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Abstract: Unmanned aerial vehicles (UAVs) are important in reconnaissance missions because of
their flexibility and convenience. Vitally, UAVs are capable of autonomous navigation, which means
they can be used to plan safe paths to target positions in dangerous surroundings. Traditional
path-planning algorithms do not perform well when the environmental state is dynamic and partially
observable. It is difficult for a UAV to make the correct decision with incomplete information. In
this study, we proposed a multi-UAV path planning algorithm based on multi-agent reinforcement
learning which entails the adoption of centralized training–decentralized execution architecture to
coordinate all the UAVs. Additionally, we introduced a hidden state of the recurrent neural network
to utilize the historical observation information. To solve the multi-objective optimization problem,
We designed a joint reward function to guide UAVs to learn optimal policies under the multiple
constraints. The results demonstrate that by using our method, we were able to solve the problem
of incomplete information and low efficiency caused by partial observations and sparse rewards in
reinforcement learning, and we realized kdiff multi-UAV cooperative autonomous path planning in
unknown environment.

Keywords: multi-UAV; path planning; incomplete information; multi-objective, reinforcement learning

1. Introduction

Multi-UAV perform well in complex tasks because of their robustness and high effi-
ciency [1]. When multi-UAV perform reconnaissance tasks cooperatively in an unknown
environment, they have to perceive the environment through their own sensors and plan
the optimal path online according to the current environmental state to reach the target
points safely. It is important for UAVs to be capable of autonomous navigation in complex
and unknown environments. Moreover, a greater coordination is needed between all UAVs.
Thus, we have to consider we can guide multi-UAV to achieve a common goal.

Multi-UAV path planning can be considered as a Multi-Agent Path Planning (MAPF)
problem [2], which is a model used to find the optimal path for multi-agents from the
starting positions to destinations without conflicts. In fact, MAPF is a relatively complex
joint objective optimization problem. The state space of this problem grows exponentially
with the number of agents, and it has been proved to be an NP-hard problem [3]. In the
reconnaissance tasks, multi-UAV not only have to avoid dangerous areas and reach the
target points safely, but they must also cover a larger area in a shorter time. However,
the time cost and coverage area are in conflict, as these are multi-objective optimization
problems, and we must make a trade-off between two or more conflicting goals to enable
optimal decision making. It is impossible to find a solution that can achieve the optimal
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performance of all objectives; therefore, for the multi-objective optimization problem, we
usually use a set of non-inferior solutions called the “Pareto solution set” [4].

Most of the previous research regarding multi-UAV path planning has focused on
intelligent optimization algorithms, such as evolutionary algorithms [5] including Particle
Swarm Optimization(PSO) [6–8]. Shao et al. [9] proposed a more accurate and faster
PSO algorithm to effectively improve the convergence speed and solution optimality, and
the proposed PSO was successfully used in UAV formation path planning under terrain,
threat, and collision avoidance constraints. Evan et al. [10] proposed a PSO algorithm for
use in navigating in an unknown environment, which was able to reach a pre-defined
goal and become collision-free. Ajeil et al. [11] proposed a hybridized PSO-modified
which was shown to minimize the distance and follow path smoothness criteria to form an
optimized path. Evolutionary algorithms based on swarm intelligence can iteratively search
for local optimal solutions, but this method is difficult to expand to online and real-time
optimization due to its limited speed, and it is not suitable for use in reconnaissance tasks.

In recent years, with the rapid development of Deep Reinforcement Learning (DRL),
its powerful representation and learning capabilities have enabled it to perform well
in decision-making problems [12]; therefore, researchers are beginning to explore the
application of reinforcement learning in multi-UAV path planning and navigation [13–15].
Compared with traditional algorithms, reinforcement learning performs better when the
environment is unknown and dynamic. Moreover, the inference speed and generalization
of reinforcement learning are advantages in real-time decision-making tasks.

