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Abstract: Flocking for fixed-Wing Unmanned Aerial Vehicles (UAVs) is an extremely complex
challenge due to fixed-wing UAV’s control problem and the system’s coordinate difficulty. Recently,
flocking approaches based on reinforcement learning have attracted attention. However, current
methods also require that each UAV makes the decision decentralized, which increases the cost
and computation of the whole UAV system. This paper researches a low-cost UAV formation
system consisting of one leader (equipped with the intelligence chip) with five followers (without
the intelligence chip), and proposes a centralized collision-free formation-keeping method. The
communication in the whole process is considered and the protocol is designed by minimizing the
communication cost. In addition, an analysis of the Proximal Policy Optimization (PPO) algorithm
is provided; the paper derives the estimation error bound, and reveals the relationship between
the bound and exploration. To encourage the agent to balance their exploration and estimation
error bound, a version of PPO named PPO-Exploration (PPO-Exp) is proposed. It can adjust the
clip constraint parameter and make the exploration mechanism more flexible. The results of the
experiments show that PPO-Exp performs better than the current algorithms in these tasks.

Keywords: fixed-wing UAV; formation keeping; reinforcement learning

1. Introduction

In recent years, unmanned aerial vehicles (UAVs) have been widely used in military
and civil fields, such as in tracking [1], surveillance [2], delivery [3], and communication [4].
Due to the inherent defects, such as fewer platform functions and a light payload, it is
difficult for a single UAV to perform diversified tasks in complex environments [5]. The
cooperative formation composed of multiple UAVs can effectively compensate for the lack
of performance and has many advantages in performing combat tasks. Thus, the formation
control of UAVs has become a hot topic and attracted much attention [6,7].

Traditional solutions are usually based on accurate models of the platform and dis-
turbance, such as model predictive control [8] and consistency theory [9]. This paper [10]
proposed a group-based hierarchical flocking control approach, which did not need the
global information of the UAV swarms. The study in [11] researched the mission-oriented
miniature fixed-wing UAV flocking problem and proposed an architecture that decomposes
the complex problem; it was the first work that successfully integrated the formation flight,
target recognition, and tracking missions into simply an architecture. However, due to the
influence of environmental disruption, these methods are difficult to accurately model [12].
This seriously limits the application scope of traditional analysis methods. Therefore,
with the emergence of machine learning (ML), the reinforcement learning (RL) [13,14]
method to solve the above problem has received increasing attention [15]. RL applies to
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decision-making control problems in unknown environments and has achieved successful
applications in the robotics field [16–18].

At present, some works have integrated RL into the formation coordination control
problem solution and preliminarily verified the feasibility and effectiveness in the simula-
tion environment. Most existing schemes use the particle agent model for the rotary-wing
UAV. The researchers [19] first researched RL in coordinated control, and applied the
Q-learning algorithm and potential field force method to learn the aggregation strategy.
After that, ref. [20] proposed a multi-agent self-organizing system based on a Q-learning
algorithm. Ref. [21] investigates second-order multi-agent flocking systems and proposed a
single critic reinforcement learning approach. The study in [22] proposes a UAV formation
coordination control method based on the Deep Deterministic Policy Gradient algorithm,
which enabled UAVs to perform navigation tasks in a completely decentralized manner in
a large-scale complex environment.

Different from rotary-wing UAVs, the formation coordination control of fixed-wing
UAVs is more complex and more vulnerable to environmental disturbance; therefore, dif-
ferent control strategies are required [23]. The Dyna-Q(λ) and Q-flocking algorithm are
proposed [24,25] for solving the discrete state & action space fixed-wing UAV flocking
problem under complex noise environments with deep reinforcement learning. To deal
with the continuous space, ref. [26,27] proposed a fixed-wing UAV flocking method in
continuous spaces based on deep RL with the actor–critic model. The learned policy can
be directly transferred to the semi-physical simulation. Ref. [28] focused on the nonlin-
ear attitude control problem and devised a proof-of-concept controller using proximal
policy optimization.

However, the above methods also assume that UAVs fly with different attitudes, so the
interaction (collision) between the followers can be ignored, and the followers in the above
methods are seen as independent. Under the independent condition, these single-agent
reinforcement learning algorithms can be effective due to the stationary environment [29].
However, in real tasks, even when the attitude is different, the collision still may happen
when the attitude difference is not significant, and the UAVs adjust their roll angles.

In real tasks, the followers can interact with each other, and it is also common for
them to collide in some scenarios, such as the identical attitude flocking task. However,
this scenario is rarely studied. Ref. [30] proposed a collision-free multi-agent flocking
approach MA2D3QN by using the local situation map to generate the collision risk map.
The experimental results demonstrate that it can reduce the collision rate. The followers’
reward function in MA2D3QN is only related to the leader and itself; however, other
followers can also provide some information. This indicates that the method did not fully
consider the interaction between the followers.

However, MA2D3QN did not demonstrate the ability to manage the non-stationary
multi-agent environment [29], and the experiments also show collision judgments with
high computation. With the number of UAVs rising, the computation time also increases.
Furthermore, some problems in the above methods on fixed-wing UAVs have not been
adequately solved, such as the generalization aspect and communication protocol; the most
concerning problem is the minimum cost of the formation.

To consider the communication protocol of the formation, this paper takes the maxi-
mum communication distance between the UAVs into consideration, with a minimum cost
communication protocol to guide the UAVs to send the message in the formation-keeping
process. Under this protocol, the centralized training method for the UAVs is designed;
only the leader needs to equip the intelligence chip. The main contributions of this work
are as follows:

1. Research the formation keeping task with continuous space through reinforcement
learning, and building the RL formation-keeping environment with OpenAI gym,
and constructing the reward function for the task.

2. Design the communication protocol for the UAVs’ formation with one leader who
can make decisions intelligently and five followers who receive the decisions from
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the leader. The protocol is feasible even when the UAVs are far away from each other.
Under this protocol, the followers and leader can communicate at a low cost.

3. Analyze the PPO-Clip algorithm, give the estimation error bound of its surrogate, and
elaborate on the relationship between the bound and hyperparameter ε: the higher ε,
the more exploration, the larger the bound.

4. Propose a variation of PPO-clip: PPO-Exp. The PPO-Exp separates the exploration
reward and regular reward in the task of formation keeping, and estimates the advan-
tage function from them, respectively. The adaptive mechanism is used to adjust ε to
balance the estimation error bound and exploration. The experiments demonstrate
this mechanism with effectiveness for improving performance.

This paper is organized as follows. The first section introduced the current research
on UAV flocking. Section 3 describes the background of the formation-keeping task and
introduces reinforcement learning briefly. In Section 4, the formation-keeping environment
is constructed, and the reward of the formation process is designed. Section 5 discusses
the dilemma between the estimation error bound and exploration ability of PPO-Clip, and
proposes PPO-Exp to balance the dilemma. Section 6 shows the experimental setup and
results. Section 7 provides the conclusions of the paper.

