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Abstract: Conformance monitoring supports UTM safety by observing if unmanned aircraft (UA) are
adhering to declared operational intent. As a supporting system, robust cooperative tracking is critical.
Nevertheless, tracking systems for UAS traffic management (UTM) are in an early stage and under-
standardized, and existing literature hardly addresses the problem. To bridge this gap, this study aims
to probabilistically evaluate the impact of the change in tracking performances on the effectiveness
of conformance monitoring. We propose a Monte Carlo simulation-based method. To ensure a
realistic simulation environment, we use a hybrid software-in-the-loop (SITL) scheme. The major
uncertainties contributing to the stochastic evaluation are measured separately and are integrated into
the final Monte Carlo simulation. Latency tests were conducted to assess the performance of different
communication technologies for cooperative tracking. Flight technical error generation via SITL
simulations and navigational system error generation based on flight experiments were employed to
model UA trajectory uncertainty. Based on these tests, further Monte Carlo simulations were used
to study the overall impacts of various tracking key performance indicators in UTM conformance
monitoring. Results suggest that the extrapolation of UA position enables quicker non-conformance
detection, but introduces greater variability in detection delay, and exacerbates the incidence of
nuisance alerts and missed detections, particularly when latencies are high and velocity errors are
severe. Recommendations for UA position update rates of ≥1 Hz remain consistent with previous
studies, as investments in increasing the update rate do not lead to corresponding improvements in
conformance monitoring performance according to simulation results.

Keywords: UTM; Monte Carlo; conformance monitoring; software-in-the-loop; simulation; Remote ID;
tracking

1. Introduction

The recent proliferation of unmanned aircraft (UA), or “drones”, has resulted in a
challenge for the safe management of air traffic operations. UAS traffic management
(UTM) is concerned with the safe operation of UA in a given airspace; in particular, it
is envisaged that UTM will allow for large-scale visual line-of-sight (VLOS) and beyond
visual line-of-sight (BVLOS) operations [1].

The safety performance that the future UTM could achieve is the most crucial factor
enabling UAS to access the national airspace system (NAS), which has drawn growing
attention in the research community as well as the industry [2]. Strategic deconfliction is
one of the functions that contribute to the safety assurance of UTM, which can be assessed
through probabilistic modeling methods like the Monte Carlo simulation [3]. Relevant
studies include a conflict-free flight planning algorithm design [4] and tactical conflict
detection and resolution [5]. However, these studies have not discussed the infrastructure
performances for UTM and their relationship with the expected traffic operational perfor-
mances. Considering the air navigation service performance for UTM, existing studies
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have considered the navigational accuracy in the urban area [6,7] and its consequent effect
on the separation minima [8]. Despite the aforementioned studies, the existing research on
UTM as an emerging mobility type is still limited.

Maintaining the conspicuity of (oftentimes small) UA in relatively large airspace
presents a challenge for UTM. Unsurprisingly, the tracking service plays a safety-critical
role in a functional UTM system [9]. Researchers have worked on the enhancement of UTM
tracking reliability [10]. However, how the tracking performance influences higher-level
traffic safety objectives has not been discussed. In particular, the ubiquity of drones and
the correspondingly high operational density potential, coupled with their small size, favor
cooperative tracking (e.g., UA and/or operator is required to actively participate in sharing
flight information) over non-cooperative tracking (a third-party actively scans the airspace
to identify and locate airborne UA).

A cooperative tracking service may be described by various tracking key performance
indicators (KPIs). These KPIs may be affected by sensor limitations (e.g., GNSS accuracy),
or may be due to communication-related challenges and ground infrastructure. Examples
of the latter include communications latency, transmission availability, coverage, UA
update rate, and support for trajectory prediction methods (like extrapolation) [11,12].
Such limitations affect higher-level UTM functions like conformance monitoring (CM)
and tactical conflict detection, which are all primary and safety-critical UTM services.
Therefore standardizing the minimum requirements for cooperative UTM tracking service
becomes crucial.

Existing studies aim to establish requirements for the tracking service based on tactical
conflict detection. These studies rely on the Monte Carlo simulation, which is a common
technique in air traffic management [13–20]. As an extension, this article aims to assess
tracking requirements from a conformance monitoring (CM) perspective.

