinti × 2 otherwise

The maximum acceleration is constrained to dynamic limits by:

FaccMax(x) =
n−2

∑
i=0

swWaccMax(|Pacc
i | − Amax)

2 (26)

sw =

{
1 if ||Pacc

i || > Amax

0 otherwise

where WaccMax is the acceleration feasibility penalty weight; deliberately set large to
discourage the optimizer from exceeding dynamic limits.

Lastly, continuity constraints must also be added to ensure smoothness when multiple
B-Splines define the trajectory. For this, it is important to guarantee the B-Splines are
continuous up to the second derivative at the joints. Thus, the overall continuity cost
function can be defined as:

Fcontinuity(x) = FvelCont(x) + FaccCont(x) (27)

Note that it is unnecessary to add a position constraint in the continuity cost function;
let Pj

i denote control point i of B-Spline j. Because the B-Spline is clamped, it is suffi-
cient to set Pi+1

0 = Pi
ni

for i ∈ [0, ns − 1] to guarantee end-to-end position constraints.
The optimization can then proceed by using Pi

ni
in place of Pi+1

0 . Velocity and acceleration
constraints are handled similarly to initial and final velocity constraints, namely:

Drones 2022, 6, 256 12 of 30

FvelCont(x) =
ns−1

∑
i=0

WvelCont||Pveli
ni−1− Pveli+1

0 || (28)

FaccCont(x) =
ns−1

∑
i=0

WaccCont||Pacci
ni−1− Pacci+1

0 || (29)

Because the planning process uses an incrementally built ESDF for collision safety,
trajectories may become unsafe when new obstacles are observed and added to the map.
Collision checks are therefore continuously performed at 20Hz on the currently executing
trajectory to ensure the safety of the UAV. Since the ESDF encodes the distance to the
nearest obstacles, the trajectory is collision-free as long as dC(t)

ESDF > duav + dtolerance for

t ∈ [0, tm] is guaranteed, where dC(t)
ESDF is the ESDF distance at point C(t), duav is the radius

of the UAV, and dtolerance is the collision tolerance. In general, the thresholds are set such
that dcol > duav + dtolerance to reduce the probability of a generated trajectory failing the
collision check.

If a new collision is found, the trajectory can be split into two portions; the committed
and uncommitted portion, as shown in Figure 10. The committed portion consists of two
seconds of the trajectory immediately following the current time, and the remainder of the
trajectory is the uncommitted portion. Modifying the committed portion of the trajectory
generally requires aggressive control inputs from the trajectory follower and, therefore,
should be avoided unless there is an immediate collision threat. The uncommitted portion,
however, can be modified at any time without impacting control.

Previously Unobserved Obstacle

Committed Portion

Spliced Trajectory

Uncommitted Portion

Figure 10. Top down view of a typical replanning event, showing the elements of a newly observed
obstacle and a splice event.

If the collision lies within the committed portion, the current trajectory is immediately
aborted by splicing a soft-stop trajectory one second into the future. This soft-stop splice
consists of a fixed number of control points with the start and end clamped to the splice
location. Following this, a new trajectory is then generated from the current location to
reach the goal waypoint. A less disruptive trajectory splice can be performed if the collision
lies in the uncommitted portion. In this mode, a new trajectory is generated at the transition
point between the committed and uncommitted portions such that the initial state of the
newly optimized trajectory matches the currently executing trajectory at the splice point.
This freshly generated trajectory can then be seamlessly spliced into the uncommitted
portion of the current trajectory and does not produce a performance penalty, as the splice
occurs outside of the control horizon.

Drones 2022, 6, 256 13 of 30

2.3. Trajectory Following

Once a trajectory has been generated, the UAV needs to be able to execute the generated
trajectory accurately. Because of the groundwork laid in Section 2.2, it can be assumed that a
collision-free, dynamically feasible trajectory is available ahead of time. A Model Predictive
Control (MPC) trajectory controller using velocity setpoints for multi-rotor UAVs is used.
The trajectory follower used is outlined in our previous paper [42]; therefore, this section
will only briefly summarize the method. ACADO toolkit’s [43] code generation tool is
used to generate an efficient solver that is run every timestep for the MPC implementation.
In contrast to classical control methods for trajectory tracking, which are reactive in nature
and can only attempt to minimize the current error, MPC is predictive, and attempts to
minimize both the current and future error. This allows the controller to more accurately
track complex trajectories that are known ahead of time.

The aim of this controller is to drive the body frame {B} along a trajectory in SE3 space
described by one or more B-Splines C(t) in the inertial frame {I} such that C(t) = BPsp

I at
time t. Consider a simplified version of the cascaded controller shown below in Figure 11.
The controller can effectively be split into two portions, the unified portion acting in inertial
frame {I}, and the airframe-specific portions acting in body frame {B}. In many existing
works, setpoints are injected at the angular rate level as each additional control loop
produces additional latency. This work injects the setpoint at the velocity loop, producing
distinct advantages. First, the setpoint is injected into the unified portion of the controller,
so any airframes capable of tracking arbitrary velocity setpoints can be controlled without
any modifications. Furthermore, attitude states no longer need to be tracked, as all control
now occurs in the inertial frame.

Mixer Motors
Angular

Rate
PID

Angle PAccel to
Angle

Velocity
PID

Position
P

Unified Airframe Specific

Figure 11. Simplified version of the forward paths of the cascaded multi-rotor controller with unified
and airframe-specific portions highlighted.

Assuming the velocity loop is tuned appropriately, the entire airframe-specific portion
can be collapsed into a first-order approximation, namely:

˙BPI
˙BPsp
I

=
1

τs + 1
(30)

τ = {τX , τY , τZ}T

where ˙BPI is the velocity of body frame {B} in inertial frame {I}, ˙BPsp
I is the velocity

setpoint, and τ ∈ R3 is a vector of the velocity time constants in the body frame {B}.
The overall architecture of the controller is presented in Figure 12, with position and velocity
control provided by PX4’s internal controllers and feedback via PX4’s ECL.