In our research, the perception abilities of multi-UAV were limited, and only partial
observations of the environment were made, meaning that it was difficult for the multi-
UAV to make the optimal decisions when global states were lacking because the state
transitions were unknown. The action of each UAV could change the environment’s state,
especially in a learning-based algorithm, such as reinforcement learning, the incomplete
information will lead to poor efficiency and convergence. Moreover, it is vital to design
training architecture to coordinate multi-UAVs to achieve a common goal. It is unwise to
adopt a completely distributed training architecture to solve MAPF problems because of
the high complexity. The same applies to multi-objective optimization problems. Lowe,
firstly, proposed a framework of centralized training with decentralized execution [16],
allowing extra information to be used in policies to make training easier. This framework
has been proved to be capable of handling collaborative problems, such as multi-agent
path planning. For instance, Jose et al. [17] proposed a DRL model with a centralized
training and decentralized execution paradigm to solve vehicles routing problem, which
was shown to be able to produce near-optimal solutions through cooperative actions. Marc
et al. [18] adopted a distributed multi-agent variable framework to solve conflicts between
UAVs, and also to train agents using centralized learning. Wang et al. [19] adopted a
centralized training and decentralized executing framework to enable dynamic routing,
introducing a counterfactual baseline scheme to improve the convergence speed. Moreover,
the reward function of reinforcement learning should be reviewed in light of multi-objective
optimization problems. On the one hand, a reward function that is too simple maybe cause
“Reward Hacking” [20] and exacerbate the difficulties of policy learning due to incomplete
information. On the other hand, a reward function that is too complex will lead the worse
generalization. The most commonly used solution is to design a reward to satisfy multiple
objectives of different weights according to the prior knowledge, in which a multi-objective
optimization problem will be changed into a singe-objective optimization problem. In fact,
this solution is near-optimal. Li [21] proposed an end-to-end framework for use in solving
multi-objective optimization problems using deep reinforcement learning. Xu [22] proposed
prediction-guided multi-objective reinforcement learning for use in solving continuous
robot control problems. In multi-UAV path planning, some constraints, such as time cost,
security, and coverage, must be considered.

To solve these problems, we proposed an improved multi-agent reinforcement learning
algorithm based on centralized training and decentralized execution architecture. The
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policy learning algorithm is proximal policy optimization (PPO) [23]. It is a model-free
reinforcement learning algorithm, which can adapt to a dynamic environment and provide
good generalization. The critic network of PPO is used to coordinate all the UAVs to
maximize team returns through centralized training by receiving joint observations, and the
actor network of PPO is used to output actions. We also added a recurrent neural network
to the actor–critic network to gather the historical information from the hidden state of
the recurrent neural network [24], which solves the problem of incomplete information
caused by partial observations. In addition, we designed a joint reward function to guide
multi-UAV to learn optimal policies. When the training stage is completed, each UAV can
execute an action based on its local observations in the reference stage. The contributions
of our research are as follows:

1. We solved the problem caused by multi-UAV path planning with incomplete infor-
mation through reinforcement learning based on the centralized training and decentralized
execution architecture. We deeply explored the reasons why centralized training and
decentralized execution architecture improves model performance, and we explained the
benefits of centralized training compared to fully distributed methods.

2. When designing the reward function, we decomposed the multi-objective optimiza-
tion problem into multiple sub-problems based on the idea of decomposition, solving the
multi-objective optimization problem through reinforcement learning.

Experiments show that by using our method, the performance was significantly
improved compared with baselines, and we demonstrated the high application value of
reinforcement learning in multi-UAV path planning. In the execution stage, our method
could be used to plan paths online, far exceeding the speed of heuristic algorithms. Section 2
introduces the backgrounds of our research. Section 3 describes our methodologies in
details. Section 4 introduces the experimentation setup and results. We provide a conclusion
in Section 5.

2. Background
2.1. Problem Description

When multi-UAV perform reconnaissance missions, they need to make real-time deci-
sions based on current state information, and a collision-free path to reach the target points
must be planned. In addition, time cost and coverage need to be considered. Therefore,
multi-UAV autonomous path planning is a online decision-making problem under the
constraints of incomplete information. It has three characteristics: distributed decision-
making, partial observation and multi-objective optimization. Multi-UAV autonomous
path planning is considered to be a fully cooperative task. The objective of all the partici-
pants in such a task is to obtain the maximum team returns. Therefore, we could establish
a multi-agent real-time sequential decision-making model by the Decentralized Partially
Observable Markov Decision Process (Dec-POMDP) theoretical framework [25].