CM in the civil aviation context, as summarized by NASA [21], is a function developed
to check on the adherence between a given flight and its declared flight plan. It can be either
reactive or predictive, and its performance is characterized by false alarm rate, missed alert
rate, and detection delay. Given a declared flight intent, CM has been formulated as a
residual-based fault-detection problem by researchers from MIT Lincoln Lab [22,23]. CM
algorithms feature a trade-off between time-to-detection and false alarm probability but
generally benefit from a high data update rate. Additionally, studies have indicated that
flight patterns influence CM performance. In particular, transitions pose a challenge in
CM due to turning dynamics and ambiguity in turn initiation time. As an alternative to
the fault-detection formulation, Lee et al. developed a Bayesian approach for CM [24], in
part to address ambiguity in transition time. At every timestep, the algorithm estimates
conformance probability across a range of trajectory change times (TCTs), and calculates
their weighted sum. When this sum is less than a defined threshold, the flight is deemed
as non-conforming.

In the UTM context, ASTM introduced a simple framework for CM. The F3548-21
standard [25] defines conformance with respect to a declared operational intent (OI). Under
the OI framework, operations can be classified into three main states, namely ‘activated’,
‘non-conforming’, and ‘contingent’. The latter two states are considered non-conforming.
OIs are defined by a four-dimensional OI volume (OIV)—3D geometries describing the
locations of aircraft operations and the start and end times. These OIVs must be pre-
approved by a relevant authority; as part of the approval process, strategic deconfliction is
performed. Consequently, non-conforming UA operations are not strategically deconflicted
and hence risk infringements between non-conforming UA and other aircraft operating
in nearby airspace or OIVs [3]. CM, in this context, helps to check if the UA is operating
within its respective OIV. Various mission profiles may be supported by the OI concept
by variations of the size, geometry, and duration of the OIVs. The performance of the
tracking system in this CM application, as well as the experimental analysis of latency for
the supporting communications technologies, form the core subjects of this article.



Drones 2023, 7, 597 3 of 23

Based on the above discussions, this work studies the relationship between tracking
performances and CM effectiveness. Such a relationship is presented as the change in
tracking performances affecting the CM timeliness and success rate, which occurs in
a stochastic manner. To achieve this probabilistic reasoning, we propose a Monte Carlo
simulation-based method. The contributions of this study are threefold, which are listed below:

(1) A hybrid SITL Monte Carlo simulation scheme that supports the probabilistic perfor-
mance evaluation of UTM flights with multiple operational uncertainties;

(2) A new formulation of recall and precision that meets the requirement of event
detection in continuous time–space;

(3) Analytical results on the relationship between tracking performances and CM effec-
tiveness that support the decision-making of UTM stakeholders in the deployment
and standardization of the tracking service.

2. Materials and Methods
2.1. Methodology Overview

The aim of this study is to estimate the probability distribution in a complex uncertain
environment. We use the Monte Carlo simulation to solve the problem, where one of the
key issues in guaranteeing the reliability of the result is the modeling of main uncertain
factors. Two major systems involved in the CM procedure are the tracking system and the UA.
The uncertainties of the tracking system are characterized by the inaccuracy of the detected
aircraft location, which is affected by major tracking KPIs, including the accuracy, update
rate, availability, latency, and extrapolation function of the system. Amongst these KPIs, the
communication latency using the standardized UTM remote ID protocol is less discussed in
the literature. To support the Monte Carlo simulation, we conducted experiments to measure
the distribution of latency. Details of the experiment and discussions will be elaborated in
the following part of this paper. The uncertainties of the UA are presented as trajectory
deviations. Such deviations include flight technical error (FTE) and navigation system error
(NSE). A hybrid SITL approach is developed to model the trajectory with deviations induced
by FTE and NSE. The overall workflow of this study is illustrated in Figure 1.

Figure 1. Overall workflow of the evaluation of the impact of tracking performances on confor-
mance monitoring.
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2.2. Latency Experiments

Experience with vehicle teleoperations reveals concerns between communication-
related delays and vehicle safety [26–28]. While the overall UTM architecture differs from
vehicle teleoperations, in that it does not necessarily involve low-level vehicle dynamics con-
trol (and may not, potentially, even direct human control), it nevertheless features collision
avoidance and remote monitoring, and thus motivates further analysis into tracking KPIs.