UAV Dynamics

and Low Level

Loops

Velocity Loop

PID
MPC Controller

𝑩 ሶ𝑷𝑰

𝑩
𝑷𝑰

𝑩
𝑷𝑰
𝒔𝒑

𝑩 ሶ𝑷𝑰
𝒔𝒑

𝑩 ሷ𝑷𝑰
𝒔𝒑

Figure 12. Proposed controller structure.

Drones 2022, 6, 256 14 of 30

the state vector x, and the system outputs y is defined as:

x = y = {BPI , ˙BPI , ˙BPsp
I }

T (31)

where ˙BPI ∈ R3 is the derivative of the position vector BPI , and ˙BPI
sp

is the reference
velocity from the trajectory planner. The control input to the system is defined as:

u = { ¨BPsp
I } (32)

where ¨BPI
sp

is the derivative of the velocity setpoint. Furthermore the reference trajectory
can be packaged to define the reference system state xre f and ure f :

xre f (t) = {BPre f
I ,

˙BPre f
I ,

˙BPre f
I }

T = {C(t), ˙C(t), ˙C(t)} (33)

ure f (t) = { ¨BPI
re f} = { ¨C(t)} (34)

where
¨BPre f
I ,

˙BPre f
I , and BPre f

I are the reference acceleration, velocity, and position of the
reference trajectory C(t) at time t.

The UAV model is formulated using the transfer function outlined in Equation (30), namely
Let Am, Bm, Cm, Dm describe the linear state-space system

ẋ = Amx + Bmu (35)

y = Cmx + Dmu (36)

Am =

0 I 0
0 −τinv I τinv I
0 0 0

 Bm =

0
0
I

 Cm =

I 0 0
0 I 0
0 0 I

 Dm = 0

where I ∈ R3×3 is the 3 by 3 identity matrix, τinv ∈ R3 is the element-wise inverse of
vector τ, and each 0 represents a 3-by-3 matrix of zeros. Let the sample time of the MPC
controller be ts and the length of the optimization horizon be ts×N where N is the number
of samples; the optimization problem is formulated as:

let xre f
k = xre f (k× ts), ure f

k = ure f (k× ts)

arg min J(x) =
N−1

∑
k=0

((
xk− xre f

k

)T
Q
(

xk− xre f
k

)
+
(

uk− ure f
k

)T
R
(

uk− ure f
k

))
+
(

xN − xre f
N

)T
P
(

xN − xre f
N

)
(37)

subject to

xk+1 = Adxk + Bduk

−vmax ≤
˙BPre f
I ≤ vmax

−amax ≤
¨BPre f
I ≤ amax

where Ad and Bd are the discrete-time variants of the state and input matrices Am and
Bm, xk and uk is the predicted system state vector and control input vector at sample
k. Q ∈ R9x9 and R ∈ R3x3 are the system state and control input weighting matrices,
respectively, and are generally diagonal. P ∈ R9x9 is the solution to the algebraic Riccati
equation. Vectors vmax ∈ R3 and amax ∈ R3 are used to enforce hard limits on the velocity

setpoint
˙BPre f
I and rate of change of velocity setpoint

¨BPre f
I .

To strike a balance between trajectory tracking performance and required onboard
compute, the MPC formulation in this work uses sample time ts = 0.1 s and control
and prediction horizon of 2 s, producing a total of N = 20 steps in each optimization.

Drones 2022, 6, 256 15 of 30

To compensate for the relatively short optimization horizon, the controller is run at 50Hz
using positions linearly interpolated along the reference trajectory.

The formulation outlined so far does not control the UAV’s yaw angle, as the UAV’s
position and yaw angle are assumed to be decoupled. In reality, the yaw angle of the
UAV must be continuously controlled to point in the direction of travel to guarantee safety.
A simple P controller is used to control the yaw angle of the UAV and determined via
Equation (38).

˙ψsp = Kψ(ψsp−ψ) (38)

where ψ is the current yaw angle of the UAV, ψsp is the yaw setpoint, Kψ is the yaw P gain,
and ˙ψsp is the yaw rate setpoint.

The yaw setpoint ψsp is set such that the sensor is pointed towards the Euclidean
center of the trajectory section between 1 to 2 s in the future, as shown in Equation (39).

let V(t) =
t+2

∑
i=t+1

(C(t))

ψsp = atan2(V(t)[1], V(t)[0]) (39)

where V(t)[1] is the y-axis value, and V(t)[0] is the x-axis value of V(t).
Because it is impossible to guarantee that the sensor is pointed in the correct direction

without using an infinitely large yaw gain, a stall event is inserted when the setpoint
leaves the horizontal FOV of the sensor. When this happens, the trajectory follower
momentarily commands a zero velocity setpoint at the current position, and the yaw
controller is given time to reorient the sensor. Trajectory tracking is resumed as soon as
the sensor is oriented in the correct direction.

2.4. Runtime

It should be noted that the operating speed of the proposed method is generally limited
by the availability of onboard computers, as safety of the UAV is dependent on the method
continuously performing collision checks and generating new trajectories. In general,
the most time-consuming task is the maintenance of the ESDF map, as a large number
of voxels have to be sequentially updated. During simulation, the average optimization
time for a single trajectory is approx. 30 ms, and varies with the length of the trajectory,
while trajectory tracking takes approx. 250 us per step. In the event that faster cycle
times are required, the resolution of the ESDF map or maximum sensor range, and the
number of control points in the B-Spline could be reduced at the expense of requiring larger
collision tolerances.

3. Simulation Tests

Simulation testing is conducted using Gazebo with PX4’s Software-In-The-Loop (SITL)
environment via a simulated MID-70 sensor attached to the 3DR Iris model. The environ-
ments used for simulation are procedurally generated using the parameters acquired in [34],
outlined in Table 1. A simplified view of these parameters in a forest environment are
shown in Figure 13. A simulated ground plane is produced using Perlin Noise [44] to create
cases with various terrain conditions. Three metrics are used to quantify the degree of each
potential obstacle present in the environment, namely the amount of branching, the slope
of the ground, and the roughness of the ground. Each of these metrics represents a relative
comparison in difficulty, with higher values indicating a more challenging environment
for traversal.