2. Related Work

This section reviews current research about fixed-wing UAV flocking and formation-
keeping approaches with deep reinforcement learning. According to the training architec-
ture, this paper divides the current methods into the following two categories: centralized
and decentralized. The difference between the two categories is as follows:

The centralized methods utilize the leader and all the followers’ states in the training
model, and the obtained optimal policy can control all of the followers so that they flock
to the leader. The decentralized methods only use one follower and the leader’s state to
train the policy, and the obtained optimal policy could only control one follower. If there
are several followers in the task, the policy and intelligence chip should be deployed on all
of the followers.

2.1. Decentralized Approach

The paper [24] proposed a reinforcement learning flocking approach Dyna-Q(λ) to
flock the fixed-wing UAV under the stochastic environment. To learn a model in the
complex environment, the authors used Q(λ) [31] and Dyna architecture to train each fixed-
wing follower to follow the leader, and combined internal models to deal with the influence
of the stochastic environment. In [25], the authors further proposed Q-Flocking, which is a
model-free and variable learning parameter algorithm based on Q-learning. Compared to
Dyna-Q(λ), Q-Flocking removed the internal models and proved it could also converge to
the solutions. For simplification, Q-Flocking and Dyna-Q(λ) also require that the state and
action spaces are discrete, which is inappropriate. In [26], the authors first developed a DRL-
based approach for the continuous state and action spaces fixed-wing UAV flocking. The
proposed method is based on the Continuous Actor-Critic Learning Automation(CACLA)
algorithm [32], with the experience replay technique embedded to improve the training
efficiency. Ref. [33] considered a more complex flocking scenario, where the enemy threat is
considered in the dynamic environment. To learn the optimal control policies, the authors
use the situation assessment module to transfer the state of UAVs to the situation map
stack. Then, the stack is input into the proposed Dueling Double Deep Q-network(D3QN)
algorithm to update the policies until convergence. Ref. [34] proposed the Multi-Agent
PPO algorithm to decentralize learning in the two–group fixed-wing UAV swarms dog
fight control. To accelerate the learning speed, the classical rewarding scheme is added to
the resource baseline, which could reduce the state and action spaces.

The advantage of decentralized methods is that these methods could be deployed on
the distribution UAV systems, which could extend to the large-scale UAV formation. The
disadvantage of the centralized methods is as follows:
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• These methods also require all of the followers to be equipped with intelligence chips,
which increase the costs.

• These methods do not consider the collision and communication problem, due to the
use of only local information.

The decentralized approaches also assume that UAVs fly at different heights, and then
the collision problem could be ignored. However, in real-world applications, the collision
problem must be considered [30].

2.2. Centralized Approach

Ref. [35] studied the collision avoidance fixed-wing UAV flocking problem. To man-
age collision among the UAVs, the authors proposed the PS-CACER algorithm, which
receives the global information of UAV swarms through the plug-n-play embedding mod-
ule. Ref. [30] proposed a collision-free approach by transferring the global state information
to the local situation map and constructing the collision risk function for training. To
improve the training efficiency, the reference-point-based action selection technique is
proposed to assist the UAVs’ decisions.

The advantages of the centralized methods are as follows:

• These methods could reduce the cost of the formation. Under the centralized archi-
tecture, the formation system only requires the leader to equip the intelligence chip.
The followers only need to send their state information to the leader and receive the
feedback commands.

• These methods could consider collision avoidance and communication in the forma-
tion due to their use of global information.

The disadvantage of the centralized method is the dependence on the leader. Ref. [36]
pointed out that the defect or jamming of the leader causes failure in the whole
formation system.

When the number of UAVs increases or the tasks are complex, the centralized methods
face the dimension curse and lack of learning ability problems. A popular approach is
learning the complex tasks with a hierarchical method [37,38], which divides the complex
tasks into several sub-tasks and uses the centralized method to optimize the hierarchies.
The hierarchical reinforcement learning approaches are applied in the quadrotors swarm
system [37,38], but are rarely used in fixed-wing UAV systems.

Even when using global information in training, the current centralized approaches fail
to consider communication in the formation. Compared to current centralized approaches,
the approach proposed in this paper considers the communication in formation, and
provides the communication protocol. Through the communication protocol, the formation
system could be considered as one leader with an intelligence chip and five followers
without intelligence chips; the leader collects the followers’ information, with a centralized
train on the intelligence chip. The followers receive the command from the leader through
this protocol and execute.

3. Background

This section will introduce the kinematic model of the fixed-wing UAV, restate the
formation keeping problem, and briefly introduce reinforcement learning.

3.1. Problem Description

The formation task can be described as follows: At the beginning, the formation is
orderly (shown in Figure 1), which is a common formation designed in [39]). The goal of
the task is to reach the target area (the green circle area) with the formation in as orderly a
way as possible; when the leader enters the target area, the mission is complete.
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Figure 1. Left: The Leader–Follower formation topology structure and the task schematic diagram.
Right: The action of UAV.

During the task, assume the UAVs are flying at a fixed attitude; then, each UAV in
the formation can also be described as a six-degree of freedom (6DoF) dynamic model.
However, analyzing the six-degree model directly is very complex; it will increase the
space scale and make control more difficult. The 6DoF model can be simplified to the 4DoF
model; to compensate for the loss incurred during this simplification, random noise is
introduced into the model [27], and the dynamic equations of ith UAV in the formation can
be written as follows:

ξ̇i =
d
dt


xi
yi
ψi
ϕi

 =


vi cos ψi + ηxi

vi sin ψi + ηyi

−
(
αg/vi

)
tan ϕi + ηψi

f (ϕi, ϕi,d)

 (1)

where (xi, yi) ∈ R2 is the planar position, and ψi ∈ R1, ϕi ∈ R1 represent the heading
and roll angle, respectively, (see Figure 1). The vi is the velocity, and αg is the gravity
acceleration. The random noise values ηxi , ηyi , ηϕi , ηψi are the normal distributions, its
means are µxi , µyi ,µϕi ,µψi , and its variances are σ2

xi
, σ2

yi
, σ2

ϕi
, σ2

ψi
, respectively, (the gray dotted

circles in Figure 1 show the area of influence, of random factors); they represent the random
factors introduced by simplification and environment noise.

A simple control strategy can make the formation satisfactory when the environment’s
noise is low. However, under a strong inference environment, such as one with strong
turbulence, the random factors will be apparent, leading the formation to maintain the
complexity of the task. If no effective control is provided, the formation will break up
quickly, (this is demonstrated in Figure 2), and a crash may happen.

Furthermore, even though there is an effective control policy for the formation, the
coupling between the control and communication protocol can also be an unsolved chal-
lenge. Because the communication range of UAVs is limited, if the UAV wants to know
others’ states, it has to wait for other UAVs out of range to send state information to UAVs it
can communicate with, which in turn send state information to it. If no harmonic protocol
is applied in the formation control, the asynchronous and nonstationary elements will be
introduced into the formation control, making the control strategy more complex.
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Figure 2. (a): The ablation experiment result of environment noise: track of formation with no control;
(b): The ablation experiment result of exploration balance point: PPO-Clip with ε = 0.05.

3.2. Reinforcement Learning

In the last part, the solution of differential Equation (1) can be represented as the
current dynamic parameters adding the integral items by difference equation methods
such as the Runge–Kutta method. So, the UAV formation control can be modeled as a
Markov Decision Process(MDP), which refers to the decision process that satisfies the
Markov property.