The underlying communications architecture, technologies, and relevant supporting
standards strongly influence such tracking KPIs. With regard to digital UA conspicuity and
identification, the FAA Remote ID and ASTM F3411-22a standard are at the forefront in
defining UA aircraft identification requirements, and can be viewed as early implementa-
tions of the UTM tracking service [29]. The standard supports two broad communications
architectures, namely broadcast Remote ID (RID) and network RID. Broadcast RID is a
non-directed communications protocol, wherein a target recipient is not specified, and the
UA simply share its location via wireless broadcast, using common wireless technologies,
such as Bluetooth and WiFi. By contrast, network RID requires the UA to transmit to a
target UTM service supplier (USS) or ground station. Supported technologies include
cellular connections and internet-based routing protocols.

As highlighted, near-term implementations of cooperative tracking are likely to rely on
existing technical standards and technologies to accomplish UA tracking. The ASTM F3411-
22a standard supports both broadcast and network architectures under the FAA Remote
ID requirements. For broadcast RID, Bluetooth legacy advertising, Bluetooth 5.x extended
advertising, WiFi Beacon, and WiFi NAN are the supported means of transmission; for
network RID, existing cellular infrastructure (such as 4G LTE or 5G) is allowed.

In lieu of the above, round-trip latency experiments were performed with two com-
munications technologies—one using Bluetooth and another with 4G LTE. Network RID
tests were further divided into moving and static tests. (Due to the use of Ethernet cables
for Bluetooth experiments, tests involving large relative motion between transmitter and
receiver were not feasible). Figure 2 shows testing schemes for both Bluetooth and 4G LTE.

(a)
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(b)
Figure 2. (a) 4G LTE latency testing flowchart. (b) Remote ID Bluetooth Legacy Advertising latency
testing flowchart.

2.2.1. 4G LTE Latency Tests

Various factors may potentially influence cellular network performance and may affect
the measured tracking KPIs. An international, cross-demographic study by Walelgne et al.
found that cellular traffic typically peaked at night [30], and was greatest on Mondays
and Tuesdays. As such, latency tests were performed at night (from 2130 h to 2330 h) on
a Monday evening to simulate a worst-case cellular traffic scenario. Furthermore, tests
were performed near a residential area, where high user loads may be expected during the
evening. The location and groundspeed trace for the LTE latency tests may be found in
Figure 3; for moving tests, groundspeeds of up to 70 km/h were reached.

Additionally, cell-tower antennae may be angled in a manner that affects the signal
strength at altitude [31]. Ideally, latency tests should incorporate measurements performed
at the expected UA operation height; however, the time of day and proximity to residential
units resulted in operational limitations that only allowed ground-based testing.

Tests were performed with a Huawei E8372 USB LTE modem and an off-the-shelf
SIM card from a local telecom provider. Messages between the mobile client (transmitter)
and server (receiver) were sent via the user datagram protocol (UDP), a connectionless
internet protocol that does not provide retransmissions. The simplicity of the protocol and
the lack of retransmissions reduce network overhead and bandwidth requirements and
offer low latency.

2.2.2. Bluetooth Legacy Advertising Remote ID Tests

Testing of a sample broadcast tracking service was performed with a prototypical re-
mote ID-compliant software, from the OpenDroneID project (see https://www.opendroneid.
org/ (accessed on 9 April 2023) and https://github.com/opendroneid/transmitter-linux
(Version 1.0)). A pair of Nordic Semiconductor nRF52840 Bluetooth dongles were used as
the receiver and transmitter; due to software limitations at the time of writing, Bluetooth
extended advertising was not enabled for testing.

To measure potential Bluetooth Remote ID message latency, the transmitting com-
puter would measure the time taken for a receiving computer to send an acknowledgment
message; this message was sent via the Ethernet to minimize the additional communica-

https://www.opendroneid.org/
https://www.opendroneid.org/
https://github.com/opendroneid/transmitter-linux
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tion time. While such a protocol introduces an additional delay, a similar penalty exists
for two-way LTE communications, and a centralized conformance monitoring service
(e.g., provided for by a USS) would also require additional routing of flight information
from Bluetooth or WiFi receivers and, therefore, incur such a time delay.