Drones 2022, 6, 256 16 of 30

Table 1. Summary of parameters extracted from plantation forest point clouds.

Parameter Distribution Type Mean(m)/a SD(m)/b

Row spacing (m) Gaussian 4.42 0.37
Row deviation (m) Gaussian 0.01 0.78
Tree spacing (m) Gamma 2.61 2.24

Branch length
(Low-branching) (m) Gamma 2.94 0.37

Branch length
(High-branching) (m) Gamma 7.31 0.37

Branch height (m) Gaussian 4.76 1.01
Branch Elevation

Angle (rad) Gaussian 0.23 0.62

Tree diameter (m) Gaussian 0.52 0.14

Row

R
o

w
 S

p
ac

in
g Row Deviation

Tree Spacing

Tree Diameter

B
ra

n
ch

 H
ei

g
h

t

Branch

Length

Elevation

Angle

Figure 13. Illustration of parameters modeled in Table 1.

3.1. Branching

Aside from the stems, the most significant considered source of obstacles are low-
hanging branches in the environment; branches that directly intrude on the available
space between two rows of stems produce significantly more impact than those parallel to
the rows. In particular, diagonal branches have a more significant effect than vertical or
horizontal branches by creating larger zones where the UAV cannot traverse. Therefore,
the branching metric is defined as the normalized sum of rectangular areas occupied in the
perpendicular direction of the row as outlined in Equation (40).

Let θj, φj, lj be the elevation and azimuth angle, and length of branch j

DB(T) =
1

numTree

numTree

∑
i=0

(
numBranch

∑
j=0

(sin(φj)(lj)
2 sin(θj) cos(θ))

)
(40)

where numTree is the number of trees in the environment, and numBranch is the number
of branches corresponding to tree i.

3.2. Slope and Roughness

Since elevation changes heavily influence row segmentation and waypoint selection,
any slope in the environment will increase the traversal difficulty. To define metrics
describing the slope and roughness of each simulation testing environment. Consider a
general plane representation

Z(x, y) = ax + by + c (41)

where a, b, c are dimensionless constants representing a least-squares fit of a plane in 3D
space. Consider the ground plane as a list of i tuples G = (x0, y0, z0), (x1, y1, z1), · · · (xi, yi, zi).
The slope difficulty metric is described in Equation (42).

Drones 2022, 6, 256 17 of 30

Let Ax = b be an over-constrained system

A ∈ Ri×3, x ∈ R3, b ∈ Ri

where

A =

x0 y0 1
x1 y1 1

...
xi yi 1

x =

a
b
c

b =

z0
z1
...

zi

Ds(G) = atan(

√
a2 + b2) (42)

Roughness is defined as the RMS of the difference between the plane’s estimated
elevation at position (x, y) compared to the actual ground elevation. The roughness of the
ground plane is therefore defined as

Dr(G) =

√√√√ i

∑
k=0

((Fz(xk, yk)− (zk))2) (43)

3.3. Simulation Environments

A set of eight simulation environments are selected from a large pool of generated
environments, each representing a specific combination of difficulty metrics. These envi-
ronments are shown in Figure 14, and the metrics describing each one is outlined in Table 2.
In particular, test case (h) is the baseline test case with low branching, slope, and roughness.
Test cases (a), (d)–(g) are picked to examine the effects of branching, slope, and roughness
alone, as each case is picked to minimize the other two difficulty metrics. Lastly, test cases
(b) and (c) test the overall performance when subject to mixed test cases.

Drones 2022, 6, 256 18 of 30

(a) (44.1, 0.074, 0.120) (b) (38.4, 3.19, 0.192) (c) (6.68, 1.30, 0.154)

(d) (6.66, 0.081, 0.134) (e) (6.45, 1.55, 0.122) (f) (6.91, 0.066, 0.255)

(g) (6.57, 3.57, 0.103) (h) (6.48, 0.079, 0.076)

Figure 14. Simulation test environments. The three numbers in the subfigure captions correspond to
the branching, roughness, and slope metrics.

Table 2. Summary of parameters of the generated forest environments shown in Figure 14.

Label Branching Roughness Slope Type

(a) 44.1 0.074 0.120 High Branching
(b) 38.4 3.19 0.192 Mixed Difficult
(c) 6.68 1.30 0.154 Mixed Medium
(d) 6.66 0.081 0.134 Medium Slope
(e) 6.45 1.55 0.122 Medium Roughness
(f) 6.91 0.065 0.255 High Slope
(g) 6.57 3.57 0.103 High Roughness
(h) 6.48 0.079 0.076 Baseline

3.4. Survey Time

The first set of simulated tests is conducted to examine the effects on survey time of
the proposed method against changes in the environment. In this series of experiments,
the simulated UAV is initially placed between two rows and tasked to explore five corridors,

Drones 2022, 6, 256 19 of 30

with a traversal distance of 20 m down each corridor for an overall survey area of approx.
22 m by 22 m with a target survey speed of 1m/s. Once the traversal of the required
number of corridors is complete, the UAV is tasked with returning to the starting location.
To separate overhead effects from the UAV returning to the origin and traversal down
the five corridors, the recorded time is split into the survey and return phases, which are
timed separately. The time taken for the survey phase of each test environment is shown
in Figure 15, the sensitivity of survey times to each difficulty metric is shown in Figure 16,
and the return times are in Figure 17. To prevent samples that do not fully explore the
environment from skewing the results with faster surveys, surveys that do not observe
every tree are marked as failed and not included. The final survey results are tabulated in
Table 3.

Figure 15. Summary of survey time for each test environment. Trials that did not produce full
coverage are not included. Circles denote outliers in the survey time.

Table 3. Summary of survey time for each test environment.

Label Trails Incomplete Mean (s) SD (s) Min (s) Max (s)

(a) 26 4 143 10.0 123 163
(b) 26 11 147 16.9 112 173
(c) 28 1 137 5.2 121 144
(d) 30 0 136 4.5 125 141
(e) 30 0 139 1.5 133 142
(f) 28 0 138 2.3 133 141
(g) 29 0 139 3.7 133 144
(h) 26 0 134 1.7 127 136

Theoretical
Minimum * - 0 120 0 120 -

* Assuming a fixed survey speed of 1m/s and a traversal of 20 m down five rows.