Dec-POMDP is a general model used to solve multi-agent objective optimization
problems in cooperative environments, which generalizes the Partially Observable Markov
Decision Process (POMDP) to multi-agent environments. It allows for the distributed
control of multiple agents which may not be able to observe global states of environment. In
every step, each agent chooses an action based on local observations (all agents in parallel),
and then obtains its own reward from the environment, and all of agents cooperate to
obtain common long-term benefits and maximize returns. Generally, a Dec-POMDP model
is described by a tuple: 〈I, S, {Ai}, T, R, {Ωi}, O, h〉



Drones 2023, 7, 10 4 of 16

• I is a set of N agents.
• S is a set of states of the environment, and S0 is the initial state.
• {A} is a set of actions for the agents. It is an action tuple A1, A2, . . . , Ai.
• T is the state transition probability function P(S′|S, A).
• R is the reward when agents take actions {A} in state S, it depends on all the agents.
• {Ω} is a set of observations for the agents.
• O is a table of the observation probabilities, where O(o1, o2, . . . , oi|S′, A) is the proba-

bility that (o1, o2, . . . , oi)are observed by all the agents, respectively.
• h is the maximum number of steps in an episode which is called “horizon”.

However, the complexity of the optimal solution of this distributed model is

O

[(
|A|

|o|h−1
|o|−1

)n]
(1)

which is double exponential [26]; it is hard to compute directly, and reinforcement learning
is usually used to obtain the approximate solution.

2.2. Actor–Critic Algorithm

In reinforcement learning, an agent interacts with the environment continuously to
optimize the policy through the feedback (reward) given by the environment. Reinforce-
ment learning is mainly divided into value-based methods and policy-based methods. A
policy-gradient algorithm can easily select the appropriate action in the continuous action
space, while value-based algorithm cannot. However, the limitation of the policy-gradient
algorithm is its poor learning efficiency. Therefore, researchers proposed a method that com-
bines the policy-gradient and value-based algorithms, called the actor–critic algorithm [27].
The architecture of actor–critic is shown in Figure 1. Actor–critic uses a value-based net-
work and policy-based network as the critic network and the actor network, respectively.
The critic network can realize single-step updates to overcome the poor learning efficiency,
and the actor network outputs actions according to the current observation, while the
critic network can judge whether the current action is good or bad, which can lead the
actor network to output a better action. Currently, the algorithms based on the actor–critic
framework, such as DDPG, PPO, and A3C, are very popular.

Figure 1. Actor–critic algorithm.



Drones 2023, 7, 10 5 of 16

2.3. Centralized Training and Decentralized Execution Architecture

When there are multiple agents in a completely cooperative environment, we can
establish a Dec-POMDP framework. Reinforcement learning is a great method to seek
the optimal solution of a model. However, if we directly use single-agent reinforcement
learning algorithms to train agents independently, it is hard to converge them, because
the actions of each agent will change the environment, meaning the environment will be
unstable for each agent and lead to learning difficulties. The MADDPG trains multi-agents
through a centralized critic network, providing a good solution for the training of multi-
agent systems. As shown in Figure 2, the input of the critic network is the joint observation
of all of the agents in the environment in the training stage, and the actor network only
inputs its own local observations and output actions according to the observations in the
inference stage. This architecture enables each agent’s actions in the environment to be
observed by other agents, ensuring the stability of the environment. Therefore, multi-agent
reinforcement learning is mostly based on centralized training and decentralized execution
(CTDE) architecture, such as COMA [28].

Figure 2. Centralized training (left) and decentralized execution (right).

3. Methodology
3.1. Proximal Policy Optimization with CTDE

We choose proximal policy optimization (PPO) to guide UAVs in learning policies. The
PPO algorithm is based on the actor–critic architecture, which can more effectively achieve
continuous control in high-dimensional space, and it is also an on-policy reinforcement
learning algorithm. The learning approach of PPO is policy gradient. However, the policy-
gradient algorithm is unstable, and this makes it difficult to choose an appropriate steps.
If the difference between the old policy and new policy is too great during the training
process, it is not conducive to learning. Using the PPO algorithm, a new objective function
was proposed which can be updated in small batches in multiple training steps, which
solves the problem of steps being difficult to determine in the policy-gradient algorithm.
The algorithm takes into account the difference between an old network and an new
network when updating parameters. In order to avoid the difference being too great, a clip
is introduced to limit:

