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Abstract: With the continuous development of UAV technology and swarm intelligence technology,
the UAV formation cooperative mission has attracted wide attention because of its remarkable
function and flexibility to complete complex and changeable tasks, such as search and rescue,
resource exploration, reconnaissance and surveillance. The collaborative trajectory planning of UAV
formation is a key part of the task execution. This paper attempts to provide a comprehensive
review of UAV formation trajectory planning algorithms. Firstly, from the perspective of global
planning and local planning, a simple framework of the UAV formation trajectory planning algorithm
is proposed, which is the basis of comprehensive classification of different types of algorithms.
According to the proposed framework, a classification method of existing UAV formation trajectory
planning algorithms is proposed, and then, different types of algorithms are described and analyzed
statistically. Finally, the challenges and future research directions of the UAV formation trajectory
planning algorithm are summarized and prospected according to the actual requirements. It provides
reference information for researchers and workers engaged in the formation flight of UAVs.

Keywords: heuristic algorithm; machine learning; multi-UAV formation; trajectory planning

1. Introduction

Since its outstanding performance in the Gulf War in 1991, drones have made good
achievements in the Afghanistan War, the Iraq War, the fight against the Islamic State
(ISIS) terrorist group, the “Neptune Spear” decapitation operation in 2011, and the Russia–
Ukraine conflict in 2022. Their success has caused countries around the world to invest a
large amount of manpower and financial resources in the research of UAV [1], as shown in
Figure 1. After decades of development, UAVs have not only been applied in the military
fields of reconnaissance, surveillance, communication relay, electronic countermeasures,
combat assessment, harassment, decoy, anti-submarine, target attack, etc. At the same
time, they have been widely used in agriculture [2], energy [3], civil [4] and other very
important fields. However, there are some problems with a single drone performing its
mission. For example, when a single UAV performs a reconnaissance mission, it may be
limited by the observation angle and cannot observe the target area from multiple different
orientations [5]; when faced with a large-scale search task, a single UAV cannot effectively
cover the entire reconnaissance area [6]; during the attack, the combat range, killing radius,
destruction capability and attack accuracy are limited, thus affecting the success rate of
the entire combat mission [7]; if a single drone fails in the middle of a mission, it must
immediately interrupt the mission and return, but in a war, it may delay the aircraft and
destroy the entire operation plan. In order to improve combat effectiveness and make up
for the deficiency of a single UAV, a multi-UAV cooperative formation (cluster) combat task
is proposed. It refers to the formation, maintenance or reconstruction of a certain geometric
formation during the execution of a task by multiple UAVs to adapt to the battlefield
situation and task requirements.
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Figure 1. Statistics and forecast of global UAV market size from 2015 to 2024 (data source: Drone II): 
(a) Global UAV market 2015-2024 (blue column: global UAV investment; yellow line: upward 
trend); (b) Global UAV segment market share (blue column: proportion of consumer drones; yellow 
column: proportion of industrial drones). 

Unmanned aerial vehicle formation has incomparable advantages over a single un-
manned aerial vehicle. When UAV formation is not possible in extreme weather, main-
taining different formations can improve the aerodynamic efficiency of UAVs to varying 
degrees, thus reducing the overall flight resistance and saving fuel [8]; it can realize the 
all-round reconnaissance or observation of the target, such as the enemy target monitoring 
and reconnaissance, resource exploration and so on, and it can greatly improve the scope 
of target monitoring; 0069t can also realize simultaneous strikes on multiple mission tar-
gets, disrupt the enemy’s combat command system, improve the lethality and hit rate of 
targets, and improve combat effectiveness, as shown in Figure 2. In the process of use, 
UAVs are equipped with intelligent devices, which can simulate the transport environ-
ment in real time, determine their own position, control their flight status, select effective 
trajectory points, and calculate safe trajectory. These are important guarantees for UAVs 
formation to reach the target point from the take-off point as well as important prerequi-
sites for a UAV formation to complete tasks. Therefore, it is important to select a suitable 
algorithm for UAV formation trajectory planning. 

The purpose of trajectory planning of UAV formation is based on the specific tasks, 
terrain, weather and other environmental factors of each UAV as well as its own flight 
performance. Under the premise of satisfying multiple constraints, the specified perfor-
mance index can be optimized or better so that all UAVs in the formation can safely reach 
the target from the starting point. The trajectory planning of UAV formation is a complex 
multi-objective optimization and decision problem under multiple constraints. With the 
increasing number of UAVs, the analytic space of the problem will increase exponentially. 
In the study of UAV trajectory planning, the algorithm is the soul of UAV trajectory plan-
ning, which is directly related to the efficiency and results of trajectory planning. Com-
pared with single UAV trajectory planning, the complexity of UAV formation trajectory 
planning is mainly reflected as follows: 
(1) In many cases, the scope of planning space is large and complex: for example, there 

are various spatial obstacles and dynamic threats in the modern battlefield environ-
ment; 

(2) There are many constraints. Not only should the planned flyable trajectory conform 
to the actual dynamics and kinematic characteristics of the UAV, but also the coordi-
nation between time and space and the concealment of the trajectory should be con-
sidered; 

(3) Multi-UAV trajectory planning can adapt to battlefield dynamic changes and adjust 
trajectories online in real time. 
For the trajectory planning of UAV formation, many papers have proposed solutions 

from different perspectives, but there are still many unsolved problems and many limita-
tions, resulting in numerous and complex papers without a comprehensive and system-
atic classification, which is not conducive to research and reading. 

Figure 1. Statistics and forecast of global UAV market size from 2015 to 2024 (data source: Drone
II): (a) Global UAV market 2015–2024 (blue column: global UAV investment; yellow line: upward
trend); (b) Global UAV segment market share (blue column: proportion of consumer drones; yellow
column: proportion of industrial drones).

Unmanned aerial vehicle formation has incomparable advantages over a single un-
manned aerial vehicle. When UAV formation is not possible in extreme weather, main-
taining different formations can improve the aerodynamic efficiency of UAVs to varying
degrees, thus reducing the overall flight resistance and saving fuel [8]; it can realize the
all-round reconnaissance or observation of the target, such as the enemy target monitoring
and reconnaissance, resource exploration and so on, and it can greatly improve the scope of
target monitoring; 0069t can also realize simultaneous strikes on multiple mission targets,
disrupt the enemy’s combat command system, improve the lethality and hit rate of targets,
and improve combat effectiveness, as shown in Figure 2. In the process of use, UAVs are
equipped with intelligent devices, which can simulate the transport environment in real
time, determine their own position, control their flight status, select effective trajectory
points, and calculate safe trajectory. These are important guarantees for UAVs formation to
reach the target point from the take-off point as well as important prerequisites for a UAV
formation to complete tasks. Therefore, it is important to select a suitable algorithm for
UAV formation trajectory planning.
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Figure 2. Unmanned aerial vehicles fly in formation to perform tasks. (a) UAV formation flight; (b) 
UAV formation electronic warfare; (c) Unmanned aerial vehicle (UAV) formation performs mission; 
(d) UAV formation communication relay; (e) UAV formation strikes target; (f) UAV formation re-
connaissance. 

The reference [9] classifies and statistically analyzes the cooperative flight path plan-
ning of various UAV formations from the three elements of a UAV system (mission, UAV 
crew and environment) and the three elements of UAV formation cooperative flight path 
planning (UAV flight path, target and constraint), but it does not discuss the flight path 
planning algorithm of UAV formation. 

Stochastic Heuristic Algorithms (SHA) are reviewed in reference [10], and the char-
acteristics, improvements, applications, advantages and disadvantages of some of them 
are discussed, but non-SHA algorithms in UAV formation flight paths are not discussed. 

The reference [11] divides the flight path planning algorithms of UAV formation into 
five categories, including optimal algorithm, graph theoretics-based planning method, 
heuristic information-based planning algorithm, swarm intelligence algorithm and neural 
network algorithm. Then, a simple description is given to these categories, but no specific 
algorithms are discussed. 

Reference [12] reviews swarm intelligence algorithms from four aspects, such as col-
lision avoidance processing, task allocation, track planning and formation recombination, 
and it discusses classical algorithms among them. However, it does not discuss non-
swarm intelligence algorithms, which has certain limitations. 

Compared with many studies in the literature on UAV formation trajectory planning 
[9–12], the contributions of this paper are as follows. 

In this review, the UAV formation trajectory planning algorithms used in recent dec-
ades are classified in detail, and the basic principles of these algorithms are described and 
compared so as to find out the shortcomings of UAV formation trajectory planning algo-
rithms. The challenges and future research directions of the algorithm are summarized 
and prospected, which provides reference information for researchers and workers en-
gaged in the formation flight of UAVs. 

This paper can be divided into the following parts: Firstly, a simple classification 
framework of the UAV formation trajectory planning algorithm is introduced in Section 
2. Then, the global trajectory planning algorithms are summarized in time order in Sec-
tions 3 and 4. Among them, Section 3 summarizes the traditional algorithm and Section 4 
summarizes the intelligent algorithm. Section 5 summarizes the local trajectory planning 
algorithm. Section 6 summarizes the challenges the algorithm faces. Section 7 summarizes 
the focus and direction of future research. Section 8 summarizes the full text. 

Figure 2. Unmanned aerial vehicles fly in formation to perform tasks. (a) UAV formation flight;
(b) UAV formation electronic warfare; (c) Unmanned aerial vehicle (UAV) formation performs
mission; (d) UAV formation communication relay; (e) UAV formation strikes target; (f) UAV formation
reconnaissance.

The purpose of trajectory planning of UAV formation is based on the specific tasks,
terrain, weather and other environmental factors of each UAV as well as its own flight
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performance. Under the premise of satisfying multiple constraints, the specified perfor-
mance index can be optimized or better so that all UAVs in the formation can safely reach
the target from the starting point. The trajectory planning of UAV formation is a complex
multi-objective optimization and decision problem under multiple constraints. With the in-
creasing number of UAVs, the analytic space of the problem will increase exponentially. In
the study of UAV trajectory planning, the algorithm is the soul of UAV trajectory planning,
which is directly related to the efficiency and results of trajectory planning. Compared with
single UAV trajectory planning, the complexity of UAV formation trajectory planning is
mainly reflected as follows:

(1) In many cases, the scope of planning space is large and complex: for example, there are
various spatial obstacles and dynamic threats in the modern battlefield environment;

(2) There are many constraints. Not only should the planned flyable trajectory conform to
the actual dynamics and kinematic characteristics of the UAV, but also the coordination
between time and space and the concealment of the trajectory should be considered;

(3) Multi-UAV trajectory planning can adapt to battlefield dynamic changes and adjust
trajectories online in real time.

For the trajectory planning of UAV formation, many papers have proposed solutions
from different perspectives, but there are still many unsolved problems and many limita-
tions, resulting in numerous and complex papers without a comprehensive and systematic
classification, which is not conducive to research and reading.

The reference [9] classifies and statistically analyzes the cooperative flight path plan-
ning of various UAV formations from the three elements of a UAV system (mission, UAV
crew and environment) and the three elements of UAV formation cooperative flight path
planning (UAV flight path, target and constraint), but it does not discuss the flight path
planning algorithm of UAV formation.

Stochastic Heuristic Algorithms (SHA) are reviewed in reference [10], and the charac-
teristics, improvements, applications, advantages and disadvantages of some of them are
discussed, but non-SHA algorithms in UAV formation flight paths are not discussed.

The reference [11] divides the flight path planning algorithms of UAV formation into
five categories, including optimal algorithm, graph theoretics-based planning method,
heuristic information-based planning algorithm, swarm intelligence algorithm and neural
network algorithm. Then, a simple description is given to these categories, but no specific
algorithms are discussed.

Reference [12] reviews swarm intelligence algorithms from four aspects, such as
collision avoidance processing, task allocation, track planning and formation recombination,
and it discusses classical algorithms among them. However, it does not discuss non-swarm
intelligence algorithms, which has certain limitations.

Compared with many studies in the literature on UAV formation trajectory plan-
ning [9–12], the contributions of this paper are as follows.

In this review, the UAV formation trajectory planning algorithms used in recent
decades are classified in detail, and the basic principles of these algorithms are described
and compared so as to find out the shortcomings of UAV formation trajectory planning
algorithms. The challenges and future research directions of the algorithm are summarized
and prospected, which provides reference information for researchers and workers engaged
in the formation flight of UAVs.

This paper can be divided into the following parts: Firstly, a simple classification
framework of the UAV formation trajectory planning algorithm is introduced in Section 2.
Then, the global trajectory planning algorithms are summarized in time order in Sections 3
and 4. Among them, Section 3 summarizes the traditional algorithm and Section 4 summa-
rizes the intelligent algorithm. Section 5 summarizes the local trajectory planning algorithm.
Section 6 summarizes the challenges the algorithm faces. Section 7 summarizes the focus
and direction of future research. Section 8 summarizes the full text.
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2. Classification Framework of UAV Formation Trajectory Planning Algorithm

This paper provides a classification framework of the UAV formation trajectory plan-
ning algorithm, which includes two elements: global planning and local planning.

The global trajectory planning algorithm belongs to the static programming algorithm,
which carries out trajectory planning based on existing map information and seeks an
optimal trajectory from the starting point to the target point. In this paper, global trajectory
planning algorithms are divided into traditional algorithms and intelligent algorithms
according to whether they are inspired by natural organisms; the intelligent algorithms are
divided into machine learning algorithms and heuristic algorithms according to whether
they imitate human behavior or other animal behavior. The global trajectory planning
algorithm framework is shown in Figure 3.

Drones 2023, 7, x FOR PEER REVIEW 4 of 49 
 

2. Classification Framework of UAV Formation Trajectory Planning Algorithm 
This paper provides a classification framework of the UAV formation trajectory plan-

ning algorithm, which includes two elements: global planning and local planning. 
The global trajectory planning algorithm belongs to the static programming algo-

rithm, which carries out trajectory planning based on existing map information and seeks 
an optimal trajectory from the starting point to the target point. In this paper, global tra-
jectory planning algorithms are divided into traditional algorithms and intelligent algo-
rithms according to whether they are inspired by natural organisms; the intelligent algo-
rithms are divided into machine learning algorithms and heuristic algorithms according 
to whether they imitate human behavior or other animal behavior. The global trajectory 
planning algorithm framework is shown in Figure 3. 

 
Figure 3. Framework diagram of global trajectory planning algorithm. 

The local trajectory planning algorithm belongs to the dynamic trajectory planning 
algorithm, which means that the pilot aircraft collects the current position information 
and local obstacle information in real time according to the UAV sensor in the formation 
and then obtains the optimal trajectory between the starting point and the ending point. 
The local trajectory planning algorithm framework is shown in Figure 4. 