Inspection of Figure 15 shows that aside from environments (a) and (b), the proposed
method produces similar survey times, both in mean and spread for all other test envi-
ronments. In particular, the worst performing environment (c) produces a 3.7% increase
in mean survey time and an approx. 200% increase in standard deviation compared to
the baseline environment (h). The mixed difficulty samples (a) and (b), however, produce
noticeably higher mean and standard deviation increases of 6.7%/9.7% and 488%/894%

Drones 2022, 6, 256 20 of 30

respectively, with a corresponding increase in the number of incomplete surveys. Since
environments (a) and (b) are the only ones with increased branching, this suggests that
branching is the only parameter out of the three tests that affect traversal performance.
Figure 16 supports this finding as there appears to be no visible correlation between survey
time, slope, or roughness, and only a weak correlation with branching is seen. Little vari-
ation is seen in the return times outlined in Figure 17, with differences across operating
environments likely arising from differences in the test scenes. This suggests that the
proposed method is robust against various environmental conditions.

Figure 16. Effects on survey time with varying test environments.

Figure 17. Summary of return times for each test environment with incomplete trials removed.

3.5. Coverage

The second important metric to evaluate for performance is the coverage of the
environment, particularly the number of observed points corresponding to each tree. Thus,
this series of experiments explores the sensitivity of coverage performance to varying
environments for the proposed methods. Recorded data from the flights outlined in
Section 3.4 are used to determine the number of points in a 1m by 1m square centered at the
reference location of each tree. To eliminate run-to-run variation, the densities around each
tree in the environment is averaged across all runs, providing the results shown in Figure 18
and Table 4. Figure 19 shows the distribution of coverage within each test environment.
Points from the return portion of the flight are not included to avoid inflating coverage of
trees observable from the return path.

Drones 2022, 6, 256 21 of 30

Table 4. Summary of coverage for each test environment.

Label Mean (s) SD (s) Min (s) Max (s)

(a) 2055 687 1099 3453
(b) 757 492 139 2218
(c) 1477 600 532 2629
(d) 1188 748 137 3551
(e) 1830 797 707 3894
(f) 1540 617 631 3044
(g) 1094 289 435 1500
(h) 1625 682 699 3400

Figure 18. Effects on coverage when the three test parameters are varied.

Inspecting Table 4 shows two groups of mean coverages. The first of these groups
consists of those with high mean points (>1400/stem) consisting of test environments
(a), (c), (e), (f), and (h), and the second group consists of low mean points (<1200/stem)
consisting of environments (b), (d), (g). Except for sample (d), both samples (b) and (g)
consist of high-roughness environments. This suggests that this difference can be partially
attributed to the limited LiDAR FOV, as rough terrain would likely result in more LiDAR
points striking the ground within the FOV of any forward-facing inclines. This is supported
by Figure 18, which shows a decrease in coverage with increasing roughness, but no clear
correlation to the other two parameters.

All test environments appear to offer relatively even coverage when looking at
Figure 19. Interestingly, however, the spread of coverage does not appear to be governed
by roughness, as the high-roughness test case (g) offers the lowest standard deviation and
visually the most consistent point density around each tree. Similarly, samples (b) and (d)
appear to have a low point count but offer relatively similar coverage across all observed
stems. Nevertheless, all trees within the environment have been observed at least once,
suggesting that the proposed method generally produces good coverage across various
test conditions.

Drones 2022, 6, 256 22 of 30

(a) (b) (c) (d)

(e) (f) (g) (h)

Figure 19. Averaged coverage maps for trials in environments (a–h), normalized to the maximum of
each specific sample. Blue hues indicate trees with fewer observed points, and green hues indicate
more observed points. Non-uniformity is shown as the difference in hues.

3.6. Effects of Survey Speed

As one of the planner’s objectives is to produce fixed-speed trajectories, an additional
tuning factor is the target survey speed. In this series of tests, the proposed method is used
on the baseline test environment (g) and tasked to explore the environment at target speeds
between 1 m/s to 4 m/s in 1 m/s increments. Figure 20 shows the resulting survey time
and tree coverages. Expectedly, survey time and coverage decrease logarithmically as the
survey speed increases, with a decrease of 44% between target speeds of 1 m/s and 2 m/s,
decreasing to 23% between 2 ms/ and 3 m/s, and no decrease between 3 m/s and 4 m/s.
Environment coverage shows the same trend, with a reduction of approx. 39% between
survey speeds of 1 m/s and 2 m/s, but no further noticeable decreases from speeds of
2 m/s and beyond.

Figure 20. Effects on survey time (left) and coverage (right) with varying speed. Exponential fit
through all results is shown as a red line.

Drones 2022, 6, 256 23 of 30

Interestingly, the spread of survey times at a survey speed of 4 m/s is significantly
higher when compared to at 3 m/s, with an increased spread of 88%. However, effects
on the coverage appear to be relatively small at survey speeds above 2 m/s with little
change in both coverage, mean, and spread. The increase in the spread and mean survey
time between target speeds of 3 m/s and 4 m/s likely arises from the planner producing
more unsafe trajectories from unobserved obstacles. This effect can be seen in Figure 21;
the average speed of the survey does not increase at a target speed of 4 m/s compared to
3 m/s, but the spread of mean speeds is larger. In all cases, the actual mean speed is lower
than the target speed, with the deficit increasing with increasing target speed.

Figure 21. Plot of mean speed vs. target survey speed. Note the plateau in mean speed at 3 m/s
and 4 m/s. The averaged mean speed across all samples for each target speed is indicated by a
horizontal line.