∇R(τ) = Eτ∼πθ(τ)[A
π(st, at)∇logpθ(at|st)] (2)

Aπ(s, a) = Qπ(s, a)−Vπ(s) (3)

Ex∼p[ f (x)] =
∫

f (x)p(x)dx =
∫

f (x)
p(x)
q(x)

q(x)dx = Ex∼q

[
f (x)

p(x)
q(x)

]
(4)
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LCLIP(θ) = Êt

{
min

[(
πθ(at|st)

πθold(at |st)

)
Ât, clip

(
πθ(at|st)

πθold(at |st)
, 1− ε, 1 + ε

)
Ât

]}
(5)

where A is an advantage function, indicating the return of the action a in the current state.
Based on the PPO algorithm, we adopted the training method of the CTDE architecture

and designed a multi-agent PPO algorithm in a multi-agent environment. Compared with
the single-agent environment, the critic network’s input is the joint observation of multi-
UAV, which is equivalent to a central controller, each drone can obtain more information.
The actor network is updated to maximize the objective:

L(θ) = 1
Bn

B
∑
i=1

n

∑
k=1

[
min

(
rk

θ,iAk
i , clip

(
rk

θ,i, 1− ε, 1 + ε
)
Ak

i

)
+ σ ∗ Sπ

]
(6)

where rk
θ,i =

πθ(ak
i |ok

i )
π

θold(ak
i |ok

i )
. The critic network is updated to minimize the value loss:

L(φ) = 1
Bn

B
∑

i=1

n
∑

k=1
max

[(
Vφ

(
sk

i

)
− R̂i

)2
,(

clip
(
Vφ

(
sk

i

)
,Vφold

(
sk

i

)
− ε,Vφold

(
sk

i

)
+ ε
)
− R̂i

)2
] (7)

The weights of two networks are updated in every episodes, the process is shown in
Figure 3.

Figure 3. The weights of actor–critic network are updating in every episodes.

3.2. Adding RNN Layer For Incomplete Information

One of the difficulties within multi-UAV autonomous path-planning tasks is partial
observation, which leads to limited information being obtained by UAVs. A solution to
this is the utilization of the previous state to avoid falling into a local optimum.

Recurrent neural networks can memorize the previous information and apply it to the
calculation of the current output. The nodes between the hidden layers are connected, and
the input of the hidden layer includes the current input and the previous output, as well
as the output of the hidden layer at the moment. The study of deep recurrent Q-learning
(DRQN) was the first to combine an RNN with reinforcement learning [29]. As shown
in Figure 4, DRQN essentially turns one of the linear layers of DQN into an RNN layer.
Due to the addition of RNN, DRQN has short-term memory, and it can achieve similar
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scores to DQN in “Atari Games” without frame stack technology. Taking inspiration from
this idea, we added the RNN layer to the PPO network, and we used the RNN layer
to process historical information to solve the problem of incomplete information in the
training process.

Figure 4. Adding LSTM layer have the same effect compared with frame stack, and reduce the
dimension of input.

However, RNNs suffer from short-term memory. If a sequence is too long, it is
difficult to transfer information from an earlier time step to a later time step. During back
propagation, the gradient easily vanishes. Long Short-Term Memory (LSTM) is a variant
of the RNN. It can select the information to be remembered or forgotten through the gate
mechanism. As shown in Figure 5, the forget gate determines which relevant information
in the previous step needs to be retained; the input gate determines which information in
the current input is important and needs to be added; the output gate determines what
the next hidden state should be. These “gates” can keep the important information in the
sequence and discard the useless information, preventing the gradient from vanishing.

Figure 5. LSTM structure: at timestep t, Xt is input, Ct is cell state, and ht is hidden state.



ft = σ
(

W f • [ht−1, xt] + b f

)
it = σ(Wi • [ht−1, xt] + bi)

C̃t = tanh(Wc • [ht−1, xt] + bc)

Ct = ft ∗ Ct−1 + it ∗ C̃t
ot = σ(Wo • [ht−1, xt] + bo)
ht = ot ∗ tanh(Ct)

(8)

where Ct is the cell state, and ht is the current hidden state. Therefore, we added LSTM
layers to both the actor and critic networks of PPO. After adding the LSTM layer, the
historical information was remembered by updating the cell state and hidden state at each
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timestep T, and the problem of incomplete information caused by the local observations
was alleviated.