 
Figure 4. Frame diagram of local trajectory planning algorithm. 

3. Traditional Algorithm 
Traditional methods must build the map environment for the target before perform-

ing trajectory planning. Firstly, the map environment was discretized into graphs, and 
feasible trajectories were generated by the search algorithm to complete the global 

Figure 3. Framework diagram of global trajectory planning algorithm.

The local trajectory planning algorithm belongs to the dynamic trajectory planning
algorithm, which means that the pilot aircraft collects the current position information and
local obstacle information in real time according to the UAV sensor in the formation and
then obtains the optimal trajectory between the starting point and the ending point. The
local trajectory planning algorithm framework is shown in Figure 4.

Drones 2023, 7, x FOR PEER REVIEW 4 of 49 
 

2. Classification Framework of UAV Formation Trajectory Planning Algorithm 
This paper provides a classification framework of the UAV formation trajectory plan-

ning algorithm, which includes two elements: global planning and local planning. 
The global trajectory planning algorithm belongs to the static programming algo-

rithm, which carries out trajectory planning based on existing map information and seeks 
an optimal trajectory from the starting point to the target point. In this paper, global tra-
jectory planning algorithms are divided into traditional algorithms and intelligent algo-
rithms according to whether they are inspired by natural organisms; the intelligent algo-
rithms are divided into machine learning algorithms and heuristic algorithms according 
to whether they imitate human behavior or other animal behavior. The global trajectory 
planning algorithm framework is shown in Figure 3. 

 
Figure 3. Framework diagram of global trajectory planning algorithm. 

The local trajectory planning algorithm belongs to the dynamic trajectory planning 
algorithm, which means that the pilot aircraft collects the current position information 
and local obstacle information in real time according to the UAV sensor in the formation 
and then obtains the optimal trajectory between the starting point and the ending point. 
The local trajectory planning algorithm framework is shown in Figure 4. 

 
Figure 4. Frame diagram of local trajectory planning algorithm. 

3. Traditional Algorithm 
Traditional methods must build the map environment for the target before perform-

ing trajectory planning. Firstly, the map environment was discretized into graphs, and 
feasible trajectories were generated by the search algorithm to complete the global 

Figure 4. Frame diagram of local trajectory planning algorithm.

3. Traditional Algorithm

Traditional methods must build the map environment for the target before perform-
ing trajectory planning. Firstly, the map environment was discretized into graphs, and
feasible trajectories were generated by the search algorithm to complete the global tra-
jectory planning of UAV formation. The existing algorithms are the Dijkstra algorithm,
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Dubins Curve, Floyd algorithm, Voronoi graph method, Probabilistic Roadmaps (PRM),
and Rapidly-Exploring Random Tree (RRT).

3.1. Dijkstra Algorithm

The Dijkstra algorithm is the classical shortest trajectory method in the geometric graph
method, in which the vertex represents trajectory points, the edge represents a feasible
trajectory, the line between nodes is called an edge, and each edge has a corresponding
weight, which is the distance or cost of the journey; it is suitable for two-dimensional
static obstacle avoidance scenes with a non-negative side weight. The key to using this
algorithm is to select effective trajectory points, shorten the planning time, expand from
the starting point, find the shortest trajectory for a node in each step, select the node with
the smallest distance from the node that has never been visited to register, then traverse the
adjacent nodes of the node after the node is included, and then update the distance. The
cost diagram of a Dijkstra algorithm is shown in Figure 5.
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Aiming at the uncertain region search problem, Sujit and Ghose [13] proposed a search
algorithm based on the K-shortest trajectory algorithm for UAV to search targets in an
unknown environment. It satisfies the requirements of endurance time of each UAV and
the location of the base station of UAV operation, and it enables each UAV to search in the
area of maximum uncertainty so as to maximize the search benefit.

In order to meet the needs of searching an unknown environment and tracking moving
targets in a balanced way, Tin [14] improved on Dijkstra’s algorithm and proposed a robust
shortest algorithm (ARSP) to deal with arc uncertainty. The influence of information
uncertainty and environmental change on the trajectory planning algorithm is overcome,
and the trajectory is quickly replanned at the same time.

Ueno and Kwon [15] applied the Dijkstra algorithm to the minimum time reconstruc-
tion of UAV formation in order to meet the requirements of optimality and short computing
time, and the trajectory generated within the shortest time is close to the optimal trajectory.

Aggarwal et al. [16] proposed an approximate trajectory generation method to generate
an approximate trajectory length under the condition of meeting the safety constraints of a
UAV. This method is based on the total cost of the Lagrange relaxation (LARAC) algorithm,
and it iteratively uses the Dijkstra algorithm (iDijkstra) to modify the edge cost, which
solves the safety constraints and flight energy consumption of UAV caused by extreme
high temperature.

3.2. Dubins Curve

The Dubins curve is the shortest locus connecting two two-dimensional planes (i.e., the
X-Y plane) under the condition that the curvature constraint is satisfied and the tangent
directions of the specified beginning and end are satisfied. In 1957, Lester Eli Dubins
proved that any locus can consist of a maximum curvature arc or straight segment (the
locus between two points must exist). In other words, the shortest path connecting two
points will be constituted by the circular arc of the maximum curvature and the straight
line segment. The Dubins of any starting point to the end point are composed of not more
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than three original motions, and the sequence constituted by the three original motions
is called a kind of trajectory. As two continuous and identical primordial motions can be
combined into one primordial motion, Dubins proved that the optimal trajectory can only
be one of the following six combinations: namely, RSR, LSL, RSL, LSR, RLR, LRL. The first
four are collectively called a CSC trajectory, and the last two are collectively called a CCC
trajectory, where the primordial motion R represents right turn, S stands for straight and L
stands for left. Figure 6 is the trajectory diagram of one Dubins curve LRL.
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D’Amato, Mattei, and Notaro [17] modeled the UAV as a Dubins vehicle, using a
method based on the Reduced Visibility Graph (RVG), connecting selected nodes by arcs
and segments, and adding the Rendez-Vous Waypoints (RVWs). It was based on the leader–
follower Stackelberg model’s two-layer game theory method to optimize the location of
the trajectory point and the trajectory of the UAV as much as possible in order to find the
optimal trajectory while maintaining the shape of the formation in many places.

3.3. Floyd Algorithm

The Floyd algorithm, also known as the interpolation method, is a relatively classic
algorithm for solving graph theory problems. It is an algorithm to solve the shortest trajec-
tory between vertices in a given weighted graph, and it can correctly handle the shortest
trajectory problem of directed graphs. At the same time, it is a dynamic programming
algorithm, and the connection weight between nodes can be positive or negative; similar
to Dijkstra’s algorithm, but different from it is that Floyd’s algorithm is used to find the
distance between any two points, which is the shortest path of multiple sources, and it can
be calculated with negative weights, while Dijkstra’s algorithm is used to find the shortest
route from one vertex to all other vertices, is the single-source shortest path, and negative
weight circuits cannot be calculated.

Faced with the problem of multi-UAV cooperative patrol trajectory planning under
constraints such as time windows, mandatory patrol nodes, UAV flight time and imaging
sensors, Yang et al. [18] proposed a new cooperative patrol trajectory planning method,
using the Floyd algorithm to generate the initial trajectory, and then used the improved
forward insertion heuristic algorithm (PFIH) to obtain the optimal trajectory.

Zhou and Nie [19] proposed a graph-based trajectory planning method for multi-UAV
systems, using the Floyd algorithm to update the adjacent cost matrix and trajectory matrix,
and solved the problem of UAV formation trajectory planning.

3.4. Fast Marching Method

The fast marching method (FM) is an efficient numerical algorithm for solving the
optical path function equation (Eikonal equation), and the optical path function equation is
as follows:

|∇T(x, y)|V(x, y) = 1 (1)
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where (x, y) is the coordinate of the calculation point in the pose space, T(x, y) is the time
when the interface function arrives at the calculation point, V(x, y) is the propagation
velocity set by the interface function, and it is a fixed value in trajectory planning. The
optical path function solution model is shown in Figure 7.
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The fast marching method first establishes a rasterized space for storing time values,
and then, the time cost will be converted into the distance cost during planning. Then,
we set reachable points and unreachable points and complete the minimum value search
operation by continuously updating the distance cost to obtain the distance matrix. We
use it to construct the potential field and then use the gradient descent method to iterate
continuously from the starting point along the direction of the fastest gradient descent in
the generated potential field, obtaining a smooth trajectory without collision.

Aiming at the problem that the trajectory obtained by the traditional FM algorithm in
the 3D environment will be too close to obstacles and the trajectory is not smooth enough,
López et al. [20,21] proposed a fast marching square algorithm (FM2), which improves the
FM algorithm by changing the propagation speed in space so that the wave will tend to
follow the track travel.

3.5. Voronoi Diagram Method

The Voronoi graph method (also known as Dirichlet tessellation) is a space segmenta-
tion algorithm proposed by Russian mathematician Georgy Voronoy. It divides the space
into many sub-regions through a series of seed nodes (Seed Points), each sub-region is
called a Cell, and the distance between all points in each Cell and the Seed Points in the
current Cell is less than Distance to all other Seed Points. According to the distribution of
obstacles, the Voronoi diagram squares the free space between the edges of the obstacles,
and at the same time, it draws the vertical line of adjacent obstacles to form a polygon
around the obstacles so that each side is equidistant from the surrounding obstacles. Then,
the origin and destination nodes can be connected into the graph by constructing trajec-
tories from the nodes to the edges closest to each node. Figure 8 is a Voronoi trajectory
diagram.
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Unavoidable accidents or environmental interference problems will inevitably occur
when UAV formations perform multi-mission planning and collaborative trajectory plan-
ning. In order to cope with this situation, Meng et al. [22] proposed an algorithm to deal
with multi-UAV multi-task trajectory re-planning in an unexpected event environment.
Each UAV uses a Voronoi diagram to plan its own initial, optimal or sub-optimal trajectory;
then, it replans its trajectory according to the new multi-task requirements corresponding
to some unexpected events.

To solve the coverage problem with average Voronoi partitions, Chen et al. [23]
proposed a distributed coverage algorithm to cover the convex area of the average Voronoi
partition of the UAV formation. By exchanging local information with neighbors, the
Voronoi partition is continuously iteratively updated, and the UAV direction of movement
is calculated. The algorithm can theoretically make the area difference infinitely small so as
to achieve the actual average area coverage.

Chen et al. [24] proposed a method based on consistency theory, using the Voronoi
diagram method to create a threat domain, and designing a cost function for trajectory
planning of multiple UAVs, so that multiple UAVs can take off at the same time and reach
the specified target Point, solving the problem of UAV formation attacking multiple targets
in a static threat environment.

Hu et al. [25] proposed a distributed formation control and collision avoidance method
based on the Voronoi partition and traditional artificial potential field, using the Voronoi
partition theory to divide the entire space into non-overlapping regions, and further pro-
posed the target switching scheme; this method solves the problem of local optimum when
an artificial potential field is used as motion control law.

3.6. Probabilistic Roadmap Algorithm

The Probabilistic Roadmap Algorithm (PRM) is a method based on graph search,
which converts continuous space into discrete space. Trajectory planning is mainly divided
into two stages. In the offline learning stage, a large number of robot pose points are
randomly sampled; then, neighbor nodes are searched and connections are established
to construct a landmark map. In the online query phase, a feasible trajectory is searched
from the landmark map using a heuristic search algorithm based on the starting point,
target point and landmark map information. Figure 9 is a trajectory diagram of a roadmap
algorithm.
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Madridano et al. [26] proposed a multi-trajectory PRM-based planning method by
establishing a parameter to define three different modes, so that different UAVs in the UAV
formation can achieve different mission goals.

3.7. Rapidly Exploring Random Trees

Rapidly exploring Random Trees (RRT) is a single query random search algorithm
based on sampling. Its basic idea is to randomly sample in the state space, use the graph
structure or tree structure extension to build a feasible trajectory set, and then find a
complete feasible trajectory from the trajectory set. The RRT algorithm takes the starting
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point in the state space as the root node and then generates a random extended tree by
gradually increasing the leaf nodes at random. If the newly generated node conflicts with
the obstacle area during the generation process, the node is discarded and reselected. When
the target point is included in the leaf node of the random tree, the expansion of the random
tree stops, and an obstacle avoidance route from the starting point to the target point can
be obtained. A fast random search tree locus is shown in Figure 10.
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Aiming at the trajectory planning problem of UAV formation with static, ejection and
dynamic obstacles, Kothar et al. [27] proposed a trajectory planning algorithm based on
fast search random tree (RRTs) and introduced an anytime algorithm and guidance law
based on tracking and line of sight into the algorithm to generate low-cost UAV formation
trajectories under kinematic constraints in real time.

Zu et al. [28] proposed an improved Rapid Exploration Random Trees (RRTs) UAV
formation collaborative trajectory planning algorithm, using a trajectory pruning method
to delete redundant nodes on the trajectory. The UAV uses a trajectory planner, which
enables the UAV to share information within the communication range.

When UAV formation faces sudden threat trajectory replanning, the classical RRT
algorithm has some problems such as low efficiency, large storage space and slow conver-
gence. Huang and Sun [29] proposed a bidirectional fast search random tree algorithm
based on greedy strategy, improved the expansion mode of algorithm nodes, and adopted
an adaptive step size rolling detection method to improve the sensitivity of UAV formation
to sudden threats.

In addition, the traditional RRT algorithm also has the problem that it cannot adapt
to the possible changes in the high-order dynamic characteristics of the autonomous
movement of the UAV and the mission process during trajectory planning. In response
to this problem, Shi et al. [30] proposed a trajectory generation algorithm based on the
integration of the RRT algorithm and the minimum capture algorithm, using the RRT
algorithm to generate the initial trajectory, and then using the minimum capture algorithm
to smooth the initial trajectory, and using the concept of flight corridors to limit the flight
trajectory of drones.

Table 1 summarizes the contents of our survey on traditional trajectory planning
algorithms.

Table 1. Content of traditional trajectory planning algorithm in our survey.

Reference Challenge Optimization Criteria Method Dimension

P. Sujit and D. Ghose [13] Environment Trajectory of deviation KSP 2D
C. Tin [14] Information, Environment ARSP Dijkstra 2D

S. Ueno and S. J. Kwon [15] Time, Optimality Optimal control Dijkstra 2D
R. Aggarwal et al. [16] Security LARAC Dijkstra 2D

E. D’Amato, M. Mattei, and I. Notaro [17] Environment RVG, Bi-level optimization Dubins 3D
J. Yang et al. [18] Resources PFIH Floyd 2D

F. Zhou and H. Nie [19] Environment Shortest path Floyd 2D
B. López et al. [20,21] Trajectory Lead–Follow, Multiple applications FM 3D
B.-b. Meng et al. [22] Environment Task allocation Voronoi + Dijkstra 2D
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Table 1. Cont.