3.7. Comparison to Existing Methods

Finally, to examine the relative performance of the proposed method against other
state-of-the-art exploration planners, an experiment is conducted using FUEL [28] to fully
explore the same 22 m by 22 m area in environment (a) as the earlier trials. To ensure
consistency between the two tests, the sensor model used in FUEL is updated to match
that of the Livox MID-70, and the maximum velocity is limited to 1 m/s. Figure 22 shows
the path taken within the environment for the two methods, with the proposed method
completing the survey in 169 s, while FUEL took 306 s for completion. This disparity
appears to be a result of FUEL needing to explicitly observe the entire environment, which
results in a large amount of yaw action and traversal near the boundaries of the exploration
volume as a result of the low FOV sensor. This manifests as a less consistent survey
path shown in red in Figure 22. In contrast, the proposed method allows for longer
straight sections, which allows the UAV to traverse at the target speed of 1 m/s for longer.
This experiment demonstrates the performance advantage the proposed traversal method
achieves against a high-performance generalized exploration method.

Drones 2022, 6, 256 24 of 30

Figure 22. Path taken for complete coverage for the proposed method and FUEL.

4. Flight Tests

Flight testing is performed at a local Pinus Radiata plantation to validate the pro-
posed surveying method. The test site shown in Figure 23 is located in Riverhead Forest,
Auckland, New Zealand (−36.725286, 174.547957) and consists of seven parallel rows
spaced approximately 4.5 m apart with flat terrain. While there is little undergrowth in the
environment, the environment is unpruned and contains many branches down to ground
level. Despite branching, sufficient space exists between adjacent rows of trees to allow
traversal down and between rows. The presence of trees in the middle of traversed rows
produces some corridors which are not continuous.

(a) (b)

Figure 23. (a) Single row view of the plantation site used for flight testing, note the presence of some
low-hanging branches, and (b) 3D scan of the proposed test site showing the survey region; the scan
area is approx. 25 m by 30 m.

Ten flights are conducted to evaluate the method, four of which are large-scale flights
intending to cover the entire survey environment. The other six consists of small-scale

Drones 2022, 6, 256 25 of 30

flights covering smaller areas to test multiple different initial conditions. In addition to
the survey and return times outlined previously, these trials also evaluate the number of
attempted and completed corridors. These are defined as:

• Attempted corridors—the number of identified corridors and an attempt to traverse
these corridors have been made

• Completed corridors—the number of correctly traversed corridors

4.1. Large Flights

Simplified views of the four flights are presented in Figure 24, and top-down views
of the flight path overlaid on the reconstructed pointcloud for each flight is shown in
Figure 25. Metrics summarizing the performance of each test flight is shown in Table 5. Of
the four flights performed, tests (b) and (c) successfully returned to the origin, while (a)
and (d) performed a partial and no return from the loss of the pose estimate. The UAV
successfully selects waypoints and navigates between three to five corridors within the
environment in all four cases. In particular, cases (a) and (b) show more complex routes
around multiple trees rather than the mainly straight routes seen while traversing down a
single corridor. This verifies the capability of the planner to produce safe trajectories with
correctly placed waypoints when operating in a complex plantation environment.

(a) (b)

(c) (d)

Figure 24. Simplified views of the large-scale test flights (a–d), the path followed is shown as a solid
line overlaid with stem locations within the environment. Greener hues indicate a flight speed closer
to the 1 m/s target speed, while red hues indicate slower speeds taken.

Drones 2022, 6, 256 26 of 30

(a) (b) (c) (d)

Figure 25. Top-down views of large-scale test flights (a–d), with the path taken overlaid on the
reconstructed point cloud.

Table 5. Summary of large scale flight tests.

Label Attempted Completed Survey Time (s) Return Time (s)

(a) 3 2 114.5 -
(b) 4 3 135.5 25.5
(c) 4 4 106.4 18.7
(d) 5 5 157.8 -

Looking instead at the speed distribution along the survey path, the UAV maintains
the target survey speed of 1 m/s throughout most traversal tests. A significant decrease in
survey speed occurs at the last waypoint of each corridor, with smaller drops in regions
with less free space and spaces with a large number of obstacles. The speed profile for the
survey (d) shown in Figure 26 illustrates these events, with significant drops in survey
speed occurring at approximately 30 s, 45 s, 80 s, and 120 s from the start of the survey
and more minor fluctuations between these points. The large drops to near zero speed
correspond with the end of each corridor and encompass the time taken to produce new
waypoints in the neighboring corridor and generate a new trajectory. The smaller decreases
in speed are likely caused by one of two things: FOV constraints reducing flight speed
until the LiDAR is oriented in the correct direction, or trajectory splice events causing small
local discontinuities in the trajectory. Overall, these experiments suggest that the proposed
method can often correctly estimate the position of the rows of trees, and the trajectory
planner and follower can successfully generate and execute safe trajectories for the survey.
However, there is room for improvement of efficiency through optimizing regions with
slow survey speed.

Figure 26. Plot of estimated speed during trial (d).

Drones 2022, 6, 256 27 of 30

4.2. Small Flights

Since the size of the test plot is limited, a set of six small flights through the environ-
ment is conducted to examine the robustness of the proposed method against different
initial conditions. A random starting point with sufficient adjacent rows to complete the
survey is selected for each trial. In each task, the UAV uses the proposed method to traverse
approx. 12 m down each corridor, with the complete survey consisting of three corridors.
The total survey area for each of the trails is approx. 14 m by 14 m. Top-down views of
each flight within the reconstructed point cloud are shown in Figure 27, and a performance
summary is outlined in Table 6.

Table 6. Summary of small scale flight tests.

Label Attempted Completed Survey Time (s) Return Time (s)

(a) 3 3 49.8 15.3
(b) 3 3 66.7 20.4
(c) 3 3 61.8 20.2
(d) 3 3 62.9 23.1
(e) 3 3 52.6 20.4
(f) 3 3 69.7 -

(a) (b) (c)

(d) (e) (f)

Figure 27. Top-down views of path taken during small-scale test flights (a–f) overlaid on the recon-
structed point clouds. The path taken during the survey is shown as the line.

All flights successfully traversed the target area, providing complete coverage of the
trees within the approx. 14 m by 14 m bounding square. In particular, test cases (a), (c),
and (f) consist of initial conditions where the UAV is unable to traverse down every corridor

Drones 2022, 6, 256 28 of 30

in a straight path continuously, and safe trajectories are generated and executed in each
case. Aside from (f), all tests produced and executed a safe return trajectory. Furthermore,
experiments (a), (c), and (f) demonstrate initial conditions where straight line traversal is
not possible due to obstacles present. In all cases, the planner successfully determined a
safe trajectory to navigate around these obstacles and complete the survey. These flight
experiments demonstrate the robustness of the proposed method against varying conditions
and untraversable regions within the scene.