Batches of τ are used to update the parameters of actor and critic networks to maximize
L(θ) and minimize L(φ) through gradient descent. τ = [st, ot, at, rt, st+1, ot+1, at+1 . . .]
Add an LSTM layer to the network, two elements ht,π and ht,V are added to τ, which
changed into [st, ot, ht,π , ht,V , at, rt, st+1, ot+1, ht+1,π , ht+1,V , at+1 . . .], ht,π , ht,V are the hidden
state of timestep t in an LSTM layer of the actor network and critic network.

L(θ) = 1
Bn

B
∑
i=1

n

∑
k=1

[
min

(
rk

θ,iAk
i , clip

(
rk

θ,i, 1− ε, 1 + ε
)
Ak

i

)
+ σ ∗ Sπ

]
(9)

Moreover, we sought to establish the different roles of the critic network and actor
network in the multi-agent reinforcement learning algorithm based on the CTDE architec-
ture. We believe that the critic network acts as a central controller to process all observation
information, meaning that adding an RNN layer to the critic network can, theoretically,
greatly enhance the performance of the model in partially observable environments. The
actor network acts as a policy network for each agent, and adding the RNN layer to the
actor network has less of an effect on its performance. The experimental results prove our
analysis, it also confirms that the CTDE architecture is effective in this task.

3.3. Multi-Objective Joint Optimization

Multi-UAV autonomous path planning is a multi-objective optimization. The time
cost, coverage area, and security of multi-UAV systems need to be considered in Figure 6.
Multi-objective optimization is the optimal selection of decision variables in a discrete
decision space.

Figure 6. Multi-objective optimization seeks optimal solutions under the constraints of security, time,
and coverage.

The mathematical expression is as follows:

maxπ F(π) = maxπ [ f1(π), f 2(π), . . . , fm(π)] (10)

where m is the number of the objectives,and π is the policy.
This is very similar to the “action selection” of reinforcement learning, and the “offline

training, online decision-making” characteristic of deep reinforcement learning make it
possible for an online, real-time solution of a multi-objective optimization problem to be
achieved. Therefore, deep reinforcement learning methods are a good choice when used to
solve traditional multi-objective optimization problems, and the learning-based model has
a good generalizability.

We designed the reward function based on multi-objective optimization and com-
bined it with prior knowledge regarding navigation, decomposing the multi-objective
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optimization problem into multiple sub-problems. We shaped a joint reward function by
considering the constraints of security, time, and coverage. There are several ways for
multi-UAV to obtain feedback.

rtotal = α ∗ rtimecost + β ∗ rsecurity + γ ∗ rcoverage (11)

where rsecurity = ∑
∣∣distance

(
UAVi −UAV j

)∣∣− |distance(UAVi − targeti)| , which guides
the multi-UAV to reach the target points and avoid each other. The purpose of this design
is to achieve larger coverage by distributing all of the UAVs, ensuring that the drone does
not collide with other drones or obstacles. rcoverage = ∑ new areaUAVi, it means the UAV
will be rewarded if new areas are explored; this reward encourages multi-UAV to explore
an environment, not simply reach the required points. rtimecost guides the drone to reach
the target point with the shortest possible number of steps. These three different rewards
constitute the reward function that guides the multi-UAV autonomous path planning under
constraints.

Usually, we give these rewards different weights to change a multi-objective problem
into single-objective problem and to seek a solution. The advantage of this design is that the
aggressiveness of the agent’s learning strategy can be changed amending intended meaning
has been retrained the manually set rules, but this is a near-optimal solution under the
constraint. A multi-objective optimization problem can be solved through multi-objective
reinforcement learning, as shown in Figure 7.

Figure 7. The difference between reinforcement learning and multi-objective reinforcement learning.

A set of solutions called “Pareto front” can represent the optimal solutions in all of the
different weights. The differences between two methods are as shown in Figure 8.

Figure 8. Multi-objective optimization: obtaining the optimal solution under the constraints of
security, time, and coverage.