Reference Challenge Optimization Criteria Method Dimension

S. Chen et al. [23] coverage problem Distributed coverage Voronoi 2D

X. Chen et al. [24] Environment,
Multiple objectives Consistency theory Voronoi 2D

J. Hu et al. [25] UAV clustering Target switching Voronoi + APF 3D
Á. Madridano et al. [26] Trajectory Multiple trajectories PRM 2D/3D

M. Kothari et al. [27] Environment Anytime, Guide rate RRT 2D
W. Zu et al. [28] Environment pruning RRT 2D

J. Huang and W. Sun [29] Environment Greedy strategy, Adaptive step size RRT 3D
B. Shi et al. [30] Environment Minimum snap, Flight corridor RRT 2D

4. Intelligent Algorithm

The intelligent algorithm is based on the principle of bionics computing, simulating
the process of group biological behaviors to collaboratively search for the optimal solution
in the space; for high-latitude, nonlinear, multi-constrained optimization problems, it can
often converge to the optimal value in UAV formation trajectory planning at the same
time, and it also solves the problem of UAV formation obstacle avoidance. In this paper,
intelligent algorithms are divided into two types: heuristic algorithms and machine learning
algorithms.

4.1. Heuristic Algorithm

Most heuristic algorithms are optimization algorithms that search approximate optimal
solutions based on empirical rules under acceptable computational costs to find solutions
to problems. It is not a systematic search for answers, but the use of previous experience to
select effective methods, and it cannot guarantee the speed of solutions and optimization
degree of feasible solutions [31]. At present, the heuristic algorithms are mainly natural
body-like algorithms. The heuristic algorithms used for UAV formation trajectory planning
include the Simulated Annealing Algorithm (SA), A* Algorithm, Evolutionary Algorithm
(EA), Particle Swarm Optimization (PSO), Pigeon-Inspired Optimization (PIO), Fruit Fly
Optimization Algorithm (FOA), Artificial Bee Colony (ABC), Salp Swarm Algorithm (SSA),
Ant Colony Optimization algorithm (ACO), Gray Wolf Optimization algorithm (GWO),
Harmony Search algorithm (HS), etc.

4.1.1. Simulated Annealing Algorithm

The Simulated Annealing Algorithm (SA) is derived from the annealing of solid
matter in physics. Usually, when a solid material is annealed, it is heated to allow its
particles to move freely, and then, the particle system descends slowly enough to slow
down sufficiently. The system is approximately at a thermodynamic equilibrium point,
and finally, the particle system will reach its lowest energy state, the ground state, which
corresponds to the global minimum of the energy function. The objective function of the
optimization problem is equivalent to the energy, and the optimal solution is equivalent to
the lowest energy state. The simulated annealing algorithm changes randomly from one
state to another state at a given temperature and uses the random acceptance criterion to
judge. When the temperature slowly drops to a very low value, it remains at the optimal
solution with a probability of 1. When the UAV formation is performing trajectory planning,
we first define a solution space, arrange the fixed starting point to the end point by unit,
use the Monte Carlo method as the initial solution, and iterate to create a new solution
for the next trajectory point program. The exchange order of the two trajectory points in
the obtained solution will generate a new solution. Then, we set the target function of
the trajectory length of the UAV and use the simulated annealing criterion to test the cost
function according to the data of the distance matrix. We use the difference between the cost
functions to determine whether to accept the new trajectory planning and set the cooling
process control parameters, initial temperature, cooling coefficient, end temperature, and
current temperature iteration number. When the temperature drops to the end temperature,
the algorithm stops, reaches the minimum temperature, and outputs the formation. The
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optimal trajectory of the UAV using a simulated annealing algorithm trajectory is shown in
Figure 11.
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Turker et al. [32] proposed an alternative method to effectively calculate the cost-
fair flight path of a single-station multi-UAV system, using a data parallel computing
mechanism to improve the simulated annealing algorithm, and solve the problem of the
UAV formation trajectory planning calculation time index problem of growth.

Yue and Zhang [33] proposed a method of UAV formation trajectory planning based
on the K-means algorithm and Simulated Annealing (SA) algorithm, using decomposition
technology to reasonably decompose the effective area into multiple sub-target points.
They use the K-means algorithm to cluster the UAV cruise target points and then use
the Simulated Annealing (SA) algorithm for similar sub-target trajectory planning, which
solves the problem of UAV cruise distance and scheduling under complex constraints and
leads to improved coverage of drones in the sub-target area of the cruise effective area.

4.1.2. A* Algorithm

The A* algorithm is a graph search algorithm that introduces heuristic information
factors into the target information of the problem to be solved, making the search direction
more accurate and reducing the convergence time. The basic idea of this algorithm for
UAV formation trajectory planning is as follows: firstly, the flight space is rasterized and
decomposed into some units with regular shapes, and it is judged whether these units
are covered by obstacles or intersected with obstacles. Then, find the unit containing the
starting point and the target point and use the A* algorithm to find a series of connected
units to connect the starting unit and the target unit. The search process of the A* algorithm
is based on the value of the heuristic function in the direction of the lower cost; that is, for
the node n, the algorithm uses the cost function to evaluate its surrounding nodes and
selects the point with the smallest estimated value as the next node. The expression of the
cost function is:

f (n) = g(n) + h(n) (2)

where h(n) is the heuristic function; g(n) represents the prediction cost function from
the current node position to the target point and represents the trajectory cost from the
starting point to the current node n; and f(n) is the estimated value, which is obtained by
adding h(n) and g(n). In the grid graph, the heuristic function is usually expressed by the
distance between two points. The calculation process of algorithm A* is a step-by-step
search process, continuously extending to the direction of the minimum estimated value
trajectory, calculating the optimal solution and outputting the optimal trajectory. Figure 12
is a trajectory diagram of an A* algorithm.

The traditional A* algorithm convergence speed is slow, and the trajectory may not be
optimal. Hu et al. [34] proposed a distributed velocity perception and trajectory planning
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algorithm, which introduced a velocity perception strategy and collision prediction into
the A* algorithm and carried out trajectory planning of UAV formation.
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Su et al. [35] proposed a cooperative search A* algorithm, which introduced cooper-
ation strategies, cooperation constraints and cooperation costs into the constraint model,
and they solved the problem of multi-aircraft formation trajectory planning with complex
space–time constraints.

Zhang et al. [36] proposed a collaborative tactical planning method of UAV formation
based on hierarchical structure, which introduced a hierarchical structure into UAV forma-
tion collaborative combat and solved the autonomous control problem of UAV formation
in modern air combat.

Haghighi et al. [37] proposed a method based on the cell revisit time value and other
effective cost functions such as height, minimum distance, collision avoidance and turning
cost to realize multi-objective collaborative trajectory planning of multiple UAVs. A modifi-
cation of the A* algorithm (MA*) was made to define a new criterion for individual revisit
time unit values and extend it to the entire 3D mountain environment area, introducing re-
visit time and application-specific settings to reduce the computational complexity degree,
which solves the problems of the traditional A* algorithm, such as high computational
complexity, small number of extension units and low ratio of coverage.

Nagasawa et al. [38] proposed a multi-UAV trajectory planning method in the case of
three-dimensional building damage investigation or disaster, which combined the fuzzy
c-means method of assigning positioning points to UAVs and the A* algorithm to calculate
the access sequence of each UAV camera positioning point so as to obtain the feasible
trajectory of multiple UAVs, which solves the problem of multi-UAV coverage trajectory
planning for the 3D reconstruction of damaged buildings after disasters.

Luo et al. [39] proposed a convergent method to ensure autonomous non-collision
trajectory planning of UAVs in the presence of static obstacles and dynamic threats. They
extended the jump point search algorithm (JPS), parent node transfer law, seventh-order
polynomial interpolation method of minimum capture, virtual gravity field and improved
artificial potential field (APF) algorithm to a three-dimensional UAV. Based on a static
environment, a collision-free trajectory is generated, which solves the trajectory planning
problem of UAV formation flying at low altitude in urban and mountainous areas.

Table 2 summarizes the contents of our review about the simulated annealing algo-
rithm and the A* algorithm.

4.1.3. Evolutionary Algorithm

The Evolutionary Algorithm (EA) is a stochastic optimization search algorithm summed
up on the basis of biological evolution in nature. The most widely used algorithm is the
Genetic Algorithm (GA). Its main idea is to rasterize the flight space first, find the area
covered by obstacles or conflict with obstacles, and then randomly generate starting points
in the map. To ensure the collision-free trajectory to the target point, in the trajectory
planning process, each collision-free trajectory from the starting point to the goal point is
represented as an individual, and each individual has a chromosome, so each collision-free
trajectory can also become a chromosome. Each segment in the trajectory is represented
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as a gene. The collection of all individuals, that is, all generated collision-free trajectories
from the starting point to the target point, are called the population. We design the
corresponding fitness function to screen out the required individuals from the population.
Individuals with high fitness are elite individuals; through the cross-mutation operation
between elite individuals, better elite individuals are continuously screened until the
termination conditions are met, and finally, what remains is the required obstacle avoidance
route. Figure 13 is a diagram of a cross-mutation operation and a trajectory diagram of an
Evolutionary Algorithm (EA).

Table 2. Summary of simulated annealing algorithm and A* algorithm in our review.

Reference Challenge Optimization Criteria Method Dimension

T. Turker et al. [32] Trajectory Parallel computing SA 2D
X. Yue and W. Zhang [33] coverage problem K-means SA 2D

Y. Hu et al. [34] Trajectory Speed perception, collision prediction A* 3D
H. Su et al. [35] UAV clustering Constraint model A* 2D

Z. Zhang et al. [36] UAV clustering Hierarchy A* 3D

H. Haghighi et al. [37] Trajectory and
Multiple objectives Revisit Time A* 3D

R. Nagasawa et al. [38] Environment Fuzzy c-means method A* 3D

Y. Luo et al. [39] Environment parent node, seventh-order
polynomial interpolation JPS + APF 3D
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Tian et al. [40] proposed an algorithm based on model predictive control (MPC) and
the Genetic Algorithm (GA) for multiple UAVs to search for unknown areas cooperatively,
combining the flexibility of the Genetic Algorithm and the predictive ability of MPC. The
combination avoids the problem where the search process enters into local optimality.

Shen et al. [41] proposed a method based on Genetic Algorithm (GA) to solve the
multi-UAV cooperative reconnaissance mission planning problem, introduced integer
string chromosome representation and designed a new subsequence crossover algorithm to
meet the requirements of reconnaissance resolution. They also inserted mutation operators
forward to increase the population diversity, which solves the problems of reconnaissance
resolution and the time window when UAV formations perform reconnaissance missions.

Nikolos et al. [42] proposed a trajectory planner suitable for a group of cooperative
UAVs to avoid collisions with environmental obstacles, combining b-spline curves, potential
fields, and differential evolution (DE) to generate smooth the trajectory curve of the UAV
formation, which solves the trajectory planning problem of the UAV formation in a known
or unknown static environment.
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Lamont et al. [43] proposed a multi-objective evolutionary algorithm (MOEA) for tra-
jectory planning that introduces a Genetic Vector Router (GVR) while combining trajectory
tracking capabilities with existing swarm behavior to measure the impact of these capabili-
ties on the impact of swarm characteristics. By using “immigrant” population members to
increase the search space and generate trajectories that meet mission requirements, they
solved the problem of UAV formations exploring the terrain of larger areas and threatening
regional trajectory planning.

Eun and Bang [44] developed an efficient strategy for the assignment and trajectory
planning of homogeneous UAVs, combining Voronoi diagrams and Genetic Algorithms
(GAs) to generate efficient flyable trajectories in network shapes, solving the problem of
task assignment, and trajectory planning in the presence of time constraints is addressed.

Pehlivanoglu and Volkan [45] proposed a new multi-frequency Vibration Genetic
Algorithm (mVGA), which constructed a Voronoi diagram using height filtering and fuzzy
c-means clustering methods. They generated some initial individuals based on Voronoi
vertices to improve the initial population, thereby generating efficient and fast flyable
trajectories and solving the local optimization problem in a relatively short optimization
period.

Sahingoz [46] proposed a flight-able trajectory planning method for multi-UAV sys-
tems, which combines the Genetic Algorithm (GA) and Bezier curves to generate an efficient
and feasible trajectory of the UAV formation, solving the problem in which the curve is not
smooth when using the traditional Genetic Algorithm (GA) for trajectory planning.

Zhang and Duan [47] proposed an improved constrained Differential Evolution (DE)
algorithm, which combines the global search capability of the Differential Evolution (DE)
algorithm and the constraint processing technology of level comparison, and they designed
a level update strategy that solves the trajectory planning problem of formations under
multiple constraints in real scenes.

Cekmez et al. [48] used a parallel Genetic Algorithm on the CUDA architecture to
plan feasible trajectories for multiple UAVs; the algorithm first used a clustering method
to find a subset of control points and then parallelized it on the programming computing
platform. The Genetic Algorithm is used to solve each cluster and generate the feasible
trajectory of the UAV formation, which solves the problem of long calculation time of the
serial algorithm.

Sørli et al. [49] proposed a co-evolutionary multi-UAV cooperative trajectory planning
method, which applied the co-evolutionary Genetic Algorithm to trajectory planning, and
they considered the sensors carried by each UAV in the formation quantity and location
effects, real-time or near-real-time trajectory planning for each UAV, solving the problem of
trajectory planning for UAV formations in dynamic environments.

Chen et al. [50] proposed a parallel optimization method, which uses real coding
methods and effective selection operations, crossover operations, and mutation operations
to improve the Genetic Algorithm (GA), and at the same time, the Particle Swarm Optimiza-
tion algorithm (the combination of PSO) and Ant Colony Optimization algorithm (ACO)
makes the ants in the PSO-ACO system have particle characteristics. Then, it uses the two
algorithms to generate formation trajectories simultaneously, which solves the weak global
search ability of the Genetic Algorithm (GA) and the Ant Colony Optimization algorithm
(ACO) premature maturation problem.

Binol et al. [51] proposed an improved evolution method of Genetic Algorithm (GA)
and Harmony Search (HS); the improved search method utilizes various evolution oper-
ators with the same properties at the starting position to determine the overall shortest
trajectories, which solves the problem of trajectory planning for drone formations when
collecting data from multiple roadside units (RSUs).