5. Conclusions

This paper presents a system for autonomous exploration of plantation forests using
multi-rotor UAVs. First, a method for navigation waypoint generation using estimated tree
row positions from occupancy data is presented. Next, a non-linear optimization-based
approach is proposed to generate smooth, constant velocity survey trajectories using B-
Splines and an ESDF map to create dynamically feasible and collision-free trajectories in
complex environments. Lastly, an MPC trajectory tracker is implemented to follow the
generated trajectories. Simulation testing is performed using eight procedurally generated
forests replicating spacing information from real plantation forests, completing 22 m by
22 m surveys in approx. 140 s. These results demonstrate the proposed method’s ability
to operate in various environments and initial conditions. Lastly, four large-scale and
six small-scale flight tests are successfully performed within a local plantation forest,
demonstrating our proposed method’s correct row identification, waypoint placement,
and navigation capabilities.

The results of this research pave the way for fully autonomous navigation in plantation
forests, with potential extension into other row-based environments such as orchards or
vineyards. While this study explores the autonomous navigation problem during the survey
aspect, the current iteration of the system still requires manual traversal to reach the starting
point of the survey. Therefore, future work could consist of investigations into long-range
traversal methods allowing for arbitrary starting positions, i.e., from outside of the forest.
Furthermore, alternative methods for waypoint generation and/or row segmentation could
be explored for additional survey speeds or accuracy. Finally, other navigation methods
such as machine-learning-based end-to-end approaches could be explored for potential
performance gains in this application.

Author Contributions: Conceptualization, T.-J.L. and K.A.S.; methodology, T-J.L. and K.A.S.; soft-
ware, T.-J.L.; validation, T.-J.L. and K.A.S.; formal analysis, T.-J.L.; investigation, T.-J.L.; resources,
T.-J.L.; data curation, T.-J.L.; writing—original draft preparation, T.-J.L., writing—review and editing,
T.-J.L. and K.A.S.; visualization, T.-J.L.; supervision, T.-J.L. and K.A.S.; project administration, T.-J.L.
and K.A.S. All authors have read and agreed to the published version of the manuscript.

Funding: The lead author is supported by a University of Auckland Doctoral Scholarship.

Institutional Review Board Statement: Not applicable.

Informed Consent Statement: Not applicable.

Data Availability Statement: The data supporting the findings in this paper is available from the
corresponding author upon reasonable request.

Conflicts of Interest: The authors declare no conflict of interest.

References
1. Deadman, M.W.; Goulding, C.J. A method for assessment of recoverable volume by log types. N. Z. J. For. Sci. 1979, 9, 225–239.
2. Interpine Innovation. PlotSafe Overlapping Feature Crusing Forest Inventory Procedures; Interpine Innovation: Rotorua, New Zealand,

2007; p. 49.
3. Hudak, A.T.; Crookston, N.L.; Evans, J.S.; Hall, D.E.; Falkowski, M.J. Nearest neighbor imputation of species-level, plot-scale

forest structure attributes from LiDAR data. Remote Sens. Environ. 2008, 112, 2232–2245. [CrossRef]
4. Puliti, S.; Dash, J.P.; Watt, M.S.; Breidenbach, J.; Pearse, G.D. A comparison of UAV laser scanning, photogrammetry and airborne

laser scanning for precision inventory of small-forest properties. For. Int. J. For. Res. 2020, 93, 150–162. [CrossRef]

http://doi.org/10.1016/j.rse.2007.10.009
http://dx.doi.org/10.1093/forestry/cpz057

Drones 2022, 6, 256 29 of 30

5. Mielcarek, M.; Kamińska, A.; Stereńczak, K. Digital Aerial Photogrammetry (DAP) and Airborne Laser Scanning (ALS) as Sources
of Information about Tree Height: Comparisons of the Accuracy of Remote Sensing Methods for Tree Height Estimation. Remote
Sens. 2020, 12, 1808. [CrossRef]

6. Bauwens, S.; Bartholomeus, H.; Calders, K.; Lejeune, P. Forest inventory with terrestrial LiDAR: A comparison of static and
hand-held mobile laser scanning. Forests 2016, 7, 127 . [CrossRef]

7. Kukko, A.; Kaijaluoto, R.; Kaartinen, H.; Lehtola, V.V.; Jaakkola, A.; Hyyppä, J. Graph SLAM correction for single scanner MLS
forest data under boreal forest canopy. ISPRS J. Photogramm. Remote Sens. 2017, 132, 199–209. [CrossRef]

8. Wang, Y.; Kukko, A.; Hyyppä, E.; Hakala, T.; Pyörälä, J.; Lehtomäki, M.; El Issaoui, A.; Yu, X.; Kaartinen, H.; Liang, X.; et al.
Seamless integration of above- and under-canopy unmanned aerial vehicle laser scanning for forest investigation. For. Ecosyst.
2021, 8, 10. [CrossRef]

9. Hyyppä, E.; Hyyppä, J.; Hakala, T.; Kukko, A.; Wulder, M.A.; White, J.C.; Pyörälä, J.; Yu, X.; Wang, Y.; Virtanen, J.P.; et al.
Under-canopy UAV laser scanning for accurate forest field measurements. ISPRS J. Photogramm. Remote Sens. 2020, 164, 41–60.
[CrossRef]

10. Hyyppä, J.; Yu, X.; Hakala, T.; Kaartinen, H.; Kukko, A.; Hyyti, H.; Muhojoki, J.; Hyyppä, E. Under-Canopy UAV Laser Scanning
Providing Canopy Height and Stem Volume Accurately. Forests 2021, 12, 856. [CrossRef]

11. Del Perugia, B.; Krisanski, S.; Taskhiri, M.S.; Turner, P. Below-canopy UAS photogrammetry for stem measurement in radiata
pine plantation. Proc. Remote Sens. Agric. Ecosyst. Hydrol. 2018, 11, 1078309. [CrossRef]

12. Krisanski, S.; Taskhiri, M.S.; Turner, P. Enhancing Methods for Under-Canopy Unmanned Aircraft System Based Photogrammetry
in Complex Forests for Tree Diameter Measurement. Remote Sens. 2020, 12, 1652. [CrossRef]

13. Kuželka, K.; Surový, P. Mapping Forest Structure Using UAS inside Flight Capabilities. Sensors 2018, 18, 2245. [CrossRef]
[PubMed]

14. Jiang, S. Towards Autonomous Flights of an Unmanned Aerial Vehicle (UAV) in Plantation Forests. Master’s Thesis, The
University of Auckland, Auckland, New Zealand, 2016.