(a)

(b)
Figure 3. The 4G LTE latency experiments and map of testing locations. (a) Map of the 4G LTE
test area, with ground track shown for different data collection runs. Static tests were performed at
the start location. The arrow indicates the direction of travel for moving tests (counterclockwise);
(b) ground speed traces for moving latency tests.
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2.3. Hybrid SITL Simulation Approach and Simulation Parameters

The results from the latency tests are used to fit statistical latency models, which are
then employed in Monte Carlo simulations. These simulations generate “ground truth”
and “tracked” flight trajectories, which can then be compared to understand the tracking
efficacy and its safety impact.

Currently, the industry of business-applicable drones is under-standardized. In the
simulation, there is no specific drone model that is representative of all of its kind. In this
study, we used the software-in-the-loop simulation by employing the PX4 autopilot, one of
the most popular UAVs, and its controller model, which is widely used in both industry
and academia, to simulate the performance of a generic quad-rotorcraft. To ensure the
validity of the kinematic model, we set realistic velocity and acceleration limits in the
model, based on data collected in our flight experiment [32], open-source flight data [33],
and recommended settings in the PX4 autopilot flight controller.

To generate the aforementioned flight trajectories, a hybrid software-in-the-loop and
post-processing simulation approach is adopted. A set of predefined waypoints are up-
loaded into a software-in-the-loop simulation environment based on PX4 (PX4 version
1.13.0), with flight dynamics modeled in Gazebo. Variable wind speeds and cruise speeds
are further selected. A simulated flight trajectory is recorded, and additional navigation
error is introduced through post-processing; this post-processing step is performed to
obtain both ground truth and tracked trajectories. Additional rounding errors and ve-
locity errors may, at this point, also be introduced. This two-step approach essentially
allows separate generation of the flight technical error (FTE) and navigational system error
(NSE). The probability distribution of the NSE is also based on the measurement of flight
experiments, where GNSS errors are studied in the urban environment [7].

In a dynamic system, the line between NSE and FTE may be blurred. Consider an
aircraft flying with 0m NSE and FTE 0m at t0; neglecting PDE, TSE would be identically
0m. At time t > t0, the NSE might have drifted (due to different GNSS errors, or the
accumulation of dead reckoning errors). If, however, the aircraft’s track angle matches the
desired flight path and no input by the flight controller has been commanded, TSE remains
at 0m; this implies a non-zero FTE. Thus, NSE, FTE, and TSE are mutually dependent in a
temporal fashion. Nevertheless, separate generation of FTE and NSE is advantageous in
that it allows bypassing the automatic flight controller navigational sensor error protections
(PX4 SITL supports GNSS error injection but prevents arming of the aircraft if it detects large
GNSS errors) in a simulation platform, and facilitates faster dynamical flight simulations,
thereby allowing for a more extensive study of the parameter space.

2.4. Monte Carlo Simulation

Two main cases were studied to analyze the safety performance of a tracking system
in a conformance monitoring context. As per the introduction, the conformance monitoring
application is envisaged to be similar in configuration to that of the ASTM F3548-21, in
that conformance is defined by means of the aircraft position with respect to a filed OIV.
Accordingly, the studied cases are:

• Case 1: Contingent operations and total delay time: In situations where the UA enters
contingent operations, e.g., due to mechanical faults, operator errors, unexpected
weather, etc., a prolonged UA operation outside of its approved OIV will result
in eventual detection by a conformance monitoring system. Due to the prolonged
nature of such operations, false alerts and nuisance alerts are less important; rather,
quick detection for operators to take mitigating options is preferred. To quantify
this, the expected total delay time between the start of a non-conforming event and
its detection by the conformance monitoring system is measured for a given set of
tracking performance parameters. This case is modeled in the simulation environment
by flying a UA toward, and beyond, an OIV boundary at various selected cruise
speeds. The time difference between the UA’s true position leaving the boundary



Drones 2023, 7, 597 8 of 23

and its tracked position leaving the boundary (i.e., detected by the conformance
monitoring system) is the total delay time. This case is illustrated in Figure 4a.

• Case 2: Nominal operations and precision and recall: In nominal operations, the
UA may periodically drift in and out of the approved OIV due to a combination
of NSE, FTE, and PDE factors; under the ASTM F3548-21 standard, occasional non-
conformance is permitted (up to 5% of total flight time). In such a case, false alerts and
missed detections are important in reducing nuisances to operators and USS/regulators,
and in notifying operators of poor UA conformance. To model this scenario, a square-
shaped trajectory is flown by the simulated UA in autonomous mode. Each side of the
square represents a flight “leg”. A corresponding square-shaped OIV with a hollow
center (when viewed from above) is constructed; each flight “leg” has a boundary
width that allows for minor track deviations. Continuous-time extensions of precision
and recall are metrics defined to quantify the frequency of nuisance alerts and missed
detections of such OIV non-conformance. This case is illustrated in Figure 4b.