The MDP also can be described as the tuple (S ,A,P , r, γ). S represents the state space,
A represents the action space, and P : S ×A× S → R is the transition probability. The
reward function is r : S ×A → R, and γ ∈ (0, 1) is the discount factor, which leads the
agent to pay more attention to the current reward.

Reinforcement learning can solve the MDP well to maximize the discounted return, as
follows: Rt = ∑∞

t=0 γtr(st). The main approaches of RL are divided into the following three
categories: value-based, model-based, and policy-based. The policy-based methods have
been developed and widely used in various tasks in recent years. These methods directly
optimize the value function by the policy gradient:

∇Jπ(θ) = Eπθ

[
∇θ

T

∑
t=0

log πθ(st, at)Aπ

]
(2)

where Aπ is the advantage function that is equal to the state-action value function, and the
the state value function is subtracted, as follows:

Aπ(St, at) = Eπ

[
∞

∑
k=0

γkrt+k|St = s, at = a

]
− Eπ

[
∞

∑
k=0

γkrt+k|St = s

]
(3)

PPO (Proximal Policy Optimization) is one of the most famous policy gradient methods
in continuous state and action space [40]. In policy gradient descent, PPO updates the
following equation at each update epoch :

LClip,θ = Eπθold

[
min

(
rt(θ)Aπθold

, clip(rt(θ), 1− ε, 1 + ε)Aπθold

)]
(4)

However, using the constant clip coefficient ε, the PPO also proved its lack of exploration
ability and difficulty in convergence. Therefore, designing an efficient dynamic mechanism to
adjust ε and ensure greater exploration and faster convergence is also challenging.
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4. Formation Environment

This section constructs the fixed-wing UAV formation-keeping environment, the
formation topology, communication and control protocols, and collision. Communication
loss is also considered in the environment through the reward design.

4.1. State and Action Spaces

In the course of the formation task, based on the 4DoF Equation (1), it is modified
to a more realistic control environment. For the ith UAV, assume the thrust of the UAV
is controllable, and it will generate a linear acceleration αvi = v̇i. Moreover, assume the
torque of the roll angle is controllable too, and add the roll angle acceleration αϕi = ẇi = ϕ̈i
into the dynamic equations. Finally, the dynamic equations of ith UAV can be modified
as follows:

ξ̇i =
d
dt



xi
yi
ψi
ϕi
vi
wi

 =



vi cos ψi + αvi cos(ψi)t + ηxi

vi sin ψi + αvi sin(ψi)t + ηyi

−
(
αg/vi

)
tan ϕi + ηψi

ωi + ηωi

αvi

αϕi

 (5)

To control the UAVs, linear acceleration and roll angle acceleration are input. For
control, we have the dynamic model of ith UAV:

ξ̈i =
d
dt


ẋi
ẏi
ψ̇i
ϕ̇i

 =


αvi cos ψi
αvi sin ψi

−αg f (ϕi ,ϕi,d)

vi cos2 ϕi
+

αvi αg tan ϕi

v2
i

αϕi

 (6)

The state and action spaces for existing methods in UAVs controlled by reinforcement
learning are often discrete, but in the real world, the state space is continuous and changes
continuously as time goes on. Therefore, combining the analysis of the previous dynamics,
we define the state tuple of the ith UAV as ξi := (xi, yi, ψi, ϕi, vi, wi). The planar position
(xi, yi) ∈ R2, heading ψi ∈ S1, roll angle ϕi ∈ S1, line and angle velocity v, w ∈ R are
determined by solving the differential Equation (5).

In the action space, although the engine can produce fixed thrust, the real thrust acting
on the UAVs in the nonuniform atmospheric environment is not of the same value as the
engine product. So, we define the action space by ai := (αvi , αϕi ). Assume the UAVs can
also produce the same acceleration in positive and negative directions, where we have
αvi ∈ [−αvimax, αvimax], and αϕi ∈ [−αϕimax, αϕimax]. The action will influence ξ̇i through
Equation (6), and then influence the ξ̇i indirectly.

After defining the individual state and action of the UAV, we define the formation
system state and action by sticking to the individual state (action) as a vector. Define the
state of system ξ := [ξ1, · · · , ξ6], and the action of system a := [a1, · · · , a6].

4.2. Communication and Control Protocol

To ensure the UAV formation consumes less energy in the information send and
receive process, and ensure the reinforcement learning method can be helpful in the task,
the communication and control protocol for the UAV formation will be provided in this part.

As is shown in Figure 1, the formation is of a Leader–Follower structure; in terms of
hardware, all the UAVs are equipped with gyroscopes and accelerometers to monitor their
action and state parameters. Only the leader has the “brain” chip that can make decisions
intelligently; the followers only have the chips that can receive the control command signals,
take the command action and send the state signals.
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To describe this relationship, the graph model is introduced. Use the communication
graph Gt to describe the communication ability of the formation at time t [39]:

Gt = (6,Vt, Et) (7)

where Vt = {v1, · · · , v6} is the set of nodes that represent UAVs, the Et represent the arc
set at time t, e.g., ei,j ∈ Et denote an arc from node i to node j, which means the UAV i can
communicate with UAV j directly at time t. The adjacent matrix At = {ai,j} of graph Gt is
used to describe the communicated situation of formation in real-time, e.g., at the initial
time, the adjacent matrix is as follows:

A0 =



0 1 0 1 0 1
1 0 1 0 0 0
0 1 0 0 0 0
1 0 0 0 1 0
0 0 0 1 0 0
1 0 0 0 0 0

 (8)

The adjacent matrix is symmetric, and its element aij indicates the communication situation
of UAV i and UAV j. If aij = 1, then aji = 1, and the ith and jth UAVs can share their state,
and the control command can be sent from i to j or j to i. The adjacent matrix is updated
in real-time. If the distance between two UAVs is greater than the communication limited
distance dcom, the corresponding elements of the adjacent matrix will be 0.

Additionally, at the initial time, the formation is connected, and the connected compo-
nentW is 1. l If the UAVs want to keep in communication with all the others, the graph G
should only have one connected component. In the graph model, this condition could be
transferred to G. The methods that judge whether an undirected graph is connected include
union-find disjoint sets, DFS, and BFS [41]. So, after DFS or BFS, the task fails when the
connected component numberW of graph G is more than 1. When the formation works,
W should be 1.

When the formation works, the protocol should be active to support the UAVs com-
municating with each other. The communication protocol’s primary purpose is to send
all the UAVs’ states to the leader for the decision; the control protocol sends the action
command to all the UAVs. When the formation is as orderly as it was at first, the infor-
mation only needs to obey the transfer route (shown in Figure 1), so the whole formation
can be controlled well. However, when the noise disturbs the position of UAVs, it makes
the connection between the UAVs that are not connected at the initial time. It breaks the
connection between the UAVs that are connected at the initial time. To handle the chaos
brought about by the noise, a communication and control protocol is shown in Figure 3.

In Figure 3a the communication protocol is shown, where the block in ith row repre-
sents the communication priority of the corresponding UAV. For the priority, the bigger the
number, the higher the priority. Priority 1, 2 determines the order of communication. If the
priority is 0, both parties have no communication probability. i.e., when the leader0 and
follower3 are within the communication range of follower5, the follower5 will send the
information to leader0 instead of follower3.