Harounabadi et al. [52] proposed a Genetic Algorithm for the trajectory planning
of multiple UAVs in message ferry networks. The Genetic Algorithm is used to create
node clusters, and then, node scheduling in each cluster is defined according to the traffic
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between nodes and the message load in nodes. The problem of the average message passing
delay of traditional mTSP schemes is solved.

Cao et al. [53] established a global optimization model that takes into account UAVs
with various sensors located in different bases and multiple constraints, converts the time
into an easily measurable way, and then uses the Genetic Algorithm analysis to solve the
optimal detection track problem in the case of a multi-base.

Ma et al. [54] proposed a coordination optimization algorithm combining the Genetic
Algorithm and clustering algorithm, using the task time constraint method to determine
the number of UAVs required. They find the optimal trajectory for each UAV, solving the
problem of multi-task assignment and trajectory planning of multiple UAVs.

Li et al. [55] proposed an improved trajectory planning algorithm based on GA. On
the basis of a Genetic Algorithm, the optimal trajectory is obtained by the K-means target
clustering algorithm and multi-chromosomal Genetic Algorithm, which solves the trajectory
planning problem of multi-UAV maritime target search.

Xiong et al. [56] proposed a trajectory planning algorithm based on Genetic Algorithm
with adaptive interference operators. The algorithm can realize the multi-directional attack
target by setting intermediate points around the target point. A reasonable fitness function
is designed by using the regionalization method, and the adaptive disturbance operator is
added to plan the trajectory of each UAV, which solves the trajectory planning problem of
multiple UAVs attacking targets in a complex combat environment.

Li et al. [57] proposed an optimized Genetic Algorithm method, which applied the
augmented stochastic framework to evaluate the task completion probability (PoC) of
the strategy in a three-dimensional grid environment, and then, they used the Genetic
Algorithm optimization method to find feasible trajectories that maximize PoC, addressing
the Reliability-Aware Multi-Agent Coverage Trajectory Planning (RA-MCTP) problem.

Li et al. [58] proposed a gray Genetic Algorithm, which iteratively uses the Genetic
Algorithm to continuously find the agent trajectory that maximizes the PoC and solves the
reliability-aware multi-agent coverage trajectory planning in continuous time (RA- MCTP)
problem.

Zhang et al. [59] proposed a collaborative trajectory planning model, introduced
decision variables into the trajectory cost model, and then improved the Genetic Algorithm
to generate a formation flight trajectory, which solved the problems of short effective flight
time and low mission success rate when multiple UAVs were threatened.

Asim et al. [60] proposed a variable population size genetic trajectory planning al-
gorithm (GTPA-VP), which improves the Genetic Algorithm through three operators of
insertion, replacement and deletion, and updates the stop point adaptively. Using the
number and location, on this basis, a multi-color Genetic Algorithm is used to find the
association between UAVs and stopping points, the optimal number of UAVs and the
optimal order of UAV stopping points. Finally, a Genetic Algorithm is used to construct the
flight trajectory of all drones, solving the problem of high energy consumption of drones
hovering and flying in IoT services.

Yan et al. [61] proposed an improved Particle Swarm Optimization and Genetic Algo-
rithm (GA-PSO), which introduced partial matching crossover and secondary transposition
mutation to the traditional Particle Swarm Optimization (PSO) algorithm and solved the
intelligent marine task assignment problem and trajectory planning problem for multiple
UAVs.

Wang et al. [62] proposed a trajectory planning method based on the Genetic Algorithm
(GA). Through the task analysis of the decision-making part and trajectory planning part, a
Genetic Algorithm is used to initialize the trajectory; the fitness value calculation, selection,
crossover, mutation and other operations are optimized to obtain the optimal search
trajectory, which solves the trajectory planning problem of multiple UAV collaborative
search tasks.

Table 3 summarizes the content of evolutionary algorithms in our review.
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Table 3. Summary of evolutionary algorithms in our review.

Reference Challenge Optimization Criteria Method Dimension

J. Tian et al. [40] Environment Region division MPC + GA 2D
L. Shen et al. [41] UAV clustering Subsequence crossover, Forward insertion mutation GA 2D

I. Nikolos et al. [42] Environment B-Spline, DE DE 3D
G. B. Lamont et al. [43] Environment GVR, Parallel computing MOEAs 3D
Y. Eun and H. Bang [44] Trajectory Task allocation Voronoi + GA 2D

Pehlivanoglu and Y. Volkan [45] Trajectory Height filtration, Fuzzy c-mean Voronoi + GA 3D
O. K. Sahingoz [46] Trajectory Curves GA 2D

X. Zhang and H. Duan [47] Environment Level update DE 3D
U. Cekmez et al. [48] Time, Trajectory Cluster and parallel computing GA 2D
J.-V. Sørli et al. [49] Environment, UAV Coevolution GA 2D

J. Chen et al. [50] Trajectory Parallel optimization GA + PSO
+ACO 2D

H. Binol et al. [51] Trajectory, Multiple objectives Evolutionary operator GA + HS 2D
M. Harounabadi et al. [52] Time Node scheduling GA 2D

Y. Cao et al. [53] Trajectory, Multiple objectives Time conversion GA 2D
Y. Ma et al. [54] Trajectory, coverage problem Clustering, Task time GA 2D
L. Li et al. [55] Trajectory, coverage problem K-means, Multiple chromosome GA 2D

C. Xiong et al. [56] Trajectory Adaptive interference operator, Regionalization GA 3D
M. Li et al. [57] coverage problem Augmented random frame GA 3D
M. Li et al. [58] Time, coverage problem Iterative use GA 3D

J. Zhang et al. [59] Environment Decision variable, Adaptive GA 2D
M. Asim et al. [60] Environment, UAV Variable population GTPA-VP 2D

M. Yan et al. [61] Trajectory, Multiple objectives Partially matched crossover, Secondary
transposition mutations GA + PSO 2D

S. Wang et al. [62] Multiple objectives, UAV
clustering Task analysis GA 2D

4.1.4. Particle Swarm Optimization

Particle Swarm Optimization (PSO) is an adaptive stochastic optimization algorithm
with a population search strategy developed by simulating the foraging behavior of birds,
which is used to solve various problems in engineering and science. Particle Swarm
Optimization initializes the trajectory planning problem into a group of random particles
and then iterates to find the optimal solution. In each iteration, particles update their
position and velocity by tracking individual and global extreme values, and then, they use
the search space to complete the optimal trajectory planning. Figure 14 shows a particle
motion diagram.
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Sujit et al. [63] proposed a random time algorithm based on the Particle Swarm
Optimization algorithm. Tracking guidance law and line of sight guidance law are used
to track the trajectory generated by the Particle Swarm Optimization algorithm at any
time, which solves the problem of using a pop-up window when multiple UAV tracks may
collide and trajectory planning when there are moving obstacles.

Wang et al. [64] proposed a collaborative trajectory planning method for multiple UAVs
based on the Particle Swarm Optimization (PSO) algorithm, analyzed the main influencing
factors of the cost function after modeling, and carried out collaborative dynamic analysis
of multiple UAVs, including static three-dimensional trajectory planning, which solves
the problems of unsatisfactory trajectory and poor real-time performance in multi-UAV
collaborative trajectory planning.
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Alejo et al. [65] proposed a system for automatically planning collision-free four-
dimensional trajectories; the system is based on the Particle Swarm Optimization (PSO)
algorithm of axis-aligned minimum bounding boxes and stochastic global optimization
techniques, and it uses a strategy to quickly calculate the initial point, solving the problems
of high computational overhead and slow convergence in evolutionary algorithms.

Liu et al. [66] proposed a cooperative competitive Particle Swarm Optimization (PSO)
algorithm, which uses two-stage optimization to reduce the dimensionality of the problem
and generates the optimal collaborative trajectory for multiple UAVs in three-dimensional
space, solving the trajectory planning problem for UAV formation in cooperative and
competitive situations.

Zhang et al. [67] designed an improved PSO algorithm (IPSO), which used a binary
value coding matrix and adaptive inertial weight adjustment strategy to generate a feasi-
ble trajectory for multiple UAVs, solving the decision-making problem of a multi-UAVs
cooperative reconnaissance mission.

In this paper, Li et al. [68] proposed a new trajectory planning method for multiple
UAVs by introducing a variable neighborhood drop (VND)-enhanced genetic Particle
Swarm Optimization algorithm to optimize flight trajectory with minimum span and solve
the problem of limited flight endurance of UAVs in agricultural applications.

Hoang et al. [69] proposed an angle-encoded Particle Swarm Optimization method,
which realized the communication between UAVs through the Internet of Things board,
minimized the cost function of multiple constraints including the shortest trajectory and
the safe operation of UAVs, and found a feasible and frictionless trajectory for the whole
formation. The trajectory planning problem of UAV formation in building infrastructure
inspection is solved.

Chen et al. [70] proposed a trajectory planning method based on Dubins trajectory
and the Particle Swarm Optimization (PSO) algorithm, using Dubins trajectory to reduce
the dimensionality of the aircraft kinematics model. Then, using the Particle Swarm
Optimization algorithm to optimize the trajectory after the formation reconstruction, it
solves the trajectory planning problem when the task adjustment or the environment
changes in the UAV formation.

Patley et al. [71] proposed an improved Particle Swarm Optimization method (ODPSO)
based on orthogonal design and formulated a point sequence strategy to redefine the
objective function. They searched for each the three-dimensional trajectory points within
the time step, used the relative particle directivity to improve the search accuracy, and
solved the trajectory planning problem of the UAV formation under the conditions of
threats and terrain constraints.

Shao et al. [72] proposed a 3D trajectory planning algorithm for UAV formation
based on Comprehensive Improved Particle Swarm Optimization (CIPSO). This method
uses chaos-based logical mapping to improve the initial distribution of particles, designs
commonly used constant acceleration coefficients and maximum speeds to adapt to linear
change coefficients, and uses a mutation strategy in which the desired particles replace
undesired particles, solving the terrain and threat constraints problems of UAV formation
trajectory planning under the condition.

Yang et al. [73] proposed a 4D coordinated trajectory planning algorithm for multiple
UAVs, which constructed the solution boundary of the search space and the distance to the
destination based on the properties of all threats, and then designed a spatial refinement
voting mechanism that solves the problems of local optimum and slow convergence of the
standard Particle Swarm Optimization algorithm.

Shao et al. [74] proposed a Distributed Cooperative Particle Swarm Optimization
(DCPSO) algorithm with an elite-preserving strategy, which parameterizes the trajectory
using a Pythagorean Heatmap (PH) curve. Then, evolutionary theory is used to improve
the Particle Swarm Optimization algorithm to generate a flyable and safe trajectory for each
UAV, which solves the kinematic constraint problem of multi-UAV trajectory planning.
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Liu and Lu [75] proposed an algorithm based on Dubins trajectory and Coevolutionary
Particle Swarm Optimization (CCPSO). This algorithm determines the initial reference
trajectory by the Dubins trajectory and then converts the time co-constraint into an equal
trajectory length, and the trajectory parameters are optimized by CCPSO, which solves the
problem of multi-UAV collaborative trajectory planning.

He et al. [76] proposed a new hybrid Particle Swarm Optimization and improved
symbiotic search algorithm (HIPSO-MSOS), which introduces a time-stamp segmentation
(TSS) model and a multi-objective optimization function to simplify the cost. Using HIPSO-
MSOS to generate feasible trajectories and then smoothing trajectories by cubic b-spline
curves, the problem of coordinated trajectory planning for multiple UAVs in complex 3D
environments is solved.

Ahmed et al. [77] proposed a trajectory planner based on the Particle Swarm Optimiza-
tion (PSO) algorithm, which uses distributed full coverage and dynamic fitness function to
generate the optimal trajectory and solves the problem of trajectory planning for multiple
UAVs.

Mobarez et al. [78] proposed an improved Particle Swarm Optimization method,
improved the optimization problem by using evolutionary computing technology, added
parallel recombination into trajectory planning, and solved the problems of long processing
time and non-optimal trajectory in the dynamic trajectory planning of UAV formation.

Xiao et al. [79] proposed a Heterogeneous Adaptive Comprehensive Learning Dy-
namic Multi-population Particle Swarm Optimization algorithm (HACLDMS-PSO), which
incorporated a population dynamic adjustment strategy, disturbance mechanism and adap-
tive learning probability mechanism into the Particle Swarm Optimization algorithm, which
better solved the NP-hard problem in multi-UAV trajectory planning.

Meng-yun et al. [80] proposed a tracking planning method based on multi-strategy im-
proved symbiosis search (MSISOS); this method uses an adaptive strategy and interference
strategy to assist the search trajectory and coordinates space–time through UAV informa-
tion interaction layer constraints. Then, a distributed method is designed for formation
trajectory planning, which solves the problems of poor accuracy and slow convergence in
multi-UAV trajectory planning in complex battlefield environments.

Chung et al. [81] proposed a trajectory planning algorithm that combines gradient
descent-based trajectory planning (GBPP) and Particle Swarm Optimization. The initial
trajectory of the algorithm is defined as the input of GBPP, and the hierarchical concept
is added to the Particle Swarm Optimization algorithm (HPSO) to generate a feasible
trajectory, which solves the problem of long calculation time of the Genetic Algorithm and
Particle Swarm Optimization algorithm.

Lu et al. [82] proposed a distributed hybrid Particle Swarm Optimization and differen-
tial evolution (DE) technique; this technique adds the nonlinear time-varying method to
the Particle Swarm Optimization algorithm (NTVPSO) and adds the adaptive mechanism
to the differential evolution (DE) evolution (ADE). Finally, it adopts the distributed method,
uses NTVPSO-ADE to realize the collaborative trajectory planning of multiple UAVs, and
solves the problem of difficult model establishment and large amount of calculation in
formation trajectory planning.

Table 4 summarizes the content of PSO algorithms in our review.

4.1.5. Pigeon-Inspired Optimization

The Pigeon-Inspired Optimization algorithm (PIO) is a swarm intelligent optimization
algorithm designed to simulate pigeon homing behavior. First of all, three kinds of pigeon
swarm optimization models were proposed: the map model based on the geomagnetic
field, the pointer operator model based on the sun and the landmark operator model based
on the landmark operator model. Secondly, a general direction was identified through the
map and pointer operator, and then, the landmark operator was used to correct the current
direction until the best track was found. Figure 15 shows a PIO map and compass operator
model and a pigeon flock optimization (PIO) track chart.
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Table 4. A summary of Particle Swarm Optimization in our review.