(a)

(b)

Figure 4. Overview of Cases 1 and 2. (a) Top view of the Case 1 scenario, with UA flying beyond
its declared OIV; (b) top view of the Case 2 scenario, with the square flight pattern and boundary
width indicated.

A common set of simulation parameters (shown in Table 1) were used for both Cases
1 and 2. Wind directions and cruise speeds were averaged over for each tracking system
configuration. Similar to [12], three extrapolation settings were supported due to their
possible influence on detection delay:

• ExtOff: No extrapolation performed.
• ExtSync: Extrapolation enabled, with extrapolation duration based on the GNSS time

for both UA and the tracking server; susceptible to the clock synchronization error
with the modeled upper bound of 0.2 s; mitigates communication latency-induced
position errors.

• ExtNoSync: Extrapolation enabled, with extrapolation duration based on the reception
time by tracking the server only. Susceptible to communication latency-induced
position errors.
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Table 1. Parameters for Monte Carlo sensitivity analysis.

Parameter Values Units Remarks

Wind Direction
Cardinal and ordinal

directions {North, Northeast, ...,
West, Northwest}

- 45◦ between different wind
directions

Cruise Speeds {2.5, 5.0, 7.5, 10.0} ms−1 -

UA Update Rate
(URUAS) {1, 2.5} Hz

Based on recommendations
from prior work 1

Server Update and
Extrapolation Rate

(UREXT)
{5} Hz

Based on recommendations
from prior work 2

Extrapolation
Modes

{ExtOff, ExtSync,
ExtNoSync} - -

Connection Type
{Bluetooth LE (BLE),

4G LTE} -
Determines latency model;

based on experimental results

UA Internal GNSS
Position Error

(NSE)
{3} m Rayleigh distribution 3,4

Tracking System
Position Error

Internal/Integrated:
{3} m

Errors are equivalent
with NSE

Standalone:
{1, 3, 10} m Rayleigh distribution 3,4

Tracking System
Velocity Error {0.3, 1, 3} ms−1 Rayleigh distribution 3,4

Availability {80} %
ASTM F3411-22a allows for

minimum (networked)
availability of 20%

1 URUAS ≥ 1 Hz, see [12]. 2 UREXT ≥ 5 Hz, see [12]. 3 Values quoted represent the 95th percentile. 4 Errors are
autocorrelated at each timestep; see [11].

3. Results
3.1. Latency Measurements

Figure 5 shows the histograms of round-trip latency measurements from both Blue-
tooth RID and proprietary 4G LTE communication tests, along with their best Gaussian,
Weibull, and Fisk fits. Of the three distribution types, the Fisk distributions were selected for
subsequent Monte Carlo communication-delay modeling. The Fisk PDF is parameterized by

f (x) =


(

β
α

) ( x−x0
β

)β−1(
1+
( x−x0

α

)β

)2 , x ≥ x0

0, x < x0

(1)

Additionally, a comparison between moving and static 4G LTE round-trip latencies is
shown in Figure 6. The two distributions are broadly comparable, indicating no significant
difference in latency for the tested velocity range.
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(a) (b)

Figure 5. Round-trip latencies measured using various communications architectures. (a) 4G LTE
latency (combined moving + static); (b) BLE latency.

Figure 6. The 4G LTE latency (moving versus static).

A brief summary of the measured and fitted round-trip latency distributions is shown
in Table 2.

Table 2. Summary of measured and fitted latency values.