The protocol is designed based on the communication object: to send all the followers’
state information to the leader to support the decision. So, the principle of the protocol is to
give the followers closer to the leader higher priority, such as followers 1, 3 and 5.

Figure 3b has a similar meaning to the control protocol. The target of the control
protocol sends the control information to all the UAVs. The control protocol motivates
the leader to send the control information to the followers that connects as much as the
followers. Therefore, leader0, and follower1, 2, and 5 have priority 2 because they can
connect with up to 2 other followers.
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Figure 3. (a): The communication protocol of the UAVs formation; (b): The control protocol of the
UAVs formation.

4.3. Reward Scheme

The goal of the formation-keeping task is to reach the target area and ensure the
formation is as orderly as possible. At first, the orderliness of the formation is of primary
concern. So, some geometric parameters are defined to describe the formation. The
followers in the formation can be divided into two categories, one is on an oblique line
with the leader, like followers 3 and 4, and another is on a straight line with the leader.
Only follower 5 belongs to this category. The linear between the leader and the position
where the follower should be located is called the baseline (see the back lines in Figure 4).
Then, it is easy to know the first category followers have a baseline with a slope, and the
second follower’s baseline does not. For the follower i, the length of the initial baseline is li,
and the initial slope is ki = tan θ (the first category).

Leader

Follower1Follower3

𝜃

𝑙ଷ

𝜃

𝑙ଵ

Leader

Follower5

𝑙ହ

Figure 4. The communication and control protocol under the topology of the formation.

To make sure the UAV agent can return to the position that makes formation more
orderly, for ith UAV, the formation reward is designed as follows:

R f ,i = −max{disa,i, |disb,i − li|} (9)

where disa,i represents the distance between the follower i and the baseline along the vertical
line of the baseline, and disb,i represents the distance between the leader and follower i
along the baseline. The formation reward is R f ,i.

When the UAVs belong to the first category follower (e.g., follower 3), the distance
disa,3 can be calculated by the following formula:

disa,3 =
|x3 tan θ − y3 + (y0 − x0 tan θ)|√

1 + tan θ
(10)
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Followers 2 and 4 have the same disa as in the above equation. The distance disb also
can be obtained with the following formula:

disb,3 = (x3 − x0) cos θ + (y3 − y0) sin θ + l3 (11)

For the second category follower (follower 5), it is easy to know that the reward can
be represented as the following simple formation:

R f ,5 = −max{|x0 − x5|, |y0 − y5 − l5|} (12)

Furthermore, the main target of UAVs formation is to reach the target area, which is
a circle with center coordinates (xtar, ytar) and radius rtar. To encourage the formation to
reach the target area, a sparse reward is designed as the destination reward:

Rd =

{
0,
√
(x0 − xtar)2 + (y0 − ytar)2 ≤ rtar

10,000, otherwise
(13)

We only calculate the distance of the leader. Only when the formation reaches the target
area do the UAVs receive this sparse reward, and the learning process will halt. It leads to
the UAVs not only needing to take minor actions to ensure that the orderly formation is not
disorganized by the disturbance, but also needing to adjust direction to reach the target
area. From the reward design view, UAV agents need to try different actions to discover
and obtain a sparse signal. To accelerate the learning, the exploration rewards, as described
in the literature [42], are designed as the incentive reward:

Re,i = −max{|xi − xtar|, |yi − ytar|} (14)

When the formation is closer to the target area, it will receive a higher exploration reward,
leading the UAV agent to learn to reach the target area.

Meanwhile, some UAVs are too close and crash together, or they are too far and
cease communicating with each other. In that case, the formation will suffer permanent
destruction, and the task will halt.

Setting the minimum distance for crashes makes it easy to obtain the halt condition of
UAV crashes. Then, the penalty should be added to avoid the above situation. This penalty
is designed as a formal sparse reward as follows:

Rp =


−10,000, di,j ≤ dcra, ∀i, j = 0, 1, · · · 5

−10,000,W > 1
0, others

(15)

where the d·,j represents the minimum distance between the jth UAV and another five
UAVs: d·,j = mini{di,j}, ∀i = 1, · · · , 6, i 6= j. The lowest communication distance is dcom,
once the minimum distance d·,j less than dcom, the jth UAV will lose the communication
ability with other UAVs. In addition, dcra is the crash distance; as long as the distance
between two UAVs is less than this, the two UAVs might crash.

Finally, the reward of the formation system at time T can be represented as the sum of
the following reward function:

R(T) =
6

∑
i=1

[
R f ,i(T) + Re,i(T)

]
+ Rd(T) + Rp(T) (16)

5. PPO-Exp

PPO is one of the most popular deep reinforcement learning algorithms in continuous
tasks that achieved outstanding performance. The PPO embedded the Actor–Critic algo-
rithm, which uses a deep neural network as an Actor for policy generation, and another
deep neural network as a Critic for policy estimating. The structure of PPO can be seen in



Drones 2023, 7, 28 11 of 24

Figure 5; the Actor interacts with the environment, collects the trajectories: {st, at, rt, st+1}
and stores them in the buffer, then it uses the buffer and the value function estimated by the
Critic to optimize the Actor network’s hyperparameter according to following surrogate:

LClip,θ
t =


(1 + ε)Aπθt−1

; Aπθt−1
> 0, rt > 1 + ε

(1− ε)Aπθt−1
; Aπθt−1

< 0, rt < 1− ε

rt · Aπθt−1
; otherwise

(17)

where the Aπθt−1
is the advantage function defined in Equation (3). The Critic network’s

hyperparameter φ is updated by minimizing the following MSE error:

LClip,φ
t = ∑

t

(
yt −Qφ(st, at)

)2 (18)

yt = rt + γ ·Qφ(st+1, πθold(st+1)) (19)

Formation
Environment

Actor network Critic network

Buffer

trajectories State, reward

advantage
function

optimize

action

Figure 5. The structure of PPO with experience replay.

The gradient of Equations (17) and (18) is computed and used to update the hyperpa-
rameters θ and φ until they converge or reach maximum steps. In surrogate (17), the PPO
restricted the difference between new and old policy by using the clip trick to restrain the
ratio rt =

πθ(st ,at)
πθold

(st ,at)
. It could be considered a constraint on updated policy; under it, the

ratio should satisfy the following constraint: 1− ε ≤ rt ≤ 1 + ε. Then, the updated policy
is restricted as follows:

|πθ(st, at)− πθold(st, at)|
πθold(st, at)

≤ ε (20)

The coefficient ε is also a constant in the range (0, 1) in PPO-Clip; from the inequal-
ity (20), it can be seen that the relative deviation is bound between πθold and πθ . When this

deviation is under ε, as the increase in rt is observed, the LClip,θ
t increase as well, but when

the deviation exceeds ε, even if the rt is increases, the LClip,θ
t maintains its value. It shows

the exploration within the constraint ε; however, when the relative difference is beyond ε,
the exploration is not encouraged by clipping the result to (1 + ε)Aπθold

. Figure 6 shows
the surrogate of PPO-Clip in different ε. The large ε could encourage the agent to explore
more and accept more policies. However, enlarging ε will lead to the estimated error of
the surrogate. The PPO-Clip is the off-policy algorithm. The data generated by the old
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policy will be used as new policy updates. When ‖rt − 1‖ ≤ ε, the estimated error bound
of LClip,θ will increase as ε increases. For convenience, denote the following assumption:

ℒ����

��

� (1 + ��)��

� (1 + ��)��

� (1 + ��)��

�� ≥ 0

ℒ����

��

� (1 − ��)��

� (1 − ��)��

� (1 − ��)��
c
v

�� ≤ 0

Figure 6. The surrogate of PPO-Clip in different ε. The relationship of different ε: ε3 > ε2 > ε1.