Reference Challenge Optimization Criteria Method Dimension

P. Sujit et al. [63] Trajectory, Environment Tracking, Line of sight guidance law PSO 3D
G. Wang et al. [64] Trajectory, Environment Cost analysis PSO 3D

D. Alejo et al. [65] Time Minimum boundary, Random optimization,
One-time strategy PSO 4D

J. Liu et al. [66] UAV clustering Two-stage optimization PSO 3D

Y.-Z. Zhang et al. [67] UAV clustering,
Multiple objectives Binary value coding matrices, Adaptive inertia weights IPSO 2D

X. Li et al. [68] Trajectory, UAV VND GPSO 2D
V. Hoang et al. [69] Environment, coverage problem Minimizing cost function θ-PSO 3D

Q.-y. Chen et al. [70] Environment Reduction in dimension Dubins + PSO 2D

A. Patley et al. [71] Environment Point sequence strategy, Inclined plane, Relative
particle directivity ODPSO 2D/3D

S. Shao et al. [72] Environment Logical mapping, Adaptive linear change CIPSO 3D
L. Yang et al. [73] Trajectory Spatial refinement voting mechanism PSO 4D
Z. Shao et al. [74] Environment, UAV Pythagorean heat map, Coevolution DCPSO 3D

Y. Liu and H. Lu [75] UAV clustering Constraint conversion Dubins +
CCPSO 2D

W. He et al. [76] Environment, UAV clustering TSS, Multiple objective optimization HIPSO-MSOS 3D
N. Ahmed et al. [77] UAV clustering Distributed full coverage, dynamic fitness PSO 3D
E. Mobarez et al. [78] Time, Trajectory Evolutionary computation, Parallel recombination PSO 3D

J. Xiao et al. [79] Trajectory Adaptive, interference, Interactive coordination MSISOS 3D
W. Chung et al. [81] Trajectory GBPP, layered HPSO 3D

L. Lu et al. [82] Trajectory Nonlinear time variation, adaptive, Distributed NTVPSO-ADE 3D
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Luo et al. [83] proposed a co-evolutionary Pigeon-Inspired Optimization (CPIO) algo-
rithm based on a cooperation–competition mechanism. The search and track (ST) method
is introduced to obtain the lowest-cost trajectory, and the dynamic two-stage closed search
(DTCSCS) problem of UAV formation under range constraints (RC) and orientation con-
straints (OC) is solved.

Ruan and Duan [84] proposed a multi-objective social learning pigeon-inspired opti-
mization algorithm (MSLPIO), which uses iterative learning to update waypoint positions,
adding social learning factors and dimension-related parameter setting methods, which
solves the problem of weak convergence of a traditional Genetic Algorithm.

Duan et al. [85] proposed a dynamic discrete Pigeon-Inspired Optimization algorithm
based on hybrid architecture (D2PIO), constructed and updated the probability mapping
by using Bayesian formula, adopted the response threshold S-type function model (RTSM)
for target allocation during attack execution, and finally used B-spline curve to generate
feasible trajectory. The problem of search–attack task planning for multiple UAVs is solved.

Wang et al. [86] proposed a multi-UAV collaborative trajectory planning method based
on the Cauchy mutant pigeon intelligent optimization algorithm (ECM-PIO); the algorithm
uses the Cauchy mutation operator for optimization, expanding the search range and
reducing the risk of falling into local optimization, which solves the shortcomings of the
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traditional pigeon swarm algorithm optimization process that has optimization bias and is
easy to fall into local optimization.

Yu et al. [87] proposed a mutational pigeon swarm optimization algorithm (MGLPIO)
based on swarm learning strategy, which introduces the swarm learning strategy, triple
mutation strategy, timestamp segmentation mechanism and coordination cost function
into the swarm optimization algorithm (PIO). They used it to solve the optimal trajectory,
which solves the problems of low population diversity, weak global search ability and weak
convergence of traditional PIO.

Lu et al. [88] proposed an improved Pigeon-Inspired Optimization algorithm (IPIO)
based on natural selection and Gauss–Cauchy mutation, established an environment-aware
map, and designed an integer encoding method. A discrete compass operator, discrete
landmark operators, Gaussian mutation and Cauchy mutation operators are introduced to
break away from local optimum. Finally, natural selection is used to accelerate convergence,
which solves the problem of collaborative dynamic target search and area coverage of UAV
formations in uncertain environments.

Zheng et al. [89] proposed a collaborative search decision-making method based on
improved Pigeon-Inspired Optimization, which established a target probability information
graph model with a normal distribution, an information graph of the search environment
determinism, and a digital information graph. By adding the speed update and correction
mechanism and the elite generation mechanism, they improve the traditional Pigeon-
Inspired Optimization algorithm. Finally, the improved classification optimization method
is used to determine the optimal search flight trajectory of the UAV, which solves the
problem of multi-UAV cooperative moving target search.

Luo et al. [90] proposed a closed-loop trajectory planning method based on cooper-
ative Pigeon-Inspired Optimization (CPIO) and artificial potential field (APF). Firstly, a
probabilistic graphical model was established, and then, a rolling prediction strategy and
CPIO were applied to generate multiple man–machine collaborative target search trajecto-
ries, while using Bayesian theorem to update the search probability map, and finally using
the APF method to generate return trajectories for each UAV, which solves the multi-UAV
cooperative target search problem.

4.1.6. Fruit Fly Optimization Algorithm

The Fruit Fly Optimization Algorithm (FOA) is a new method for deriving global
optimization based on the foraging behavior of Drosophila, which uses Drosophila to be
superior to other species in sensory perception, especially in the sense of smell and vision.
First, fruit flies use their sense of smell to collect the smell in the air. Then, they fly to the
vicinity of the food location, where they use vision to find the location where the food and
companions gather and fly in that direction, so as to realize the group iterative search of the
solution space and complete the multi-UAV trajectory planning. Figure 16 is an FOA iterative
evolution search diagram and a Fruit Fly Optimization Algorithm (FOA) trajectory diagram.

Drones 2023, 7, x FOR PEER REVIEW 22 of 49 
 

environment determinism, and a digital information graph. By adding the speed update 
and correction mechanism and the elite generation mechanism, they improve the tradi-
tional Pigeon-Inspired Optimization algorithm. Finally, the improved classification opti-
mization method is used to determine the optimal search flight trajectory of the UAV, 
which solves the problem of multi-UAV cooperative moving target search. 

Luo et al. [90] proposed a closed-loop trajectory planning method based on coopera-
tive Pigeon-Inspired Optimization (CPIO) and artificial potential field (APF). Firstly, a 
probabilistic graphical model was established, and then, a rolling prediction strategy and 
CPIO were applied to generate multiple man–machine collaborative target search trajec-
tories, while using Bayesian theorem to update the search probability map, and finally 
using the APF method to generate return trajectories for each UAV, which solves the 
multi-UAV cooperative target search problem. 

4.1.6. Fruit Fly Optimization Algorithm 
The Fruit Fly Optimization Algorithm (FOA) is a new method for deriving global 

optimization based on the foraging behavior of Drosophila, which uses Drosophila to be 
superior to other species in sensory perception, especially in the sense of smell and vision. 
First, fruit flies use their sense of smell to collect the smell in the air. Then, they fly to the 
vicinity of the food location, where they use vision to find the location where the food and 
companions gather and fly in that direction, so as to realize the group iterative search of 
the solution space and complete the multi-UAV trajectory planning. Figure 16 is an FOA 
iterative evolution search diagram and a Fruit Fly Optimization Algorithm (FOA) trajec-
tory diagram. 

  
(a) (b) 

Figure 16. An iterative evolution search diagram and FOA trajectory diagram. (a) An iterative evo-
lution search diagram; (b) An FOA trajectory diagram (circles: nodes; lines: trajectory; numbers: the 
distance between vertices). 

Shi et al. [91] proposed the multi-swarm Fruit Fly Optimization Algorithm (MSFOA), 
which divides the entire fruit fly group into multiple multi-task sub-swarms and intro-
duces offspring competition strategies. They propose a collision detection method to solve 
the problem of slow global convergence, and local optimum of the traditional Fruit Fly 
Optimization Algorithm is solved. 

Li et al. [92] proposed an optimized Fruit Fly Optimization Algorithm (ORPFOA) to 
determine the optimal number and priority of UAVs while using a change task assign-
ment algorithm combined with reference points and distance–cost matrices. Trajectory 
planning solves the problem of multi-UAV trajectory planning in a three-dimensional 
complex environment with online changing tasks. 

Mao et al. [93] proposed an improved Fruit Fly Optimization Algorithm (NIFOA) 
based on Time Stamp Segmentation (TSS). The TSS model was introduced to solve the 
spatio-temporal coupling problem between multiple UAVs, and the multi-objective prob-
lem is transformed into a multi-constraint problem. Finally, the greedy strategy, the 

Figure 16. An iterative evolution search diagram and FOA trajectory diagram. (a) An iterative
evolution search diagram; (b) An FOA trajectory diagram (circles: nodes; lines: trajectory; numbers:
the distance between vertices).



Drones 2023, 7, 62 21 of 45

Shi et al. [91] proposed the multi-swarm Fruit Fly Optimization Algorithm (MSFOA),
which divides the entire fruit fly group into multiple multi-task sub-swarms and introduces
offspring competition strategies. They propose a collision detection method to solve
the problem of slow global convergence, and local optimum of the traditional Fruit Fly
Optimization Algorithm is solved.

Li et al. [92] proposed an optimized Fruit Fly Optimization Algorithm (ORPFOA) to
determine the optimal number and priority of UAVs while using a change task assignment
algorithm combined with reference points and distance–cost matrices. Trajectory planning
solves the problem of multi-UAV trajectory planning in a three-dimensional complex
environment with online changing tasks.

Mao et al. [93] proposed an improved Fruit Fly Optimization Algorithm (NIFOA)
based on Time Stamp Segmentation (TSS). The TSS model was introduced to solve the
spatio-temporal coupling problem between multiple UAVs, and the multi-objective problem
is transformed into a multi-constraint problem. Finally, the greedy strategy, the restart
strategy and the evolutionary strategy of the optimal population are added to complete the
multi-UAV trajectory planning, which solves the space–time coupling problem between
multi-UAVs and the convergence speed of the traditional Fruit Fly Optimization Algorithm
problems with slowness and local optima.

4.1.7. Artificial Bee Colony

The Artificial Bee Colony algorithm (ABC) is an optimization method to imitate the
intelligent foraging behavior of bees. The process of the algorithm follows: First, assign a
hired bee to the initial honey source and search according to certain rules to generate a new
honey source. Then, use the greedy selection method to retain the honey source with high
fitness and calculate the probability that the honey source found by the hired bee will be
followed. Last, follow the peak using the same method as the hired bee. If the nectar source
satisfies the condition of being abandoned, the corresponding hired bee becomes a scout
bee and randomly searches in the search space to generate a new nectar source, obtaining
the global optimal trajectory through the local optimization behavior of each individual
artificial bee. Figure 17 is a trajectory diagram of the Artificial Bee Colony algorithm (ABC).
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Tian et al. [94] proposed an improved Artificial Bee Colony (IABC) algorithm, which
optimizes the trajectory points only according to the cost value of the trajectory and solves
the problem of long convergence time of the traditional Artificial Bee Colony algorithm.

Bai et al. [95] proposed a hybrid algorithm based on Artificial Bee Colony algorithm
(ABC) and A*. The algorithm uses the ABC algorithm to complete the preliminary planning,
then uses the A* algorithm to plan the specific trajectory points, and finally combines the
adaptive time coordination method to obtain the optimal trajectory, which solves the
problem of three-dimensional multi-UAV trajectory planning.
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Liu et al. [96] proposed a multi-UAV task assignment and trajectory planning method
for disaster medical rescue. The algorithm uses the fitness function considering the current
number of iterations and the maximum number of iterations and an Adaptive Genetic
Algorithm (AGA) for task allocation; then, a balanced search strategy is added to improve
the Artificial Bee Colony algorithm (IABC), and trajectory planning solves the problem of
poor convergence efficiency and calculation effect of the traditional Artificial Bee Colony
algorithm.

Table 5 summarizes the content of the Pigeon-Inspired Optimization algorithm, Fruit
Fly Optimization algorithm and Artificial Bee Colony algorithm in our review.

Table 5. Summarizes the content of our review on PIO, FOA, and ABC.

Reference Challenge Optimization Criteria Method Dimension

D. Luo et al. [83] DTSCS ST CPIO 2D
W.-y. Ruan and H.-b. Duan [84] Trajectory Iterative learning, social learning factor MSLPIO 2D

H. Duan et al. [85] UAV clustering Bayes’ formula, RTSM, B-spline curve D2PIO 3D
B. Wang et al. [86] Trajectory Cauchy mutation operator ECM-PIO 3D

Y. Yu et al. [87] Trajectory triple mutation, timestamp segmentation,
coordination costs MGLPIO 3D

J. Lu et al. [88] UAV clustering, coverage problem Environment awareness, integer coding, discrete
operators, mutation operators, natural selection IPIO 2D

W. Zheng et al. [89] UAV clustering Probability graph model, pheromone graph, speed
update, correction, elite generation PIO 2D

D. Luo et al. [90] UAV clustering Probability graph model, rolling prediction,
Bayes’ theorem CPIO + APF 2D

K. Shi et al. [91] Trajectory Offspring competition, collision detection MSFOA 2D/3D
K. Li et al. [92] Environment Mission change and distance cost ORPFOA 3D

Y. Mao et al. [93] Trajectory TSS, greedy strategy, restart strategy and
evolution strategy NIFOA 3D

G. Tian et al. [94] Time Trajectory cost IABC 2D
X. Bai et al. [95] UAV clustering Adaptive time coordination ABC + A* 3D
H. Liu et al. [96] Trajectory Fitness function, balanced search AGA + IABC 2D

4.1.8. Salp Swarm Algorithm

The Salp Swarm Algorithm (SSA) is a new method to deduce and seek global opti-
mization based on the swarming behavior of salps when navigating and foraging in the
ocean. The SSA algorithm acts as an approximate global optimum by initializing a number
of salps at random locations. Then, it calculates the fitness of each salp, finds the salp with
the best fitness, assigns the position of the best salp to a variable as the source food to be
chased by the salp chain, and uses the formula to update the fitness coefficient. For each
dimension, the positions of the leading jumping body and the following jumping body are
updated iteratively, and the search space determines the global optimal trajectory. Figure 18
is a Salp Swarm Algorithm (SSA) trajectory diagram.
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Dewangan and Saxena [97] proposed a new Salp group algorithm (SSA), which uses
multiple random operators to solve the problems of slow convergence and poor real-time
performance of other heuristic algorithms in multi-UAV trajectory planning.