Parameter 4G LTE BLE

Average (measured) 0.1069 s 0.7035 s
Average (Fisk best fit) 0.1057 s 0.7056 s

Fisk α 0.0520 0.722
Fisk β 10.8 42.7
Fisk x0 0.0530 −0.0174



Drones 2023, 7, 597 11 of 23

3.2. Monte Carlo Case 1: Non-Conformance Detection Total Delay Time

Figure 7 shows the total delay time distributions for Case 1’s non-conformance events
with various extrapolation modes, navigational velocity error (NSE) settings, connection
types, and UA update rates. Tracking is performed by standalone units with a position
error that is modeled as independent from the UA’s internal navigation position error
(NSE). Mean values for each tracking system configuration are indicated below the violin
plots. A few salient observations can be made: firstly, using extrapolation (particularly the
synchronized mode relying on GNSS timestamps for UA position reports and with the
tracking system synchronized to GNSS time) results in the lowest mean detection delay.
Accordingly, the ExtOff mode yields the highest mean total detection delay time, with
higher latency communication protocols, like the modeled Bluetooth ODID application
with higher delay. A lower UA update rate, corresponding to more infrequent position
updates, leads to longer delays as well. While switching from ExtOff to ExtSync largely
compensates for high mean detection latencies, drawbacks arise in higher variability when
greater navigational velocity errors are present.

(a) (b)

(c) (d)

Figure 7. Total delay time violin plots, separated by the navigational velocity error (standalone
tracker); (a) 4G LTE, URUAS set to 1 Hz; 4G LTE, URUAS set to 2.5 Hz; (c) BLE, URUAS set to 1 Hz;
(d) BLE, URUAS set to 2.5 Hz.



Drones 2023, 7, 597 12 of 23

Figure 8 similarly shows the total delay time distributions for Case 1 non-conformance
events with tracking system configurations, but for different positional errors instead
of velocity errors. Tracking units are once again modeled as independent. Across all
conditions, a higher position error leads to higher detection delay time variability; however,
average detection delays are not significantly changed. For the considered range of cruise
speeds and tracking configurations, the position error contributes the most to the detection
delay time.

No significant differences in the detection delay time were observed between stan-
dalone and UA-integrated position data sources.

(a) (b)

(c) (d)

Figure 8. Total delay time violin plots, separated by the navigational position error (standalone
tracker); (a) 4G LTE, URUAS set to 1 Hz; (b) 4G LTE, URUAS set to 2.5 Hz; (c) BLE, URUAS set to 1 Hz;
(d) BLE, URUAS set to 2.5 Hz.

3.3. Monte Carlo Case 2: Nominal Operations and Periodic Non-Conformance

When considering nominal operations under the OIV concept, a larger cross-track
width (or, generally, a larger buffer between the intended area of operations and the OIV
boundary) would result in a non-conformance ratio due to regular flight path variances.
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This is illustrated in Figure 9. Nevertheless, there exists a trade-off between the boundary
width and operational airspace capacity; ideally, the boundary width should be minimized
while maintaining a higher conformance ratio, such that more aircraft are permitted to
operate near each other.

Figure 9. Reduction in the true non-conformance ratio as the OIV boundary/track width increases.

The high frequency of position reports under nominal operations means that a single
non-conformance “event" is not a good indicator of the tracking performance, as even
under a 5% non-conformance upper limit (permitted under ASTM F3548-21), there can be
multiple position reports with UA in non-conforming positions for a single short flight. As
an example, a 1 Hz UA position update rate, coupled with a flight duration of 10 min would
yield expected 30 non-conforming timestamps. Thus, precision and recall metrics adopted
by prior studies, such as [12], which are aimed at capturing once-per-flight events, must be
adapted to the current comparison. Extensions of precision and recall to continuous-time
(while these metrics are defined in a continuous-time sense as integrals, in practice, these
metrics are evaluated at discrete intervals) are presented below:

Precision ≡
∫

f (t) dt∫
g(t + φ) dt

(2)

and

Recall ≡
∫

f (t) dt∫
h(t) dt

(3)

where the functions f , g, and h are defined as follows:

f (t) ≡ h(t)× g(t + φ) (4)

g(t) ≡


1, if reported/tracked UA position is

non-conforming at time t
0, otherwise

 (5)

h(t) ≡


1, if true UA position is non-

conforming at time t
0, otherwise

 (6)

Here, φ refers to the expected delay between a non-conformance event and its detection
by the tracking system; it is estimated from the results of the previous section on a per-
tracking-configuration basis. The φ term helps to ensure that non-conformance events
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between true and tracked trajectories occur at roughly the same time and, thus, properly
correspond to each other.

A perfect conformance monitoring service has both precision and recall of unity—a
high precision would mean few nuisance alerts, while a high recall would correspond to
few missed detections of non-conformance.