Assumption 1. In the previous t timestep of policy update, the ratio rk satisfies ‖rk − 1‖ ≤ ε,
∀k = 1, · · · , t.

Under Assumption 1, the following Lemma is given for auxiliary proof of the error bound:

Lemma 1. Under Assumption 1, the difference of state distribution resulting from the policy
satisfies the following inequality:

‖ρπθt − ρ
πθt−1 ‖ ≤ ε · γ

1− γ
(21)

Proof. The distribution ρπθ can be rewritten as [43]:

ρπθ = (1− γ)
∞

∑
k=0

γk · dk
πθ

(22)

where dk
πθ

is the distribution resulting from πθ at k timestep. Using the Markov property,
∀s′ ∈ S , the dk

πθ
(s′) could be decompose as follows:

dk
πθ
(s′) = ∑

s,a
dk−1

πθ
(s) · πθ(a|s) · P(s′|s, a) (23)

Using the decomposition, the following equation holds:

dk
πθt

(s′)− dk
πθt−1

(s′) = ∑
s,a

[
dk−1

πθt
(s) · πθt (a|s)− dk−1

πθt−1
(s)πθt−1 (a|s)

]
P(s′|s, a)

= ∑
s,a

[
dk−1

πθt
(s) · πθt (a|s)− dk−1

πθt−1
(s)πθt−1 (a|s) + dk−1

πθt−1
(s)πθt−1 (a|s)− dk−1

πθt−1
(s)πθt−1 (a|s)

]
· P(s′|s, a) (24)

= ∑
s,a

[
πθt (a|s)− πθt−1 (a|s)

]
· dk−1

πθt−1
(s) · P(s′|s, a)

+ ∑
s,a

[
dk−1

πθt−1
(s)− dk−1

πθt−1
(s)
]
· πθt−1 (a|s) · P(s′|s, a)

Using the triangle inequality, the following equation hold:
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∑
s,a
‖πθt(a|s)− πθt−1(a|s)‖ · dk−1

πθt
(s)P(s′|s, a) + ∑

s,a
‖dk−1

πθt
(s)− dk−1

πθt−1
(s)‖ · πθt−1(a|s) · P(s′|s, a)

≥ ‖∑
s,a

[
πθt(a|s)− πθt−1(a|s)

]
· dk−1

πθt−1
(s) · P(s′|s, a) (25)

+ ∑
s,a

[
dk−1

πθt−1
(s)− dk−1

πθt−1
(s)
]
· πθt−1(a|s) · P(s′|s, a)‖ = ‖dk

πθt
(s′)− dk

πθt−1
(s′)‖

Sum up the inequality (26) to calculate the expectation on s′:

‖dk
πθt
− dk

πθt−1
‖

= ∑
s′
‖dk

πθt
(s′)− dk

πθt−1
(s′)‖ ≤∑

s,a
‖πθt(a|s)− πθt−1(a|s)‖ · dk−1

πθt
(s)∑

s′
P(s′|s, a)

+ ∑
s,a
‖dk−1

πθt
(s)− dk−1

πθt−1
(s)‖ · πθt−1(a|s) ·∑

s′
P(s′|s, a)

= ‖πθt(a|s)− πθt−1(a|s)‖+ ‖dk−1
πθt
− dk−1

πθt−1
‖ (26)

≤ ‖
πθt(a|s)− πθt−1(a|s)

πθt−1(a|s) ‖ · ‖πθt−1(a|s)‖+ ‖dk−1
πθt
− dk−1

πθt−1
‖

≤ ‖
πθt(a|s)− πθt−1(a|s)

πθt−1(a|s) ‖+ ‖dk−1
πθt
− dk−1

πθt−1
‖ ≤ ε + ‖dk−1

πθt
− dk−1

πθt−1
‖

≤ 2ε + ‖dk−2
πθt
− dk−2

πθt−1
‖ ≤ kε

Using Equation (22), the following equation holds:

‖ρπθt − ρ
πθt−1 ‖ ≤ 1

γ− 1

∞

∑
k=0

γk‖dk
πθt
− dk

πθt−1
‖

≤ 1
γ− 1

∞

∑
k=0

γk · k · ε = ε · γ
1− γ

(27)

Using this Lemma, the estimation error of the PPO-Clip could be obtained:

Theorem 1. Under the Assumption 1, the estimation error of PPO-Clip is satisfied:

Err
[
LClip,θ

]
= Err

[
Eπθold

[
πθ

πθold

Aπθold

]]
≤ ε · γ

1− γ
Es∼UnifS ,a∼πθ

[Aπ(s, a)] (28)

Proof. When ‖rt − 1‖ ≤ ε, the surrogate of the PPO-Clip will be degraded [40]:

LClip,θ = Eπθold

[
πθ

πθold

Aπθold

]
, ‖

πθ − πθold

πθold

‖ ≤ ε (29)

The above surrogate is the importance sampling estimator of the objective of the new
policy [44]:

Eπθold

[
πθ

πθold

Aπ(s, πθold(s))
]
≈ Eπθ

[Aπ(s, πθ(s))] (30)

However, the estimator uses the data generated by πθold , and the state distribution of LClip,θ

is derived from ρ
πθold . Therefore, the estimation error is satisfied:
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Err
[
Eπθold

[
πθ

πθold

Aπ(s, πθold(s))
]]

=

∥∥∥∥Eπθold

[
πθ

πθold

Aπ(s, πθold(s))
]
−Eπθ

[Aπ(s, πθ(s))]
∥∥∥∥

=

∥∥∥∥∥
∫

s
ρ

πθold (s)
∫

a∼πθold

πθ(a|s)
πθold(a|s) Aπ(s, a)dads−

∫
s

ρπθ (s)
∫

a∼πθ

Aπ(s, a)dads

∥∥∥∥∥
≤
∫

s

∥∥ρ
πθold (s)− ρπθ (s)

∥∥ ∫
a∼πθ

‖Aπ(s, a)‖dads (31)

Consider the positive advantage situation and expand the integral of a; the following
equation will hold:

Err
[
Eπθold

[
πθ

πθold

Aπ(s, πθold(s))
]]
≤
∫

s

∥∥ρ
πθold (s)− ρπθ (s)

∥∥ ∫
a

πθ(a|s)Aπ(s, a)dads (32)

Using the conclusion of Lemma 1, the following error bound could be obtained:

Err
[
Eπθold

[
πθ

πθold

Aπ(s, πθold(s))
]]
≤
∫

s

ε · γ
1− γ

∫
a

πθ(a|s)Aπ(s, a)dads

=
∫

s

ε · γ
1− γ

· |S| · 1
|S|

∫
a

πθ(a|s)Aπ(s, a)dads

=
ε · γ

1− γ
· |S| ·

∫
s

1
|S|

∫
a

πθ(a|s)Aπ(s, a)dads

=
ε · γ

1− γ
· |S| ·Es∼UnifS ,a∼πθ

[Aπ(s, a)] (33)

where the UnifS represents the uniform distribution of the state.