4.1.9. Ant Colony Optimization Algorithm

Ant Colony Optimization (ACO) is a heuristic global optimization algorithm derived
from the trajectory behavior of ants in the process of searching for food. The ant colony
algorithm uses the trajectories of ants to represent the feasible solution of the problem to
be optimized. All trajectories of the entire ant colony constitute the solution space of the
problem to be optimized, and ants with shorter trajectories release more pheromones. The
concentration of pheromone accumulated on the shorter trajectory gradually increases, and
the number of ants choosing this trajectory increases; eventually, all the ants will concentrate
on the best trajectory under the action of positive feedback, and the corresponding trajectory
is the optimal solution to the problem. Figure 19 is a trajectory diagram of an Ant Colony
Optimization algorithm (ACO).
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Cekmez et al. [98] proposed a parallel Ant Colony Optimization algorithm (ACO) to
calculate the trajectory of a UAV. This algorithm implements ACO on CUDA architecture,
which gives full play to the parallel characteristics of ACO on GPU and solves the problem
of slow convergence of a traditional ant colony algorithm.

Qiannan et al. [99] proposed an intelligent method based on the improved Ant Colony
Optimization (ACO) algorithm, which cuts the trajectory generated by ACO and solves the
problem that the trajectory of the traditional ACO algorithm may not be optimal.

Huang et al. [100] proposed a coordinated trajectory planning method for multiple
UAVs based on K-degree smoothing. In this method, a Voronoi diagram is used to redefine
the edge cost, and the redefined heuristic information function and pheromone updating
method are used to change the Ant Colony Optimization algorithm. Finally, the K-degree
smoothing method is used to smooth the trajectory, which solves the problem of strong
coordination and weak coordination in the collaborative trajectory planning of multi-UAVs.

Li [101] proposed a multi-UAV multi-communication target and message priority UAV
cooperative communication trajectory method. This method combines a delay tolerant
network (DTN), light grid and ant colony algorithm. The trajectory planning is carried out
to solve the contradiction between the intermittent link of the underlying communication
of multi-UAVs and the continuous demand of the upper-level communication in a highly
hostile battlefield.

Perez-Carabaza et al. [102] proposed a new method based on the improvement of Ant
Colony Optimization (ACO), which added a new minimum time search (MTS) heuristic
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function to ACO to solve the traditional ACO problem of slow algorithm convergence and
low initial trajectory quality.

Zhen et al. [103] proposed a multi-UAV cooperative search attack method (ISOA)
based on an intelligent self-organizing algorithm, using a new state transition rule and a
distributed method to improve the Ant Colony Optimization algorithm. Then, using the
Dubins curve to smoothly connect the trajectory points generated by ACO, the trajectory
planning problem of multiple UAVs under the constraints of maneuverability, collision
avoidance and maximum range is solved.

Cekmez et al. [104] proposed an enhanced Ant Colony Optimization (ACO) algorithm,
which performs multi-core computing on the parallel computing platform CUDA to solve
the trajectory planning problem of multiple UAVs in complex environments.

Lin et al. [105] proposed a multi-objective optimization model of coverage and task
time and introduced the similarity measure in an immune optimization algorithm into the
Ant Colony Optimization algorithm to solve the problem that the traditional Ant Colony
Optimization algorithm is insufficient in track repeatability.

Liu et al. [106] proposed an improved Ant Colony Optimization algorithm, which
introduced the location allocation method and the new node selection strategy into the
Ant Colony Optimization algorithm and solved the problem of slow trajectory planning
optimization speed of the Ant Colony Optimization algorithm in formation transformation.

Ali et al. [107] proposed a hybrid meta-heuristic algorithm, which combined maximum–
minimum Ant Colony Optimization and differential evolution to solve the problem of slow
global convergence of traditional Ant Colony Optimization algorithms and maximum–
minimum Ant Colony Optimization algorithms.

Xia et al. [108] proposed a system framework for multi-UAV collaborative task as-
signment and tracking planning. The framework uses a Particle Swarm Optimization
algorithm based on a guidance mechanism to solve the combinatorial optimization model.
Then, adaptive parameter adjustment, encounter point prediction, bidirectional search and
online replanning are introduced into the Ant Colony Optimization algorithm for trajectory
planning (SAP-ACO), which solves the cooperative task assignment and tracking planning
problems of UAV formations facing moving targets.

Ali et al. [109] proposed a bionic optimization algorithm, which combines the maximum–
minimum Ant Colony Optimization (MMACO) and the Cauchy mutant (CM) operator,
and they use the CM operator to enhance the MMACO algorithm to solve the problems of
slow convergence and possible local optimum in traditional ACO and MMACO.

Wei and Xu [110] proposed a distributed trajectory planning algorithm based on dual
decomposition of UAV communication chains. This algorithm improves the traditional Ant
Colony Optimization algorithm (ACO) from the aspects of trajectory selection, pheromone
update, rollback strategy, etc., and solves the problems of poor efficiency, adaptability and
robustness of the ACO algorithm.

Li et al. [111] proposed an asynchronous Ant Colony Optimization (AACO) algorithm.
The visibility matrix and test track coverage matrix are added into the ACO algorithm. The
search order of the population track primitive is changed from the current fitness value
and the previous fitness value to the current fitness value. Finally, the incentive value
is introduced to avoid track repetition, which solves the problem of optimal trajectory
planning for multiple UAVs in three-dimensional space.

Majeed and Hwang [112] proposed a multi-objective coverage flight trajectory plan-
ning algorithm, which added the fitting sensor footprint scanning (SFS) and sparse trajec-
tory point graph (SWG) to the Ant Colony Optimization (ACO) algorithm. Traversing the
area of interest (AOI) solves the problem of high cost of multi-UAV coverage trajectory
planning in urban environments.

4.1.10. Gray Wolf Optimization Algorithm

The Gray Wolf Optimization algorithm (GWO) is a new swarm intelligence opti-
mization algorithm inspired by the predation behavior of gray wolves. The Gray Wolf



Drones 2023, 7, 62 25 of 45

Optimization algorithm divides gray wolf individual fitness into four different levels:
optimal solution, suboptimal solution, third solution and candidate solution according to
the calculated fitness; the individuals with the top three fitness guide other wolves towards
the goal Iterative search, while continuously updating the solution level and position, until
the best trajectory to the target point is found. Figure 20 contains a Gray Wolf Optimiza-
tion algorithm position update model and a Gray Wolf Optimization algorithm (GWO)
trajectory diagram.
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Radmanesh et al. [113] proposed a Bayesian algorithm based on Gray Wolf Optimiza-
tion, which added dynamic Bayes and range-based value function (DBVF) into GWO to
solve the trajectory planning and collision avoidance problems of multiple UAVs with fixed
and moving obstacles in uncertain environments.

Dewangan et al. [114] proposed a multi-UAV trajectory planning method based on the
Gray Wolf Optimization algorithm (GWO) to solve the problems of slow convergence, high
trajectory calculation cost and local optimization of other meta-heuristic and deterministic
algorithms in multi-UAV trajectory planning.

Xu et al. [115] proposed an improved Gray Wolf Optimization algorithm (GWO), which
improved the population initialization, attenuation factor updating and single position
updating of the Gray Wolf Optimization algorithm and solved the NP-hard problem of
multi-UAV collaborative trajectory planning.

Yang et al. [116] proposed a trajectory planning method based on multi-population
chaotic Gray Wolf Optimization (MP-CGWO). The multi-population concept and chaotic
search strategy are added into the Gray Wolf Optimization algorithm (GWO), which solves
the problem that the traditional GWO algorithm is easy to fall into local optimization.

Huang et al. [117] proposed a hybrid discrete intelligence algorithm (HDGWO) based
on gray wolf optimizer. The algorithm uses the discrete gray wolf update operator and
uses integer coding and a greedy algorithm to transform between the gray wolf space and
the discrete problem space. Then, it adds the center position operation and the stagnation
compensation gray wolf update operation, and finally, it adds an azimuth to improve the
gray wolf algorithm, which solves the GWO problems of poor global convergence ability
and local search ability.

Jiaqi et al. [118] proposed an adaptive multi-UAV trajectory planning method to im-
prove the Gray Wolf Optimization algorithm (AP-GWO). This method adds the spiral
update position and self-adaptive adjustment mechanism to the Gray Wolf Optimiza-
tion algorithm, which solves the problems of relatively long convergence time, relatively
unsmooth trajectory and possibly not optimal trajectory of the traditional GWO algorithm.
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4.1.11. Harmony Search Algorithm

Harmony Search (HS) is a music-based heuristic optimization algorithm. The Har-
mony Search algorithm mimics the process of musical improvisation, in which musicians
continually adjust the pitch of their instruments to achieve better harmony. The search
process of the global trajectory planning problem is similar to the music improvisation
process; that is, each decision variable constantly updates its own value during the search
process so as to converge to the global optimum and obtain the optimal trajectory. Figure 21
is a Harmony Search algorithm (HS) trajectory diagram quoted from reference [119].
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Wu et al. [119] proposed an improved Harmony Search algorithm (MHS), which intro-
duced an intersection mutation operator and Pythagorean heat map curve (PH) to improve
the HS algorithm and solved the traditional HS problem of slow algorithm convergence.

Table 6 summarizes the contents of the Salp Swarm Algorithm, Ant Colony Optimiza-
tion algorithm, Gray Wolf Optimization algorithm and Harmony Search algorithm in our
review.

Table 6. Summary of the contents of SSA, ACO, GWO and HS in the review.

Reference Challenge Optimization Criteria Method Dimension

R. K. Dewangan and P. Saxena [97] Time, Trajectory Random operator SSA 3D
U. Cekmez et al. [98] Time Parallel computing ACO 2D
Z. Qiannan et al. [99] Trajectory Trajectory cutting IACO 2D
L. Huang et al. [100] UAV clustering Redefine, k degree smoothing Voronoi + ACO 2D

Z. Li [101] Communication, UAV clustering DTN, Light lattice diagram ACO 2D
S. Perez-Carabaza et al. [102] Time, Trajectory MTS ACO 3D

Z. Zhen et al. [103] UAV, Trajectory State transitions, Distributed ISOA 2D
U. Cekmez et al. [104] Environment Parallel computing ACO 3D

W. Lin et al. [105] Trajectory Similarity measure ACO 2D
G. Liu et al. [106] Time, UAV clustering Location allocation, Node selection ACO 2D

Z. A. Ali et al. [107] Time, Environment Mixed inspiration MMACO + DE 3D

C. Xia et al. [108] UAV clustering,
Multiple objectives Guidance mechanism, Adaptive, Bidirectional search BSAPACO 2D

Z. A. Ali et al. [109] Time, Trajectory CM MMACO 3D
X. Wei and J. Xu [110] Time, Trajectory Pheromone update and rollback policies ACO 2D

H. Li et al. [111] Trajectory Visibility matrix, Coverage matrix, Fitness, Reward AACO 3D
A. Majeed and S. O. Hwang [112] Environment, Cost SFS, SWG ACO 3D

R. K. Dewangan et al. [113] Environment DBVF GWO 2D
R. K. Dewangan et al. [114] Trajectory Mapping GWO 3D

C. Xu et al. [115] Trajectory Initialization, Attenuation factor, Position update IGWO 3D
L. Yang et al. [116] Trajectory Multi-population, Chaotic search MP-CGWO 3D

G. Huang et al. [117] Trajectory Update operators, Greedy algorithms,
Stagnation compensation HDGWO 2D

S. Jiaqi et al. [118] Trajectory Spiral update position, Adaptive adjustment AP-GWO 3D
J. Wu et al. [119] Time Intersecting mutation operator, PH MHS 3D

4.2. Machine Learning Algorithm

The machine learning algorithm mainly simulates or realizes human learning behavior,
transforms the UAV formation trajectory planning problem into a decision-making problem,
and formulates optimal or near-optimal search strategies through continuous learning
and interaction in complex environments. With the rapid development of multi-agent
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algorithms, machine learning algorithms have gradually begun to be applied in UAV
formation trajectory planning. The machine learning algorithms currently used for UAV
formation trajectory planning include the neural network (NN) algorithm, reinforcement
learning (RL) algorithm and deep reinforcement learning (DRL) algorithm.

4.2.1. Neural Network

The neural network (NN) algorithm is based on the information obtained by each UAV
sensor, and it quickly obtains the actions that the UAV should take. The neural network
has a nonlinear complex network structure composed of a large number of nonlinear unit
connections. By simulating the control and feedback functions of the human brain function,
a nonlinear mapping system is formed to obtain the mapping relationship between the
state space and the action space; then, it completes the UAV formation trajectory planning
through its own powerful learning ability and rapid planning ability. Figure 22 is a neural
network model.
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Figure 22. A neural network model (connection: different combinations).

Xia and Yudi [120] designed a fast trajectory planning method using an improved
neural network algorithm. This method combined a dynamic adjustable step size with a
neural network and added adaptive learning factors for trajectory planning, which solved
the problem that the trajectory of a traditional neural network algorithm may not be optimal
in the presence of threats.

Sanna et al. [121] proposed a method to cover the trajectory planning problem of UAVs
driven by artificial intelligence, which combined a distributed artificial neural network
(ANN) and A* algorithm to solve the problems of inadequate grid resolution and low
trajectory efficiency of traditional methods.

4.2.2. Reinforce Learning

The reinforcement learning (RL) algorithm is a new learning method which com-
bines dynamic programming with supervised learning. The reinforcement learning algo-
rithm keeps learning in the interaction with the environment, implements the “reward–
punishment” mechanism, maximizes the reward index through the feedback evalua-
tion, and realizes the optimal decision output in the UAV formation trajectory planning.
Figure 23 shows a reinforcement learning (RL) model.
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Luo et al. [122] proposed a strategy-based Deep-Sarsa algorithm, which combined
traditional Sarsa and neural network to find the optimal trajectory of UAV formation and
improved the poor trajectory planning ability of heuristic algorithm in dynamic environ-
ment.

Qie et al. [123] proposed a multi-agent reinforcement learning algorithm. The algo-
rithm combines the Multi-Agent Deep Deterministic Policy Gradient Algorithm (MADDPG)
and the Simultaneous Target Assignment and Trajectory Planning (STATP) method to solve
the Multi-Agent Deep Deterministic Policy Gradient (MUTAPP) problem in dynamic
environments.

Zhao et al. [124] proposed a q-learning based decentralized multi-UAV cooperative
reinforcement learning algorithm (DMUCRL). The algorithm enables UAVs to indepen-
dently choose their cruising strategy and charging scheduling and at the same time share
the learning results in the communication network according to the specified time, which
solves the problem of efficient content coverage for multi-UAV trajectory planning.