15. Chiella, A.C.B.; Machado, H.N.; Teixeira, B.O.S.; Pereira, G.A.S. GNSS/LiDAR-Based Navigation of an Aerial Robot in Sparse
Forests. Sensors 2019, 19, 4061. [CrossRef]

16. Chisholm, R.A.; Cui, J.; Lum, S.K.Y.; Chen, B.M. UAV LiDAR for below-canopy forest surveys. J. Unmanned Veh. Syst. 2013,
1, 61–68. [CrossRef]

17. Cui, J.Q.; Lai, S.; Dong, X.; Liu, P.; Chen, B.M.; Lee, T.H. Autonomous navigation of UAV in forest. In Proceedings of the 2014
International Conference on Unmanned Aircraft Systems, ICUAS 2014—Conference Proceedings, Orlando, FL, USA, 27–30 May
2014. [CrossRef]

18. Thrun, S.; Montemerlo, M. The graph SLAM algorithm with applications to large-scale mapping of urban structures. Int. J. Robot.
Res. 2006, 25, 403–429. [CrossRef]

19. Zucker, M.; Ratliff, N.; Dragan, A.D.; Pivtoraiko, M.; Klingensmith, M.; Dellin, C.M.; Bagnell, J.A.; Srinivasa, S.S. CHOMP:
Covariant Hamiltonian optimization for motion planning. Int. J. Robot. Res. 2013, 32, 1164–1193. [CrossRef]

20. Oleynikova, H.; Burri, M.; Taylor, Z.; Nieto, J.; Siegwart, R.; Galceran, E. Continuous-time trajectory optimization for online UAV
replanning. In Proceedings of the IEEE International Conference on Intelligent Robots and Systems 2016, Daejeon, Korea, 9–14
October 2016; pp. 5332–5339. [CrossRef]

21. Usenko, V.; Von Stumberg, L.; Pangercic, A.; Cremers, D. Real-time trajectory replanning for MAVs using uniform B-splines and
a 3D circular buffer. In Proceedings of the IEEE International Conference on Intelligent Robots and Systems, Vancouver, BC,
Canada, 24–28 September 2017 , pp. 215–222. [CrossRef]

22. Zhou, B.; Pan, J.; Gao, F.; Shen, S. RAPTOR: Robust and Perception-Aware Trajectory Replanning for Quadrotor Fast Flight. IEEE
Trans. Robot. 2021, vol. 37, pp 1992–2009 . [CrossRef]

23. Mellinger, D.; Kumar, V. Minimum snap trajectory generation and control for quadrotors. In Proceedings of the IEEE International
Conference on Robotics and Automation, Shanghai, China, 9–13 May 2011; pp. 2520–2525. [CrossRef]

24. Tordesillas, J.; Lopez, B.T.; How, J.P. FASTER: Fast and Safe Trajectory Planner for Flights in Unknown Environments. In
Proceedings of the 2019 IEEE/RSJ International Conference on Intelligent Robots and Systems (IROS), Macau, China, 3–8
November 2019, pp. 1934–1940. [CrossRef]

25. Deits, R.; Tedrake, R. Efficient mixed-integer planning for UAVs in cluttered environments. In Proceedings of the IEEE
International Conference on Robotics and Automation, Seattle, WA, USA, 26–30 May 2015; pp. 42–49. ICRA.2015.7138978.
[CrossRef]

26. Gao, F.; Wang, L.; Zhou, B.; Zhou, X.; Pan, J.; Shen, S. Teach-Repeat-Replan: A Complete and Robust System for Aggressive Flight
in Complex Environments. IEEE Trans. Robot. 2020, 36, 1526–1545. [CrossRef]

27. Meng, Z.; Qin, H.; Chen, Z.; Chen, X.; Sun, H.; Lin, F.; Ang, M.H. A Two-Stage Optimized Next-View Planning Framework for
3-D Unknown Environment Exploration, and Structural Reconstruction. IEEE Robot. Autom. Lett. 2017, 2, 1680–1687. [CrossRef]

28. Zhou, B.; Zhang, Y.; Chen, X.; Shen, S. FUEL: Fast UAV Exploration using Incremental Frontier Structure and Hierarchical
Planning. IEEE Robot. Autom. Lett. 2021, 6, 779–786. [CrossRef]

29. Dharmadhikari, M.; Dang, T.; Solanka, L.; Loje, J.; Nguyen, H.; Khedekar, N.; Alexis, K. Motion Primitives-based Path Planning
for Fast and Agile Exploration using Aerial Robots. In Proceedings of the 2020 IEEE International Conference on Robotics and
Automation (ICRA), Paris, France, 31 May–31 August 2020; pp. 179–185. [CrossRef]

http://dx.doi.org/10.3390/rs12111808
http://dx.doi.org/10.3390/f7060127
http://dx.doi.org/10.1016/j.isprsjprs.2017.09.006
http://dx.doi.org/10.1186/s40663-021-00290-3
http://dx.doi.org/10.1016/j.isprsjprs.2020.03.021
http://dx.doi.org/10.3390/f12070856
http://dx.doi.org/10.1117/12.2325480
http://dx.doi.org/10.3390/rs12101652
http://dx.doi.org/10.3390/s18072245
http://www.ncbi.nlm.nih.gov/pubmed/30002299
http://dx.doi.org/10.3390/s19194061
http://dx.doi.org/10.1139/juvs-2013-0017
http://dx.doi.org/10.1109/ICUAS.2014.6842317
http://dx.doi.org/10.1177/0278364906065387
http://dx.doi.org/10.1177/0278364913488805
http://dx.doi.org/10.1109/IROS.2016.7759784
http://dx.doi.org/10.1109/IROS.2017.8202160
http://dx.doi.org/10.1109/TRO.2021.3071527
http://dx.doi.org/10.1109/ICRA.2011.5980409
http://dx.doi.org/10.1109/IROS40897.2019.8968021
http://dx.doi.org/10.1109/ICRA.2015.7138978
http://dx.doi.org/10.1109/TRO.2020.2993215
http://dx.doi.org/10.1109/LRA.2017.2655144
http://dx.doi.org/10.1109/LRA.2021.3051563
http://dx.doi.org/10.1109/ICRA40945.2020.9196964