Theorem 1 confirms the positive relationship between the estimation error and ε. By
using it, a more clear conclusion could be obtained:

Remark 1. In PPO-Clip, the high ε could enhance the exploration but will result in a high
estimation error bound of the surrogate; the low ε could decrease the error bound but will restrict
the exploration.

Therefore, to deal with the exploration and estimation error problems mentioned in
Remark 1, this paper considers making the ε adaptive in different situations. The last part
designed the sparse reward Rd, and the exploration reward Re is designed as the incentive
reward. The agent should explore more in the task to receive a high-level Rd and Re. So,
when these rewards are too low, the agent should release the restriction on rt to encourage
the exploration. When these rewards are high and stable, the restriction on rt increases to
ensure the estimation of the surrogate is accurate.

So, the exploration advantage function Aexp
π (st, at) can be used to represent the advan-

tage function that is estimated by Rd and Re, which can reflect the exploration ability of
the agent:

Aexp
π (St, at) = Eπ

[
∞

∑
k=0

γk(Rd(t + k) +
6

∑
i=1

Re,i(t + k))|St = s, at = a

]
−

Eπ

[
∞

∑
k=0

γk(Rd(t + k) +
6

∑
i=1

Re,i(t + k))|St = s

]
(34)

According to the exploration function, an exploration PPO algorithm is proposed with
an adaptive clip parameter ε. When the exploration advantage function is lower than last
time, to improve the exploration ability, ε will be enlarged. Otherwise, the ε will be reduced,
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restraining the updated policy in a trust region. To sum up, the adaptive mechanism is
designed as follows:

ε(t) =


ε(t− 1)− clip(

Aexp
πθt
−Aexp

πθt−1
Aexp

πθt−1

, 0, ε(t−1)
2 ); Aexp

πθt
− Aexp

πθt−1
> 0

ε(t− 1) + clip(
Aexp

πθt
−Aexp

πθt−1
Aexp

πθt−1

, 0, ε(t−1)
2 ); Aexp

πθt
− Aexp

πθt−1
< 0

ε(t− 1); otherwise

(35)

The clip function in the above equations is to restrict the adaptive mechanism and avoid
the ε being abnormal. Through the variation of the exploration advantage function, the
exploration-based adaptive ε mechanism is proposed. When simply replacing the constant
ε with the adaptive ε, the PPO will be PPO-Explorationε(PPO-Exp). With the restriction of
old policies, new policies will be adjusted automatically. The surrogate of the PPO-Exp is
as follows:

LExp,θ = Eπθold

[
min

(
rt(θ)Aπθold

, clip(rt(θ), 1− ε(t), 1 + ε(t))Aπθold

)]
(36)

The Algorithm of PPO-Exp in the formation environment could be seen in Algorithm 1.
The exploration and estimation error problem in PPO-Exp could be adapted without delay,
and the following Proposition will give the exploration range and the estimation error
decrease rate in different situations:

Algorithm 1 PPO-Exploration ε with formation keeping task.

Initialize π0,φ0.
for i = 0, 1, 2, . . . N do

for t = 1, · · · , T do
The leader0 collects state information {st,i|i = 1, · · · , 5} through the communica-

tion protocol (Figure 3a)
Run policy πθ , obtain the action {at,i|i = 0, 1, · · · , 5}, and send them using the

control protocol (Figure 3b).
The leader and followers execute the action commands and receive a reward as

follows: (R f (t), Re(t), Rd(t), Rp(t))
Store (st, at, st+1, Rt) at the buffer.

end for
Transitions data from buffer, and estimate Âπθt

, Âexp
πθt

, respectively.

if Âexp
πθt
− Âexp

πθt−1
> 0 then

ε(t) = ε(t− 1)− clip(
Âexp

πθt
−Âexp

πθt−1
Âexp

πθt−1

, 0, ε(t−1)
2 )

end if
if Âexp

πθt
− Âexp

πθt−1
< 0 then

ε(t) = ε(t− 1) + clip(
Âexp

πθt
−Âexp

πθt−1
Âexp

πθt−1

, 0, ε(t−1)
2 )

end if
for j = 1, · · · , M do
L̂θ = ∑T

t=1 min(rt · Âπθt
, clip(1− ε, 1 + ε, r)Âπθt

)

Update θ by SGD or Adam.
end for
Update critic network parameter φt by minimizing:
∑T

k=1(∑t′>k γt′−tRt −Vφ(st))2

end for
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Proposition 1. In PPO-Exp, when Âexp
πθt
− Âexp

πθt−1
< 0, the exploration range of next policy will

be expanded to
‖πθt−πθt−1

‖
‖πθt−1

‖ ≤ ε +
Âexp

t −Âexp
t−1

Âexp
t−1

≤ 3ε(t−1)
2 ; when Âexp

πθt
− Âexp

πθt−1
> 0, in next update,

the error bound of the surrogate will decrease to O( ε(t−1)
2 ).

Proof. When Âexp
πθt
− Âexp

πθt−1
< 0, according to Equation (35), it is easy to see the next

policy will be expanded to
‖πθt−πθt−1

‖
‖πθt−1

‖ ≤ ε + clip(
Âexp

t −Âexp
t−1

Âexp
t−1

, 0, ε(t−1)
2 ). Then, the following

inequality will hold:

0 ≤ clip(
Âexp

t − Âexp
t−1

Âexp
t−1

, 0,
ε(t− 1)

2
) ≤ ε(t− 1)

2
(37)

So, the following inequality is held:

‖πθt − πθt−1‖
‖πθt−1‖

≤ ε +
ε(t− 1)

2
=

3ε(t− 1)
2

(38)

When Âexp
πθt
− Âexp

πθt−1
> 0, and Assumption 1 is satisfied, it is obvious that the conclusion

of Theorem 1 could be used in PPO-Exp. So, using Equation (35) and Theorem 1, the
PPO-Exp’s decrease rate of the bound is as follows:

∆Err
[
LExp

θ

]
= Err

[
Eπθt−1

[
πθt

πθt−1

Aπθt−1

]]
− Err

[
Eπθt−2

[
πθt−1

πθt−2

Aπθt−2

]]

≤ γ
ε(t)− ε(t− 1)

1− γ
· |S| ·

∥∥∥Es∼UnifS ,a∼πθt
[Aπ(s, a)]−Es∼UnifS ,a∼πθt−1

[Aπ(s, a)]
∥∥∥

≤ γ
ε(t)− ε(t− 1)

1− γ
· |S| · Γ

≤ γ
(ε(t− 1) + clip(

Âexp
t −Âexp

t−1
Âexp

t−1
, 0, ε(t−1)

2 ))− ε(t− 1)

1− γ
· |S| · Γ

≤ γ
3ε(t−1)

2
1− γ

· |S| · Γ = O(
ε(t− 1)

2
) (39)

where the Γ is the upper bound of advantage:

Γ = max
∀t

∥∥∥Es∼UnifS ,a∼πθt
[Aπ(s, a)]−Es∼UnifS ,a∼πθt−1

[Aπ(s, a)]
∥∥∥ (40)

Proposition 1 indicates that the PPO-Exp could encourage the agents to adjust the
exploration in different situations. The next section will validate it through numerical
experiments.