3.3.1. Precision

Figure 10 shows the differences between internal (i.e., UA-integrated) and standalone
navigational position sensors for tracking use. The result shows a trend that the larger the
boundary width, the lower precision outcomes are observed, which applies in all of the
four groups. Based on the results, the update rate and extrapolation method do not have
a significant impact on the precision of abnormal detection. The internal solution offers
poorer precision, with the gap widening at larger boundary widths. The negative effect of
the internal sensor solution will be further discussed in this paper.

(a) (b)

(c) (d)

Figure 10. Precision versus boundary width curves—comparison between the integrated UA navi-
gational position source and standalone tracking with the independent position source; (a) 4G LTE,
URUAS set to 1 Hz; (b) 4G LTE, URUAS set to 2.5 Hz; (c) BLE, URUAS set to 1 Hz; (d) BLE, URUAS

set to 2.5 Hz.
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Figure 11, focusing on standalone tracking unit solutions with extrapolation disabled,
shows a trend of decreasing precision with poorer navigational position accuracy; addi-
tionally, there is no effect of velocity error on precision. This is due to the fact that without
extrapolation, velocity errors do not contribute to aircraft position estimations. Such a de-
crease becomes larger when the boundary width increases. Similar to the results shown in
Figure 10, the update rate of the tracking system does not affect the precision performance.

(a) (b)

(c) (d)

Figure 11. Precision versus boundary width curves—ExtOff; (a) 4G LTE, URUAS set to 1 Hz; (b) 4G
LTE, URUAS set to 2.5 Hz; (c) BLE, URUAS set to 1 Hz; (d) BLE, URUAS set to 2.5 Hz.

Consequently, enabling extrapolation has the effect of worsening effective navigational
position accuracy, due to the propagation of groundspeed, heading, and rounding-related
errors; additionally, non-linear dynamics during turns and in flight-path-keeping may
not be well-accounted for in the extrapolation process. A comparison may also be made
between corresponding subfigures of both Figures 11 and 12—precision is on the whole
lower when extrapolation is enabled. However, a closer comparison between the subfigures
within Figure 12 reveals how low UA update rates and high latency exacerbate this effect
since the effective “lookahead" duration the extrapolation technique compensates for is
increased, leading to greater positional uncertainty and lower precision.
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(a) (b)

(c) (d)

Figure 12. Precision versus boundary width curves—ExtSync; (a) 4G LTE, URUAS set to 1 Hz; (b) 4G
LTE, URUAS set to 2.5 Hz; (c) BLE, URUAS set to 1 Hz; (d) BLE, URUAS set to 2.5 Hz.

A similar pattern is observed with the ExtNoSync mode, as illustrated in Figure 13).
The main differences in precision between the ExtSync and ExtNoSync modes are the
differences in the “look-ahead” times—ExtSync compensates for a longer latency duration
and, thus, suffers more when presented with velocity errors.
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(a) (b)

(c) (d)

Figure 13. Precision versus boundary width curves—ExtNoSync. (a) 4G LTE, URUAS set to 1 Hz;
(b) 4G LTE, URUAS set to 2.5 Hz; (c) BLE, URUAS set to 1 Hz; (d) BLE, URUAS set to 2.5 Hz.

3.3.2. Recall

As with precision, recall is significantly lower for internal tracking navigational solu-
tions than it is with standalone ones. This is illustrated in Figure 14, and is likely due to
the modeling assumptions that the total system error (TSE) is greater than the flight techni-
cal error (FTE), and that the FTE and navigational system error (NSE) can be decoupled.
Since the navigational error reported by the UA’s flight controller to the tracking service is
equivalent to FTE for integrated solutions (in the absence of extrapolation and rounding
errors, NSE is transparent to both the flight controller and tracking service), and because
TSE is modeled to be greater than FTE, the conformance monitoring system (which uses
tracking information) is unable to pick up non-conforming events at the tail end of the TSE
distribution. Overall, this leads to poor recall for the integrated tracking solutions. Note
that this does not definitively lead to the conclusion that integrated tracking solutions are
poorer than their standalone counterparts; however, this does warrant further study into
interactions between various TSE components and validating modeling assumptions.

Figure 15 presents the recall trend with an increasing boundary width in the no-
extrapolation situation. The measured recall shows a decreasing trend. There is no signifi-
cant difference observed between LTE and BLE, or between different update rate cases. A
high position error leads to a lower recall performance while a high velocity error does not.