Wang et al. [125] proposed a collaborative trajectory planning method for multiple
UAVs based on attentional reinforcement learning. This method uses a neural network
with an attention mechanism to generate a UAV cooperative reconnaissance strategy (AM)
and uses a reinforcement algorithm to test a large amount of simulation data and optimize
the attention network. It solves the problem in which it is difficult for traditional heuristic
algorithms to extract empirical models from large sample terrain data in time.

Liu et al. [126] proposed a trajectory planning method based on the fusion of the
Sparse Search Algorithm (SSA) and Biologically Inspired Neural Network (BINN). The
algorithm uses SSA to find the node with the lowest comprehensive cost and then uses
the b-spline curve to fit it; then, it uses the improved BINN method to replan the local
trajectory, which solves the problem where the trajectory planning stability of the heuristic
algorithm is poor in a dynamic environment, or the trajectory is probably not the optimal
question.

4.2.3. Deep Reinforcement Learning

Deep Reinforcement Learning (DRL) algorithms combine reinforcement learning with
deep learning. The optimization goal is obtained through reinforcement learning and
environment exploration, the system operation mechanism is obtained by using deep
learning, and the specific state characteristics and problem solving are obtained at the
same time. Relying on the perception ability of deep learning, this method uses a certain
strategy to map the current state into corresponding actions; even for high-dimensional raw
data input, through continuous iterative learning, the optimal strategy for UAV formation
trajectory planning can finally be obtained. Figure 24 is a deep reinforcement learning
(DRL) model.

Wang et al. [127] proposed a trajectory control algorithm based on multi-agent Deep
Reinforcement Learning, using multi-agent deep deterministic policy gradient (MADDPG)
and a low-complexity method to optimize the UAV trajectory, which solves the problem
that traditional dynamic algorithms include both integer variables and continuous variables
in Mobile Edge Computing (MEC).

Zhang et al. [128] proposed a constrained deep Q-network (cDQN) algorithm. The
algorithm formulates the three-dimensional dynamic motion problem of the UAV under
the coverage constraint as a constrained Markov decision process (CMDP). Then, it uses
prior information to eliminate invalid actions in the deep Q network (DQN) to maximize
the unmanned and real-time downlink connection capability between drones, solving the
problem of low capacity of the drone formation communication system under coverage
constraints.

Bayerlein et al. [129] proposed a dual-deep Q-network (DDQN) based on a multi-
agent reinforcement learning (MARL) approach, which transformed the trajectory planning
problem into a decentralized partially observable Markov decision process (Dec-POMDP)
and then solved it by the Deep Reinforcement Learning method optimizing Dec-POMDP
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to obtain the optimal trajectory, which solves the problem where the UAV formation is
difficult to collect data in distributed IoT devices.
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Tianle et al. [130] proposed a multi-UAV trajectory planning method based on Deep
Reinforcement Learning. This method uses the improved attention dynamic clustering
algorithm to optimize the trajectory planning network model and then combines the Particle
Swarm Optimization algorithm (PSO) and the Deep Reinforcement Learning (IA-DRL)
algorithm to perform trajectory planning, which solves the slow convergence speed of
traditional neural network algorithms.

Table 7 summarizes what we surveyed about machine learning algorithms.

Table 7. A summary of the content of the survey about machine learning algorithms.

Reference Challenge Optimization Criteria Method Dimension

C. Xia and A. Yudi [120] Trajectory Dynamic step size, Adaptive learning NN 3D
G. Sanna et al. [121] Trajectory Supervised learning ANN + A* 2D
W. Luo et al. [122] Environment Multi-agent Deep-Sarsa 3D
H. Qie et al. [123] Environment STATP MADDPG 2D

C. Zhao et al. [124] coverage problem Adaptive, Information sharing DMUCRL 2D
T. Wang et al. [125] Environment Attention network AM 2D
Q. Liu et al. [126] Environment, Trajectory SSA, B-spline curve BINN 3D

L. Wang et al. [127] MEC Low complexity MADDPG 2D
W. Zhang et al. [128] Communication CMDP cDQN 3D

H. Bayerlein et al. [129] Collect Data Dec-POMDP DDQN 2D
S. Tianle et al. [130] Time Note dynamic clustering PSO + IA-DRL 2D

5. Local Trajectory Planning Algorithm

The local trajectory planning algorithm belongs to the dynamic programming algo-
rithm. According to the UAV sensors in the UAV formation, the current location information
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and local obstacle information are collected in real time so as to dynamically plan the opti-
mal trajectory from the starting point to the target point. The algorithms for UAV formation
local trajectory planning usually include the artificial potential field method (APF), dy-
namic window approach (DWA), mathematical optimization algorithm (MOA), and Model
Predictive Control (MPC).

5.1. Artificial Potential Field

The artificial potential field method (APF) was first proposed by Khatib as a virtual
force method. The artificial potential field method assumes that each UAV is moving
in an artificial potential field. For UAVs, the target point generates an attractive field,
and obstacles generate a repulsive force field; under the action of the gravitational field
and the repulsive field, the UAV generates a feasible trajectory along the direction of the
potential field. In general, in order to simplify the calculation, by calculating the negative
gradient of the gravitational potential function and the repulsive potential function, the
gravitational and repulsive forces on the UAV in the potential field can be obtained, and
then the resultant force on the UAV can be obtained. Then, calculating according to the
resultant force, each UAV makes the control amount required for attitude adjustment so as
to guide the UAV formation to avoid obstacles and complete trajectory planning. Figure 25
is a schematic diagram of artificial potential field forces.
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Rasche et al. [131] proposed a trajectory planning method in a 3D environment. This
method adds a multi-UAV distributed work and inter-machine communication to the
artificial potential field method (APF) and solves the problem of multi-UAV coordination
and task assignment when exploring disaster areas.

Li et al. [132] proposed a trajectory planning method combining the artificial potential
field method (APF) and Dubins curve. This method introduces the virtual leader UAV
into the UAV formation and uses the Dubins curve to plan its trajectory. Then, it uses the
APF to plan the trajectory of the wingman and finally completes the trajectory planning of
the UAV formation by constraining the flight trajectory of the virtual leader. It solves the
problem where the lead aircraft may have out-of-control failure and the UAV is restricted
by the turning radius.

Tang et al. [133] proposed an optimized artificial potential field algorithm. This method
simulates other UAVs as dynamic obstacles and at the same time introduces the climbing
strategy and dynamic step adjustment method into APF, which solves the problems of inter-
machine collision and excessive flight step length in traditional APF under the complex
space conditions of multiple UAVs.

Chen et al. [134] proposed an improved artificial potential field method (IAPF). This
method introduces the judging mechanism of local minimum points and the jump-out
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mechanism of 90◦ movement along the target direction into APF; it solves the problems of
unreachable targets near obstacles, local minimum points and UAV track oscillations in
traditional APF.

Sun et al. [135] proposed a trajectory planning algorithm for dense UAV formations
based on an artificial potential field (APF). The algorithm improves the APF by improving
the repulsive force model, adding the target exchange algorithm and adding constraints,
and it solves the problems of traditional APF trajectory oscillation, unreachable targets and
local minimum points.

Dongcheng and Jiyang [136] proposed a multi-UAV trajectory planning method based
on the improved artificial potential field method (IAPF). This method introduces an im-
proved distance factor potential field function and dynamic step size adjustment method
into APF, and at the same time, it considers the influence of the force between UAVs; it
solves the problem where the traditional APF target cannot be reached: it is easy to fall into
a local minimum, and the trajectory shakes the problem.

Wang et al. [137] proposed a collaborative formation distributed trajectory planning
method based on the improved artificial potential field (IAPF) and consensus theory. This
method introduces the dynamic model and communication network topology, coordination
gain factor, repulsion force and planning angle influence factor into APF. Then, the position
and velocity variables in the consensus protocol are improved to solve the problem of UAV
formation in 3D obstacle environment trajectory planning and position–velocity consistency
problems.

Dai et al. [138] proposed a consensus algorithm for distributed cooperative formation
trajectory planning. The algorithm introduces the potential field function including distance
items and communication effects into APF (IAPF) and then combines the second-order
system dynamic model, consistency theory and IAPF for UAV formation collaborative
trajectory planning. This solves the problems that traditional APF encounters in UAV
including poor convergence problems related to consistency, relative distance and velocity
in formation cooperative trajectory planning.

Li et al. [139] proposed a new trajectory planning method using the improved artificial
potential field algorithm (IAPF). This method increases the repulsive force between UAVs
and defines the front center of mass of the cluster as another source of gravity, which solves
the problem where the traditional APF target is unreachable and easily falls into a local
minimum.

Wei et al. [140] proposed a UAV time-varying formation trajectory planning method
with an interactive topology. This method introduces the improved potential field into APF
(IAPF) and then combines distributed time-varying formation control, IAPF and model
predictive control (MPC) for UAV formation trajectory planning. It solved the problem
where the UAV formation has poor ability to deal with complex environments during
flight.

Wang et al. [141] introduced a multi-UAV trajectory planning method based on an
adaptive extended potential field. In this method, the gravitational influence factor and
the repulsive force influence factor are introduced into the layered potential field function,
and the auxiliary force is added to improve the APF. It solves the problems related to the
slow convergence speed of a layered potential field algorithm and unreachable target of a
traditional APF, easily falling into local minimum, inability to avoid obstacles and lack of a
trajectory optimization strategy.

Pan et al. [142] proposed a trajectory planning method based on artificial potential
functions (IAPF) for multi-UAV systems. This method introduces the improved artificial
potential function (IAPF) of the rotating potential field and at the same time adds the
leader–follower UAV model for UAV formation trajectory planning. It solves the problems
of poor stability, local minimum and oscillation in the traditional APF system.

Table 8 summarizes the contents of our survey regarding artificial potential field
methods.
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Table 8. Summary of the methods of artificial potential field in the survey.

Reference Challenge Optimization Criteria Method Dimension

C. Rasche et al. [131] UAV clustering Distributed, UAV communication APF 3D
X. Li et al. [132] UAV Constrain virtual leads APF + Dubins 2D

J. Tang et al. [133] UAV clustering, Trajectory Climb strategy, Dynamic step size APF 3D
H. Chen et al. [134] Trajectory Judging mechanism, 90◦ jump mechanism IAPF 3D
H. Sun et al. [135] Trajectory Improve the model, Target exchange, Add constraints APF 3D

L. Dongcheng and D. Jiyang [136] Trajectory, UAV clustering Improved function, Dynamic step size IAPF 3D

N. Wang et al. [137] Environment, UAV clustering Communication topology, Coordination gain,
Impact factor IAPF 3D

J. Dai et al. [138] Trajectory, UAV clustering Second-order model, Consistency theory IAPF 3D
R. Li et al. [139] Trajectory Increase the repulsive force, Gravity source IAPF 2D

B. Wei et al. [140] Environment Distributed time variation IAPF + MPC 2D
N. Wang et al. [142] Trajectory Impact factor, Auxiliary force IAPF 3D

Z. Pan et al. [141] Trajectory Rotational potential field, Leader–Follow IAPF 3D

5.2. Dynamic Window Approach

The dynamic window method (DWA) is a classic UAV local trajectory planning algo-
rithm. It determines a sampling velocity space that satisfies the hardware constraints of the
UAV in the velocity space according to the current position state and velocity state of the
mobile UAV and transforms the local trajectory planning problem into a motion constraint
problem in space. Then, it calculates the UAV trajectory of the drone moving for a certain
period of time under these speed conditions and evaluates the trajectory through the eval-
uation function. It selects the trajectory with the best evaluation and the corresponding
speed as the movement speed of the UAV; finally, through the motion constraints, it selects
the locally optimal trajectory and so on until the UAV reaches the target point. Figure 26 is
a schematic diagram of the DWA velocity vector space.
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Zhang et al. [143] proposed a multi-UAV consistent formation trajectory planning
algorithm based on an improved dynamic window method (DWA). The algorithm intro-
duces a new rotation cost evaluation function, A* algorithm and azimuth-related variable
weight factors to improve DWA and finally adds a leader–following UAV model for UAV
formation trajectory planning. It solves the problems of frequent large-angle rotation and
low search efficiency in the traditional DWA algorithm.

5.3. Mathematical Optimization Algorithm

The mathematical optimization algorithm (MOA) is based on the established UAV
trajectory planning model, using nonlinear optimization, mixed integer linear program-
ming (MILP), mixed integer nonlinear programming (MINLP) and dynamic programming
(DP) to solve the optimal control problem into an easily solvable model to generate feasible
trajectories for formation UAVs. Figure 27 is a mathematical optimization algorithm (MOA)
model.

Bellingham et al. [144] proposed CPLEX, which is a collaborative trajectory planning
method for UAV formation. This method combines the failure probability of each UAV
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with the selected task and puts forward a new formula to solve the problem of mission
failure caused by UAV loss in UAV formation trajectory planning.
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Maza and Ollero [145] proposed a method based on polygonal area decomposition
and efficient coverage (PADEC). This method introduces the concepts of regional division
and computational scanning into the UAV formation coverage trajectory planning and
solves the problem of multi-UAV cooperative search.

Dehghan et al. [146] proposed a trajectory planning method based on multi-UAV
for RF source localization. The method combines the differential received signal strength
indicator (DRSSI) method, the extended Kalman filter (EKF) and the Cramer–Rao lower
bound (CRLB) objective function; finally, using the local value of the CRLB in the current
waypoint and the next possible waypoint to determine the optimal trajectory, it solves the
problem of slow convergence of the heuristic algorithm.

Wang et al. [147] proposed a decoupled sequence convex programming (SCP) collabo-
rative trajectory planning method for UAV formations. This method represents the UAV
formation trajectory planning problem as a non-convex optimal control problem; then,
it uses the decoupled sequence convex programming (SCP) method to parameterize the
problem into a non-convex programming sub-problem and solves it in parallel to obtain the
UAV best trajectory for formation coordination tasks. The problem of insufficient efficiency
of the sequence quadratic programming algorithm (SQP) in UAV formation cooperative
trajectory planning is solved.

Causa et al. [148] proposed an algorithm for multi-UAV trajectory planning under het-
erogeneous Global Navigation Satellite System (GNSS) coverage. The algorithm conceives
the multi-UAV formation as a reconfigurable distributed system and then introduces meth-
ods such as edge definition and cost evaluation, custom target assignment, UAV timing and
polynomial trajectory (PT) for formation trajectory planning. It solves the problem of low
efficiency of UAV formation trajectory planning task assignment in a three-dimensional
heterogeneous environment.

Pengfei et al. [149] proposed an optimal trajectory planning method for multiple UAVs
based on the pseudospectral method. This method uses the pseudospectral method to
transform the optimal control problem with complex constraints into a nonlinear program-
ming problem; at the same time, it uses the distributed solution and the Nash optimal
coordination strategy to solve the multi-UAV trajectory planning problem under complex
and multi-constrained conditions.