A multi-objective gradient optimizes the policy to maximize the weight–sum reward,
where w is the weight of every objective, meaning that the policy gradient has changed.
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J (θ, ω) = ωT F(π) =
m

∑
i=1

ωi fi(π) =
m

∑
i=1

ωi Jπ
i (12)

∇θJ (θ, ω) =
m

∑
i=1

ωi∇θ Ji(θ)

= E
[

T

∑
t=0

ωT Aπ(st, at)∇πθ(at | st)

]

= E
[

T

∑
t=0

Aπ
ω(st, at)∇πθ(at | st)

] (13)

4. Experiment
4.1. Experimental Setup

We built a simulation platform based on Unreal Engine 4 to support quad-rotor
dynamics simulation. In this platform, we created a scenario to simulate multi-UAV
reconnaissance missions, as shown in Figure 9. The reconnaissance area was 2 km × 2 km,
and the scenario contained four movable anti-drone devices. Once the drone entered the
coverage area of these devices, it would be destroyed. The perception radius of a drone
was 200 m × 200 m, and all of the drones communicated with each other by default.

Figure 9. Multi-UAV simulation platform.

Three UAVs started from the starting points and planed a collision-free path to three
target points online. The area covered by all of the UAVs was the final total coverage area,
and the total path length of the UAVs was the path cost. Figure 10 shows that three UAVs
started from different points, and there were four threat areas in the environment. By
default, the drones could only perceive dangerous areas within their capability radius.

In this simulation platform, low-level and high-level commands were used to control
the motion of a UAV. As shown in Figure 11, in order to simulate a real flight, we choose to
control the motion of the UAV through the underlying control method. The policy network
outputs (pitch, roll, yaw_rate, throttle, and duration) a five-dimension vector in every step,
where pitch, roll, and yaw_rate controlled the attitude and direction of a UAV, and throttle
and duration made the UAV to accelerate or decelerate for a period of time.
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Figure 10. Initial state when multi-UAV perform a reconnaissance task.

Figure 11. Kinematics of a quad-rotor.

4.2. Network Architecture

We used PyTorch to build a three layers neural network for the actor and critic net-
works of PPO, respectively. We used a centralized training and decentralized execution
architecture to coordinate all of the UAVs; the intuitive difference between centralized
training and independent training is the input of the value network. In this experiment,
we connected the local observations of all of the UAVs into a high-dimensional vector
as the joint observations, and then input the value network, called Ocenter, and the actor
network input was the observation Oi of each UAV itself as shown in Figure 12. We set up
four control experiments to compare the performance between CTDE and independent
training in this task. The first and third layers of the networks were fully connected layers,
and the second layer was an LSTM layer. In order to validate whether adding lstm was
effective, we use the same network architecture to build a network without an LSTM layer
as a comparison with the specific aim of verifying which one of critic and value was more
dependent on historical information, thus confirming the role of CTDE architecture.
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Figure 12. Actor network and critic network, and all of the agents that share the networks.

PPO outputs random policies, meaning that the outputs of the actor network are µ, σ,
which are the expectation and variance of a Gaussian distribution, and the output action
is randomly sampled by this Gaussian distribution. In the experiment, all of the agents
shared common networks parameters as shown in Table 1.

Table 1. Network parameter table.

Episode Episode length Rollout thread Clip Discount Entropy coefficient

625 200 16 0.2 0.99 0.1

Buffer size Batch size FC layer dim RNN hidden dim Activation Optimizer

500 32 128 64 Relu Adam

4.3. Results

After 1,000,000 steps of training, by analyzing the experimental results, we came to
the conclusion that the PPO algorithm based on the centralized training decentralized
execution architecture performed better compared to independent training in multi-UAV
autonomous path planning tasks. As the results show in Figure 13, it is difficult for
a completely independent and distributed training method to perform well in multi-
UAV tasks. The adoption of CTDE architecture obviously and significantly improved the
performance, the reward became positive, and the performance was even improved when
the number of UAVs was larger. This proves that CTDE architecture is effective in such
distributed tasks. A center controller can coordinate all of the UAVs. However, it does
not indicate the number of UAVs, which can be unlimited. In fact, we found when there
was more than six UAVs, the center controller could not effectively handle it, due to the
dimension of joint observation being too high.

Figure 13. Comparison of the CTDE and independent architecture.