6. Numerical Experiments

This section compares the PPO-Exp with four common reinforcement learning algo-
rithms (PPO-Clip, PPO-KL, TD3, DDPG) in the formation-keeping task, and compared
the performace of PPO-Exp and PPO-Clip in the formation changing task and obstacle
avoidance task.

6.1. Experimental Setup

In terms of hardware, all the experiments are completed on the Windows 10 (64-bit)
operating system, Intel(R) Core i7 processor, 16 GB memory, and 4 GB video memory. As



Drones 2023, 7, 28 17 of 24

for software, OpenAI-gym [45] is used to design the reinforcement learning environment
and the physics rulers of the UAVs’ formation.

The formation task is modeled on the OpenAI gym environment. See Figure 1; the
position of the leader and followers can be seen in Table 1. The formation is updated by
the dynamic equations solved by the difference method per 0.5 s per time mesh grid. The
environment noises are set as N(0, 1) default. The target area is designed as a circle at
(200, 400) with a radius of 40.

Table 1. The initial position of UAVs’ formation.

Leader0 Follower1 Follower2 Follower3 Follower4 Follower5

Position X 160 190 220 130 100 160
Position Y 190 160 100 160 100 130

6.2. Experiments on PPO-Exploration ε

The following famous continuous space RL algorithms are explored in this section:
TD3, DDPG, PPO-KL, and PPO-clip; they are compared to the proposed method under the
formation-keeping task.

• PPO-Clip [40]: Proximal Policy Optimization with Clip(PPO-Clip) function.
• PPO-KL [40]: Proximal Policy Optimization with KL-divergence(PPO-KL) constrain.
• DDPG [46]: Deep Deterministic Policy Gradient(DDPG) algorithm, which is a contin-

uous action deep reinforcement learning algorithm that uses Actor–Critic architecture.
In DDPG, the deterministic policy gradient is used to update the Actor parameter.

• TD3 [47]: Twin Delayed Deep Deterministic (TD3) policy gradient algorithm, which is
a variant of DDPG. The TD3 introduced the delaying policy updates mechanism and
the double network architecture to manage the per-update error and overestimation
bias in DDPG.

The main hyperparameters of the contrast experiment are shown in Table 2. The blank
area in the above table means the algorithm does not include this parameter.

Table 2. The main hyperparameters of the algorithm used in the experiment.

Parameter Name TD3 DDPG PPO-KL PPO-Clip PPO-Exp

γ 0.9 0.9 0.9 0.9 0.9
ALR 0.00005 0.00005 0.00005 0.00005 0.00005
CLR 0.0002 0.0002 0.0002 0.0002 0.0002

Batch 32 32 32 32 32
AUS 10 10 10
CUS 10 10 10
EPS 10−8 10−8 10−8

DKL(target) 0.01
λ 0.5

εclip 0.1 0.1 0.1
τDDPG 0.01

VARDDPG 3
Explore Step 500

dimHIDDEN 32

Set the episode length be 200; the results of PPO-Exploration ε and other comparing
algorithms are shown in Figure 7a. As the learning curves indicated, the PPO series
methods achieved better performance; in all variations of PPO, the PPO-Exp has the best
performance. It is validated that the adaptive mechanism based on exploration makes
sense during policy updating. Figure 7b shows the change of ε; the series ε(t) is stationary,
and varies around 0.05, although the initial value is 0.1, which means 0.05 is the balance
point between exploration and exploitation found by PPO-Exp. Meanwhile, the episode
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reward curve of PPO-Exp is higher than PPO-Clip’s, validating the idea that exploration
from PPO-Exp is efficient.
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Figure 7. (a): Learning curves of TD3, DDPG, PPO-KL, PPO-Clip, and PPO-Exp; (b): The on of ε of
PPO-Exploration ε during the training process.

6.3. Experiments on Formation Keeping

Only the learning curve was unable to declare whether the algorithm works well, so
the trained PPO-Exp is used to perform 200s; the formation track can be seen in Figure 8.
In this way, there is only a slight distortion in the formation, indicating that PPO-Exp can
perform better in real tasks than PPO-Clip.
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Figure 8. (a): The flight track of formation that is controlled by trained PPO-Exp ; (b): The flight track
of formation that is controlled by trained PPO-Clip.

Furthermore, to evaluate the results, we plotted the heading ψ and the velocity v
during 200 s in Figure 9. Figure 9a shows that followers 1, 4, and 5 are approaching
gradually as time goes on. Followers 2, 3 and the leader, have no such trend to converge
gradually; however, all the heading deviations are no more than 10◦. In Figure 9b, the
velocity of each UAV is shown. The velocities of followers 1, 3, 4, and 5 diverge a little and
then converge. Corresponding to Figure 9a, followers 1, 4, and 5 are closer in terms of the
value of velocity and heading; the leader and follower 2 are far away from these followers,
but the velocity difference is not more than 1.5 m/s as well. This inspired us to design the
reward based on the velocity and heading.

To illustrate the influence of environmental noise on formation keeping, the results
show the formation track with no control in Figure 2a. To verify that the proposed cen-
tralized method saves time, this section further compares the decentralized version of
PPO-Exp: PPO-Exp-Dec, which, similar to MAPPO, needs all six UAV agents to learn the
control policy at the same time.
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Figure 9. (a) The test results in the heading angle of PPO-Exp; (b) The test results in the velocity of
PPO-Exp.

To validate that the protocol can reduce the communication cost and avoid placing
the UAVs out of the communication range, this section also compares the protocol-free
version: PPO-exp-pro. The results can be seen in Table 3. Γ represents the episode reward,
T represents time per episode, rcol and r f ai represents the collision rate and failure to
communicate rate, respectively.

Table 3. The experimental results in different algorithms.

Algorithm Γ T rcoll(%) r f ail(%)

PPO-exp −19,197.2 ± 1307.4 2.19± 0.04 0.93 ± 0.01 0.32± 0.02
PPO-exp-dec −20,374.7 ± 1926.4 10.06± 0.08 1.01± 0.02 0.35± 0.01
PPO-exp-pro −23,001.3 ± 2507.2 2.43± 0.03 0.98± 0.03 12.48± 1.76

PPO-clip −20,305.7 ± 1588.6 2.14± 0.06 0.97± 0.02 0.94± 0.03
Greedy −39,074.5 ± 3806.5 1.15± 0.04 12.32± 1.32 10.56± 0.65

To further verify the effectiveness of the proposed method, ablation experiments are
performed (see Figures 2a,b and 8b). Figure 8b shows the trained PPO-clip without the
exploration mechanism. Although there is no UAV crash, the leader and follower3 are very
close, and the formation is not as orderly as the PPO-Exp. Figure 2a shows the result of
no action taken, where the UAVs will crash, and the formation will break up. Figure 2b
shows the trained PPO-clip with ε = 0.05, which is the balance point in the PPO-Exp.
However, the experimental result shows it performs worse; there is one follower that loses
communication with leader, and one follower almost crashes with the leader. The result
illustrates that the PPO-Exp with adaptive ε is better than the PPO-Clip with a good ε. In
summary, the ablation experiments also indicated that PPO-Exp performs better than other
algorithms in terms of learning curves and the real-task.