Drones 2022, 6, 256 30 of 30

30. Bircher, A.; Kamel, M.; Alexis, K.; Oleynikova, H.; Siegwart, R. Receding Horizon “Next-Best-View” Planner for 3D Exploration.
In Proceedings of the 2016 IEEE International Conference on Robotics and Automation (ICRA), Stockholm, Sweden, 16–21 May
2016; pp. 1462–1468. [CrossRef]

31. Schmid, L.; Pantic, M.; Khanna, R.; Ott, L.; Siegwart, R.; Nieto, J. An Efficient Sampling-Based Method for Online Informative
Path Planning in Unknown Environments. IEEE Robot. Autom. Lett. 2020, 5, 1500–1507. [CrossRef]

32. Papachristos, C.; Khattak, S.; Alexis, K. Uncertainty-aware receding horizon exploration and mapping using aerial robots. In
Proceedings of the 2017 IEEE International Conference on Robotics and Automation (ICRA), Singapore, 29 May–3 June 2017;
pp. 4568–4575. [CrossRef]

33. Xu, Z.; Deng, D.; Shimada, K. Autonomous UAV Exploration of Dynamic Environments Via Incremental Sampling and
Probabilistic Roadmap. IEEE Robot. Autom. Lett. 2021, 6, 2729–2736. [CrossRef]

34. Lin, T.J.; Stol, K.A. Faster Navigation of Semi-Structured Forest Environments using Multi-Rotor UAVs. Robotica 2022, submitted.
35. Stanford Artificial Intelligence Laboratory. Robotic Operating System. Available online: https://www.ros.org (accessed on 15

June 2022).
36. Lin, J.; Zhang, F. R3LIVE: A Robust, Real-Time, RGB-Colored, LiDAR-Inertial-Visual Tightly-Coupled State Estimation and

Mapping Package. In Proceedings of the 2022 International Conference on Robotics and Automation (ICRA), Philadelphia, PA,
USA, 23–27 May 2022; pp. 10672–10678. [CrossRef]

37. Zhang, W.; Qi, J.; Peng, W.; Wang, H.; Xie, D.; Wang, X.; Yan, G. An Easy-to-Use Airborne LiDAR Data Filtering Method Based on
Cloth Simulation. Remote Sens. 2016, 8, 501. [CrossRef]

38. Ester, M.; Kriegel, H.P.; Sander, J.; Xu, X. A Density-Based Algorithm for Discovering Clusters in Large Spatial Databases with Noise;
AAAI Press: Palo Alto, CA, USA, 1996; pp. 226–231.

39. Han, L.; Gao, F.; Zhou, B.; Shen, S. FIESTA: Fast Incremental Euclidean Distance Fields for Online Motion Planning of Aerial
Robots. In Proceedings of the IEEE International Conference on Intelligent Robots and Systems, Macau, China, 3–8 November
2019; pp. 4423–4430. [CrossRef]

40. Hart, P.E.; Nilsson, N.J.; Raphael, B. A Formal Basis for the Heuristic Determination of Minimum Cost Paths. IEEE Trans. Syst.
Sci. Cybern. 1968, 4, 100–107. [CrossRef]

41. Agarwal, S.; Mierle, K.; Team, T.C.S. Ceres Solver. Available online: https://github.com/ceres-solver/ceres-solver (accessed on
15 June 2022.).

42. Lin, T.J.; Stol, K.A. Fast Trajectory Tracking of Multi-Rotor UAVs using First-Order Model Predictive Control. In Proceedings of
the 2021 Australian Conference on Robotics and Automation (ACRA), Melbourne, Australia, 6–8 December 2021.

43. Houska, B.; Ferreau, H.J.; Diehl, M. ACADO toolkit—An open-source framework for automatic control and dynamic optimization.
Optim. Control Appl. Methods 2011, 32, 298–312. [CrossRef]

44. Perlin, K. An Image Synthesizer. In Proceedings of the SIGGRAPH ’85: 12th Annual Conference on Computer Graphics and
Interactive Techniques, San Francisco, CA, USA, 22–26 July 1985; Association for Computing Machinery: New York, NY, USA,
1985; pp. 287–296. [CrossRef]

http://dx.doi.org/10.1109/ICRA.2016.7487281
http://dx.doi.org/10.1109/LRA.2020.2969191
http://dx.doi.org/10.1109/ICRA.2017.7989531
http://dx.doi.org/10.1109/LRA.2021.3062008
https://www.ros.org
http://dx.doi.org/10.1109/ICRA46639.2022.9811935
http://dx.doi.org/10.3390/rs8060501
http://dx.doi.org/10.1109/IROS40897.2019.8968199
http://dx.doi.org/10.1109/TSSC.1968.300136
https://github.com/ceres-solver/ceres-solver
http://dx.doi.org/10.1002/oca.939
http://dx.doi.org/10.1145/325334.325247

	Introduction
	Materials and Methods
	Waypoint Generation
	Trajectory Generation
	Trajectory Following
	Runtime

	Simulation Tests
	Branching
	Slope and Roughness
	Simulation Environments
	Survey Time
	Coverage
	Effects of Survey Speed
	Comparison to Existing Methods

	Flight Tests
	Large Flights
	Small Flights

	Conclusions
	References