Drones 2023, 7, 10 13 of 16

In addition, we carried out a set of control experiments to verify whether adding the
RNN layer could solve the problem of multi-UAV learning difficulties with incomplete
information. According to the experimental results in Figure 14, we found that adding the
RNN layer to both the actor and critic networks significantly improved the performance
of the model. Adding the RNN layer to the critic network also achieved practically the
same effect, with the convergence speed being slower. The method of only adding the
RNN layer to the actor network did not significantly improve the model performance,
and it failed to solve the problem caused by partial observations of multi-UAVs. This
result also verified our analysis: in the CTDE architecture, the critic network is the central
controller, it coordinates all of the UAVs to complete common goals through the input of
joint observations. The addition of the RNN layer to the critic network is effective, and the
problem of incomplete information is solved through the hidden state.

Figure 14. After the addition of the LSTM layer, better performance in an average reward
was achieved.

In order to solve the decision-making problem with incomplete information, we chose
CTDE architecture and added RNN layer to utilize historical information. In model-free
reinforcement learning algorithms, reward represent an important evaluation criterion.
Similarly, value loss, policy loss, and action entropy are also key components to evaluating
algorithm performance. Value loss evaluates a value output of critic network and deter-
mines whether the prediction is accurate, and the action entropy reflects the randomness
of the actor network strategy output. Here, we hoped that the action entropy would be
larger enough to facilitate adequate exploration. The experimental results prove that our
algorithm significantly improved the performance. As shown in Figure 15, after about
300 episodes, the loss function begin to stabilize, and the rapid convergence of value loss
also showed that the value predicted by the critic network was more accurate. Similarly,
after adding an LSTM layer, the critic loss was decreased, and the policy entropy value
descended smoothly, which was a good performance and meant that the agents did not
fall into a local optimum. We did not want this value to descend too rapidly or too slowly.
Policy entropy is the variance of the output actions, and a smooth curve shows that multi-
UAVs have learned a stable policy after a sufficient exploration, because exploration is
indispensable in reinforcement learning.

Moreover, we found that adding a LSTM layer greatly improved the performance of
the algorithm. After adding an LSTM, the average reward is significantly increased, which
proved that the agent could make more correct decisions, and the policy entropy and critic
loss converge faster, which shows that our method for adding an LSTM to the network
effectively utilized historical information. The parameters of the model were continuously
updated during the training phase.
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Figure 15. Critic loss, policy loss, and entropy.

Reinforcement learning is much faster than traditional swarm intelligence algorithms
in the execution phase, and it is suitable for real-time decision-making tasks, as shown in
Figure 16. Once the training stage was completed, the weight parameters of the networks
were frozen during the execution phase. When we performed the navigation task with the
trained model, the total average reward of our method was higher and stable.

Figure 16. Our improved algorithm performs better in test.

In the simulation platform, multi-UAV realized path planning online by the pre-model
in the inference stage as shown in Figure 17. We found that our method performs well
under the constraints of security, time, and coverage. As shown in Table 2, compared
with the state-of-the-art particle swarms optimization algorithms, our method has a better
performance in many aspects especially the speed of reference. Reinforcement learning
shows the powerful ability in real-time path planning task.

Figure 17. Multi-UAV path planning in three-dimensional environment through reinforcement learn-
ing.
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Table 2. Performance comparison between our method and other state-of-the-art algorithms.

Time Cost Coverage Success Rate Reference Speed

Our method 92 57.9% 92.7% 0.126 s
RL baseline 93 54.5% 90.1% 0.115 s

DPSO 97 41.2% 65.2% 1.35 s
GAPSO 95 43.7% 62.1% 1.16 s

5. Conclusions

In this study, we proposed a multi-UAV autonomous path planning algorithm based
on model-free reinforcement learning, which is able to adapt to dynamic environments. It
was shown that the algorithm coordinates all of the UAVs through centralized training,
which effectively lessens the difficulty of training distributed systems. When the training
stage is completed, each UAV can make optimal decisions based on its own observations.
We also introduced an RNN to remember historical information and prevent the model
from falling into the local optimum due to incomplete information caused by partial obser-
vations. Finally, we designed a joint reward function to cooperatively guide the UAVs. Our
experiments performs well in this type of task. Considering its communication capabilities
in the real world, we plan to constrain the communication range and communication
frequency between UAVs in follow-up research. The authors of [30,31] have contributed
new ideas regarding the security of UAV communication. We believe this algorithm can be
deployed to real drone swarms.
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