6.4. Experiment on More Complex Tasks

To further show the efficiency of PPO-Exp in fixed-wing UAV formation keeping, this
part design two more complex scenarios: formation changing and obstacle avoidance task,
the UAV formation perform 120 s on each task. This part mainly compared the performance
of PPO-Exp and PPO-Clip on these tasks.

The goal for the formation changing task is changing the formation shown in Figure 1
to the vertical formation. The vertical formation also expects the differences between
leader and followers are as small as possible in coordinates on the x-axis. For guiding the
followers to change the formation, this paper utilizes the absolute difference value of x
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coordinates to modify the flocking reward. The modified flocking reward (9) and (12) could
be represented as follows:

R f ,i = ‖x0 − xi‖, ∀i = 1, · · · , 5 (41)

Then the total reward (47) can be rewritten as follows:

R(T) =
5

∑
i=0

[‖x0(T)− xi(T)‖+ Re,i(T)] + Rd(T) + Rp(T) (42)

where the x0(T), xi(T) represent the x coordinates of leader and ith follower at time T,
respectively. To encourage the UAV system to take more exploration on forming new
formation, the flocking reward is added to the exploration advantage function:

Aexp
π (St, at) = Eπ

[
∞

∑
k=0

γk(Rd(t + k) +
5

∑
i=0

[‖x0(T)− xi(T)‖+ Re,i(t + k))]|St = s, at = a

]
−

Eπ

[
∞

∑
k=0

γk(Rd(t + k) +
5

∑
i=0

[‖x0(T)− xi(T)‖+ Re,i(t + k))]|St = s

]
(43)

Training the task with PPO-Exp and PPO-Clip, the training parameters are kept as
same as in the previous part except episode length. After training, the test result of PPO-
Exp is shown in Figure 10a, and the PPO-Clip is shown in Figure 10b. To evaluate the
performance, this paper draws the plots of the x coordinates and timesteps of the leader
and followers in Figure 10c,d. The closer the x coordinates of followers to that of the
leader, the better the performance will be. The x coordinates of followers in (c) converge to
the leader faster than (d), representing that PPO-Exp can change vertical formation faster
than PPO-Clip.

To further evaluate the formed vertical formation. Denote the terminal time as tter,
calculate the average difference between the followers and leader in x coordinates in the
last ten timesteps, and denote the result as δx, which can be represented as follows:

δx =
1
5

5

∑
i=1

∑
t>tter−10

‖x0(t)− xi(t)‖ (44)

The low δx indicates the follower is close to the leader in x coordinates. In PPO-Clip,
the calculated δx ≈ 95.383, but in PPO-Exp, the calculated δx ≈ 43.816, which is nearly half
of the PPO-Clip.

Compared to the control strategy in formation keeping, the followers in formation
changing tasks perform good cooperation. All followers maneuver orderly to the position
where the leader’s x-coordinate is located. To avoid the UAVs collide each other, the
followers decided to move to different positions on the y-axis. The followers take different
maneuvers depending on their initial position to reach the position. e.g., follower 4, in
the initial time, is far away from the leader in x-coordinates. For follower 4, a collision
avoidance path is moving to the tail of the newly formed formation. Therefore, the follower4
achieves a large angle arc maneuver and moves to the tail of the formed vertical formation.

The target of the obstacle avoidance task is to reach the target area and avoid crashing
into the obstacle. This paper considers a circle area on the plane as an obstacle. Denote the
coordinates of the obstacle center is (xobs, yobs), and the radius is robs. A simple approach
to consider this situation is to add a penalty on the formation system reward when the
UAVs crash on the obstacle, the penalty effect. The penalty for crashing into the obstacle is
denoted as follows:

Ro,i =

{
0,
√
(xi − xobs)2 + (yi − yobs)2 ≤ robs
−10,000, otherwise

(45)
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Figure 10. (a): The performance of vertical formation changing task by PPO-Exp; (b): The perfor-
mance of vertical formation changing task by PPO-Clip (c): The x coordinate of formation system in
PPO-Exp; (d): The x coordinate of formation system in PPO-Clip

Similar to the exploration reward Re,i, to

Robs
e,i = min{|xi − xobs|, |yi − yobs|} (46)

Then the total reward (47) can be rewritten as follows:

R(T) =
5

∑
i=0

[
R f ,i(T) + Re,i(T) + Robs

e,i (T) + Ro,i(T)
]
+ Rd(T) + Rp(T) (47)

To encourage the UAV system to take more exploration on avoid obstacle, the ex-
ploration reward in avoid obstacle Robs

r,i is added to the exploration advantage function:

Aexp
π (St, at) = Eπ

[
∞

∑
k=0

γk(Rd(t + k) +
5

∑
i=0

[
R f ,i(T) + Re,i(t + k) + Robs

e,i (T))
]
|St = s, at = a

]
−

Eπ

[
∞

∑
k=0

γk(Rd(t + k) +
5

∑
i=0

[R f ,i(T) + Re,i(t + k) + Robs
e,i (T))]|St = s

]
(48)

Training the obstacle to avoid task with PPO-Exp and PPO-Clip, the training param-
eters are kept as same as the previous part except episode length. After training with
PPO-Exp and PPO-Clip, the test results of obstacle avoid task are shown in Figure 11a,
and the results of PPO-Clip can be seen in Figure 11b. A follower in the formation trained
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by PPO-Clip crashed on the obstacle at 94 timesteps. The formation trained by PPO-Exp
performed the arc maneuvers and avoided the obstacle. PPO-Exp performs better than
PPO-Clip because it can explore more policies to reach the target area and discover a good
path to avoid obstacles. However, the PPO-Clip still tries to reach the target area straight.

Compared to the formation keeping task without obstacles, the obstacle scenario
requires the formation system to explore more to avoid the obstacle. Therefore, in this
scenario, compared to the fixed ε PPO-Clip, the PPO-Exp shows better performance because
it could adjust their ε to balance exploration and estimation error. Then the PPO-Exp
explored the large-angle arc maneuvers and performed them to avoid the obstacle.
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Figure 11. (a): The performance of formation keeping with obstacle avoid task by PPO-Exp; (b): The
performance of formation keeping with obstacle avoid task by PPO-Clip.

7. Conclusions

This paper studies a flocking scenario consistent with one leader (with an intelligence
chip) and several followers(without an intelligence chip). The reinforcement learning
environment is constructed (continuous action and state space) with an OpenAI gym, and
the reward is designed as a regular part and an exploration part. A low-communication cost
protocol is provided to ensure the UAVs can communicate the state and action information
between leader and followers. In addition, a variation of Proximal Policy Optimization is
proposed to balance the dilemma between the estimation error bound and the exploration
ability of PPO. The proposed method can help UAVs adjust the explore strategy, and the
experiments demonstrate it has better performance than the current algorithms such as
PPO-KL, PPO-clip, and DDPG.
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