Li et al. [150] proposed a trajectory planning method for multi-UAV scan coverage
with minimum time maximum coverage. This method introduces a Weighted Target
Scan Coverage (WTSC) algorithm for greedy target assignment, which solves the problem
of insufficient task time and coverage performance of two algorithms, CycleSplit and
G-MSCR [151].

Xia et al. [152] proposed a gradient-based sequential minimum optimization (GB-SMO)
algorithm, which uses time segmentation instead of traditional waypoint segmentation to
establish a trajectory optimization model and introduces virtual line segments to adapt to
the trajectory length. Constraints are converted into cost functions and then minimized
using GBSMO, which solves the problem of insufficient computational performance of
commonly used trajectory planning algorithms considering constraints.
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Wang et al. [153] proposed a real-time trajectory planning method for UAV formation
transformation based on safe flight corridors, introducing safe flight corridors to avoid
UAV collisions, while considering time and space efficiency models. They addressed an
issue where drones could collide when performing a formation change.

Cho et al. [154] proposed a multi-UAV search trajectory planning method covering
nodes in the shortest time. The method introduces a mixed integer linear programming
(MILP) model of hexagonal grid decomposition and at the same time uses the optimization
time as a search function to obtain the trajectory of the formation UAVs in iterations. The
trajectory planning problem of UAV formation searching for catastrophic marine accidents
is solved.

Sun et al. [155] proposed a 4D trajectory planning method with temporal and spatial
constraints. This method transforms the arrival time into state adaptation and at the same
time transforms the collaborative penetration trajectory planning into a single-objective
optimization problem. Then, it uses the multi-leader search distribution estimation algo-
rithm (MLSEDA) to solve the problem, which solves the trajectory planning problem of
UAV cooperative penetration.

Cheng et al. [156] proposed a decentralized multi-UAV trajectory planning method for
obstacle environments. In this method, the UAV rendezvous trajectory planning problem
under constraints is modeled as a non-convex optimal control problem, and then, the
consensus protocol and sequential convex programming two-layer collaborative framework
are used to solve the UAV formation trajectory. It solves the problems of low calculation
efficiency and poor adaptive ability of the traditional UAV formation trajectory planning
method.

Yanmaz [157] proposed a hybrid planner that uses joint optimization methods, de-
coupling optimization methods, and hybrid methods to calculate UAV formations. They
generated feasible trajectories under two different requirements of time constraints and
connectivity, solving the problem where the connection parameters are difficult to trade off
and the resource utilization rate is low in the formation task.

Table 9 summarizes the contents of our survey about the dynamic window method
and mathematical optimization algorithm.

Table 9. Summary of dynamic windowing methods and mathematical optimization algorithms in
our survey.

Reference Challenge Optimization Criteria Method Dimension

S. Zhang et al. [143] Trajectory, Time New cost function, Variable weight factor, Lead–follow A* + DWA 2D
J. S. Bellingham et al. [144] UAV Failure probability, Task selection CPLEX 2D
I. Maza and A. Ollero [145] UAV clustering Area divided and conquer, Computational scan PADEC 2D

S. M. M. Dehghan et al. [146] Trajectory EKF, CRLB DRSSI 2D
Z. Wang et al. [147] Trajectory Non-convex optimal, Parallel solution SCP 2D

F. Causa et al. [148] Environment GNSS, Custom target allocation Multiple step
path 3D

J. Pengfei et al. [149] UAV, Environment Distributed solutions and Nash optimal coordination Pseudo-spectral
Method 3D

J. Li et al. [150] Trajectory Greedy goal assignment WTSC 2D
Q. Xia et al. [152] Computing performance Time division, Constraint transformation GB-SMO 3D

G. Wang et al. [153] Environment, UAV clustering Efficiency model Safe flight
corridor 2D

S.-W. Cho et al. [154] Environment Hexagonal grid decomposition MILP 2D
P. Sun et al. [155] Environment, Time State adaptation, Single objective optimization MLSEDA 4D

Z. Cheng et al. [156] Trajectory Consensus protocol, Sequential convex programming Non-convex
optimal control 3D

E. Yanmaz [157] Resource utilization Joint optimization, Decoupling optimization,
Hybrid method Hybrid planner 2D

5.4. Model Predictive Control

Model Predictive Control (MPC) is a typical online planning method with planning
and execution at the same time. In other words, it is a rolling time window approach. In the
local planning process, the algorithm first updates the environmental information in the
current trajectory search domain and predicts the information change trend in the trajectory
search domain on this basis. Then, it searches out the local reference trajectory according
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to the motion model of the UAV and executes. In the process, the trajectory is corrected
according to the motion constraints and control errors of the UAV so as to make full use
of real-time feedback information to gradually generate a global trajectory. Figure 28 is a
schematic diagram of MPC.
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Oh et al. [158] proposed a decentralized nonlinear model predictive control trajectory
planning strategy (DNMPC), which introduces filtering technology and decentralized
optimization into MPC to realize UAV formation for trajectory planning in relay communi-
cation to solve the problem of poor connectivity of the wireless network between the fleet
of naval ships.

Cui et al. [159] proposed a multi-object tracking algorithm based on task assignment
consensus. It uses the dynamic task allocation model to update the tracking tasks and
uses the intermittent asynchronous communication principle to realize the sharing of local
observation information. At the same time, it uses the MPC algorithm to complete the
tracking trajectory planning and solved the problem of UAV formation tracking multiple
moving targets within a limited communication range.

Wu et al. [160] proposed a UAV trajectory planning model (Poc-KF) based on collision
probability and Kalman filter. The model uses the collision probability algorithm and
the Kalman filter algorithm for UAV collision probability calculation and formation state
estimation, and it calculates feasible trajectories for UAV formation in real time. It also
addressed possible trajectory conflicts in high-density drone formations.

Wu et al. [161] proposed a behavior tree (BT) model. The specific operation is to
combine the model prediction with the decision tree to obtain the behavior tree (BT). Then,
they add the virtual target-based tracking (VTB-T) method and use the behavior tree (BT)
organization trajectory planning method to construct a feasible trajectory for the UAV. The
problem of multi-UAV trajectory planning in the target tracking scenario is solved.

Wang et al. [162] proposed a new trajectory planning algorithm for model predictive
control (NMPC). They introduced a virtual target to move along the patrol trajectory at a
predetermined speed and designed a decentralized estimator for each UAV to estimate the
state of the virtual target. Then, they used a new model prediction algorithm to calculate a
feasible trajectory for the formation of UAVs, which addresses the problem of formation
reconstruction and trajectory planning in multi-UAV aerial patrol missions.

Chen and Liu [163] proposed a model for predicting flushing force under drones
(PMDFF). It regards each UAV as a virtual structure to form a cylindrical UAV model and
then uses the cluster and Optimal Interactive Collision Avoidance (ORCA) algorithm to
solve the collision-free trajectory. They addressed an issue where downwash effects have
an impact on neighboring drones in UAV formation trajectory planning.
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Table 10 summarizes the contents of our survey on model predictive control algo-
rithms.

Table 10. Summary of MPC algorithms in our survey.

Reference Challenge Optimization Criteria Method Dimension

H. Oh et al. [158] Communication Filtering technology, Dispersion optimization DNMPC 2D

Y. Cui et al. [159] Communication,
Multiple objectives

Dynamic update, Intermittent
asynchronous communication MPC 2D

Z. Wu et al. [160] UAV clustering Probability calculation, KF Poc-KF 2D
W. Wu et al. [161] Environment VTB-T BT 3D

Y. Wang et al. [162] UAV clustering, Trajectory Virtual target, Decentralized estimates NMPC 3D
C.-C. Chen and H. H.

Liu [163] UAV clustering Virtual structure, ORCA PMDFF 3D

6. Problems of UAV Formation Trajectory Planning Algorithm

With the advancement of low-airspace reforms and the innovation of artificial intelli-
gence and information technology [164], new theories and new achievements related to
swarm intelligence continue to emerge, and the improvement of UAV formation trajectory
planning algorithms is facing many challenges.

6.1. Physical Constraints of UAV Formation

In the process of trajectory planning, the UAV in the formation is usually simplified into
three degrees of freedom particles, ignoring its own constraints such as minimum turning
radius, rolling angle and other restrictions on the running state. As a result, the current
trajectory planning algorithm is difficult to adapt to the UAV with high maneuverability,
there are errors between the release route and the planned route when the actual formation
UAV performs the task, and the execution effect will also be affected.

6.2. Performance Problems of UAV Formation Carrying Equipment

In the UAV formation trajectory planning algorithm, the performance of the UAV
itself is not considered enough. An insufficient consideration of problems such as fuel con-
sumption, load, and onboard sensor errors in practice makes it difficult to accurately detect
complex environments, and the trajectory planning that can be achieved by simulation
cannot be realized or has poor robustness in the actual environment.

6.3. Complex Environment Modeling Problem

Most of the current formation trajectory planning algorithms are hypothetical ideal
obstacles, but the actual operating environment of UAVs is complex and diverse, especially
the detection and description of scenes such as complex concave obstacle environments
and dense dynamic obstacles, which need further exploration.

6.4. Algorithm Real-Time Problems

Realistic environmental information is usually time-varying. Regarding UAV forma-
tion trajectory planning in an unknown environment, the success rate of trajectory planning
strategies used by traditional algorithms and local trajectory planning algorithms in the face
of emergencies and dynamic environments is low; in addition, the amount of calculation
is large, and the trajectory is not optimal. It is difficult for drones to complete real-time
trajectory updates.

6.5. Adaptability of UAV Formation Route Planning Algorithm

When performing formation trajectory planning in a complex dynamic environment,
there is a lot of information exchange between UAVs, which leads to an increase in the
amount of calculations, and intelligent algorithms are prone to fall into problems such as
local optima that exist in themselves.
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6.6. UAV Formation Communication Problem

With the development of science and technology, the application scenarios of drones
in the future will become more and more complex. In certain scenarios, there will be
communication interference problems, which will cause the UAV to fail to work normally
and even cause irreversible damage.

7. Future Research Focus and Direction
7.1. Improved Model

Constraints such as six degrees of freedom, minimum turning radius, roll angle, and
the onboard sensor error of each UAV are added to the modeling to enhance the robustness
of actual control. For complex environment modeling, the influence of multiple factors in
the complex environment on the effect of trajectory planning must be considered; reliable
and accurate data must be obtained through specific measurements or the use of accurate
3D maps, and at the same time, the data must be used to verify the model to make the
simulation closer to reality. It can also be better applied to the actual platform in the future.

7.2. Real time Planning

In the face of increasingly complex environments and tasks, in order to meet the
requirements of fast optimal solution, computational complexity, convergence speed and
rationality, the computational memory is allocated reasonably. Executing trajectory plan-
ning algorithms to generate efficient trajectories in the case of limited computing power of
UAVs is of great significance for UAV formations to complete tasks in complex environ-
ments.

7.3. Fusion Algorithm

It is an important current research trend to integrate different types of trajectory
planning algorithms to make up for the defects and deficiencies of existing single methods.

For example, the local trajectory planning method can be combined with artificial
intelligence technology represented by machine learning to complement each other. On the
one hand, it can solve the problem of easy falling into local optimum in the local trajectory
planning method, and on the other hand, it can also make up for the poor real-time
performance of the machine learning-based track planning algorithm to a certain extent. It
is also possible to combine the characteristics of heuristic algorithms and machine learning
algorithms that are easy to integrate with each other to help analyze the performance
of the algorithm and expand the application range of the algorithm. At the same time,
experiments show that the hybrid algorithm has better adaptability.

7.4. New Algorithm

At present, the existing UAV formation trajectory planning algorithms have more or
less defects. Therefore, developing an algorithm that reduces computational requirements,
saves time, allows real-time planning, and is more efficient in terms of energy is also a
direction worth exploring.

7.5. Fault Tolerance Mechanism

Since the maneuvering area of each UAV is very small, once a collision occurs, it will
affect the adjacent UAVs, and a chain effect will be generated between the UAV clusters,
which will cause the mission to fail. Therefore, the fault-tolerant redundancy mechanism
is an important link to ensure the safe operation of the UAV system. At present, there is
no fault-tolerant mechanism design for the core and weak links of the trajectory planning
algorithm so as to improve the fault-tolerant ability of unmanned formation flight. In future
research, we should focus on the design of the fault-tolerant mechanism when the function
of the UAV fails to avoid uncontrollable events.
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7.6. Hybrid Frame

It is unrealistic to use a centralized framework to solve problems in the process of
carrying out missions in large-scale UAV formations. Therefore, a hybrid framework
should be adopted; how to design an appropriate conflict resolution mechanism and how
to effectively combine UAV formation trajectory planning with collaborative control to
generate feasible flight trajectories are topics worthy of further study.

7.7. Behavior Decision

Recently, UAV swarm-to-swarm dynamic confrontation has become a hot research
direction. At the same time, the autonomous decision-making behavior of UAV formations
such as autonomous reconnaissance and detection, autonomous target recognition, and
autonomous task coordination in complex terrain such as cities and mountainous areas
can effectively reduce the loss of manpower and material resources. How to plan and
generate the optimal trajectory of UAV formation from the perspective of game theory is
undoubtedly a problem worthy of further exploration.

7.8. Allocation of Resources

In the future, drone formations will be widely used in battlefields and anti-terrorism
operations. The environment in which UAVs perform these tasks may become very com-
plex, resulting in increased mission difficulty, and the environment may provide extremely
strong support for UAV formations, such as satellite links and energy supplies for contin-
uous flight. How to reasonably allocate available resources to each UAV during mission
execution is also a challenging problem.

7.9. Communication Networking

The confrontation between UAVs has become more and more information-based.
When the UAV formation is performing tasks, it is necessary to ensure that the UAVs can
communicate and share information normally and at the same time deal with external
communication interference. Although some scholars have noticed related problems, the
problem of how to solve communication interference in UAV formation trajectory planning
is still a difficult problem.

8. Conclusions

From the perspective of the two key elements of global planning and local plan-
ning, this paper proposes a framework for UAV formation trajectory planning algorithms,
comprehensively classifies different types of algorithms, and describes different types of
algorithms and their variants in a unified way. Then, a review and statistical analysis were
carried out on the basis of classification. We found the shortcomings in the UAV formation
trajectory planning algorithm methods and put forward the focus and direction of future
research. This paper provides reference information for the next step of research work for
researchers and workers engaged in UAV formation flight-related work. We believe that
with the innovation of various theories and the iterative development of technologies, the
UAV formation trajectory planning algorithm will enter a new era.
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