Drones 2023, 7, 597 18 of 23

(a) (b)

(c) (d)

Figure 14. Recall versus boundary width curves—comparison between the integrated UA naviga-
tional position source and standalone tracking with the independent position source; (a) 4G LTE,
URUAS set to 1 Hz; (b) 4G LTE, URUAS set to 2.5 Hz; (c) BLE, URUAS set to 1 Hz; (d) BLE, URUAS

set to 2.5 Hz.

(a) (b)

Figure 15. Cont.
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(c) (d)

Figure 15. Recall versus boundary width curves—ExtOff; (a) 4G LTE, URUAS set to 1 Hz; (b) 4G LTE,
URUAS set to 2.5 Hz; (c) BLE, URUAS set to 1 Hz; (d) BLE, URUAS set to 2.5 Hz.

Both ExtSync and ExtNoSync modes feature a trend where tracking configurations with an
NSE of 10 m perform better than those with an NSE of 3 m, as shown in Figures 16 and 17. This
likely shows how recall is not extremely sensitive to position errors. Nevertheless, a higher
velocity error does show interaction effects with both ExtSync and ExtNoSync modes; as
with precision, when URUAS is low and communication latencies are high, poor recall is
experienced.

A brief comparison between precision and recall metrics reveals that precision is more
readily affected by tracking KPIs and configurations (i.e., nuisance alerts are more readily
generated when tracking performance is poor, as opposed to missed non-conforming events).

(a) (b)

Figure 16. Cont.
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(c) (d)

Figure 16. Recall versus boundary width curves—ExtSync; (a) 4G LTE, URUAS set to 1 Hz; (b) 4G
LTE, URUAS set to 2.5 Hz; (c) BLE, URUAS set to 1 Hz; (d) BLE, URUAS set to 2.5 Hz.

(a) (b)

(c) (d)

Figure 17. Recall versus boundary width curves—ExtNoSync; (a) 4G LTE, URUAS set to 1 Hz; (b) 4G
LTE, URUAS set to 2.5 Hz; (c) BLE, URUAS set to 1 Hz; (d) BLE, URUAS set to 2.5 Hz.
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4. Conclusions

In this study, we performed a preliminary comparison between competing UTM
cooperative tracking approaches by means of latency experiments. While the comparison
is by no means perfect (4G LTE tests use a short, proprietary message integrated into
the timing program while BLE requires the launching of prototype implementations of
RID applications), initial tests indicate that urban low-altitude applications may favor
cellular-based networked approaches; this is particularly so if ground-based broadcast
receivers further need to upload data to a USS-like centralized entity for conformance
monitoring services. Future studies may include experimental or simulation work to
determine maximum flight altitudes for acceptable coverage within the urban context.

Latency measurements produced models used in a hybrid SITL–post-processing
simulation approach, which was applied to conduct a Monte Carlo sensitivity analysis
of tracking KPIs. Additionally, safety-related metrics, in the form of non-conformance
detection delay, and continuous-time extensions of precision and recall, were used as part
of the analysis.

Extended formulations of recall and precision metrics were designed in this study in
order to evaluate the detection success rate in a continuous time–space. The formulations
were used in the evaluation and support of the interpretation of the simulation results.

The study found that improving the UA update rate (URUAS) from 1 Hz to 2.5 Hz did
not offer commensurate improvements in the CM performance, but improved the variability
in detection delays. In general, extrapolation aided in reducing detection delays, mainly if
both UA and CM services used GNSS-derived timestamps. However, high-velocity errors
and high latencies resulted in high variability in the delay time and, therefore, tempered
the effectiveness of linear extrapolation.

Additionally, for the given parameter ranges, it was found that navigational posi-
tion error yielded the greatest influence on detection delay variability. A larger effective
navigational position error corresponded to lower precision but did not always result in
lower recall.
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ASTM American Society for Testing and Materials
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BVLOS beyond visual line-of-sight
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FAA Federal Aviation Administration
FTE flight technical error
GNSS global navigation satellite system
KPI key performance indicator
NAS National Airspace System
NSE navigational system error
ODID OpenDroneID
OIV operational intent volume
PDE path definition error
RID Remote ID
TCT trajectory change time
TSE total system error
UA unmanned aircraft
UAS unmanned aircraft system
USS UTM service supplier
UTM UAS traffic management
VLOS visual line-of-sight
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