
Citation: Min, W.; Khakimov, A.;

Ateya, A.A.; ElAffendi, M.;

Muthanna, A.; Abd El-Latif, A.A.;

Muthanna, M.S.A. Dynamic

Offloading in Flying Fog Computing:

Optimizing IoT Network

Performance with Mobile Drones.

Drones 2023, 7, 622. https://doi.org/

10.3390/drones7100622

Academic Editors: Hiroyuki

Tomiyama, Ittetsu Taniguchi,

Xiangbo Kong, Hiroki Nishikawa

and Carlos Tavares Calafate

Received: 10 August 2023

Revised: 29 September 2023

Accepted: 2 October 2023

Published: 5 October 2023

Copyright: © 2023 by the authors.

Licensee MDPI, Basel, Switzerland.

This article is an open access article

distributed under the terms and

conditions of the Creative Commons

Attribution (CC BY) license (https://

creativecommons.org/licenses/by/

4.0/).

drones

Article

Dynamic Offloading in Flying Fog Computing: Optimizing IoT
Network Performance with Mobile Drones
Wei Min 1,* , Abdukodir Khakimov 2 , Abdelhamied A. Ateya 3,4 , Mohammed ElAffendi 3 ,
Ammar Muthanna 2 , Ahmed A. Abd El-Latif 3,5 and Mohammed Saleh Ali Muthanna 6

1 China-Korea Belt and Road Joint Laboratory on Industrial Internet of Things, School of Automation,
Chongqing University of Posts and Telecommunications, Chongqing 400065, China

2 Department of Applied Probability and Informatics, Peoples’ Friendship University of Russia
(RUDN University), 117198 Moscow, Russia; khakimov-aa@rudn.ru (A.K.); muthanna.asa@spbgut.ru (A.M.)

3 EIAS Data Science Lab, College of Computer and Information Sciences, Prince Sultan University,
Riyadh 11586, Saudi Arabia; aateya@psu.edu.sa (A.A.A.); affendi@psu.edu.sa (M.E.);
aabdellatif@psu.edu.sa (A.A.A.E.-L.)

4 Department of Electronics and Communications Engineering, Zagazig University, Zagazig 44519, Egypt
5 Department of Mathematics and Computer Science, Faculty of Science, Menoufia University,

Menouf 32511, Egypt
6 Institute of Computer Technologies and Information Security, Southern Federal University,

347922 Taganrog, Russia; muthanna@sfedu.ru
* Correspondence: weimin@cqupt.edu.cn

Abstract: The rapid growth of Internet of Things (IoT) devices and the increasing need for low-latency
and high-throughput applications have led to the introduction of distributed edge computing. Flying
fog computing is a promising solution that can be used to assist IoT networks. It leverages drones with
computing capabilities (e.g., fog nodes), enabling data processing and storage closer to the network
edge. This introduces various benefits to IoT networks compared to deploying traditional static edge
computing paradigms, including coverage improvement, enabling dense deployment, and increasing
availability and reliability. However, drones’ dynamic and mobile nature poses significant challenges
in task offloading decisions to optimize resource utilization and overall network performance. This
work presents a novel offloading model based on dynamic programming explicitly tailored for flying
fog-based IoT networks. The proposed algorithm aims to intelligently determine the optimal task
assignment strategy by considering the mobility patterns of drones, the computational capacity of
fog nodes, the communication constraints of the IoT devices, and the latency requirements. Extensive
simulations and experiments were conducted to test the proposed approach. Our results revealed
significant improvements in latency, availability, and the cost of resources.

Keywords: Internet of Things; flying fog; offloading; dynamic programming; drones

1. Introduction

The Internet of Things (IoT) is a revolutionary concept that describes the intercon-
nectivity of everyday objects and devices through the Internet, enabling them to collect,
exchange, and process data without the need for direct human intervention [1]. The future
of IoT is undeniably intertwined with the advent of fifth-generation cellular (5G) and up-
coming sixth-generation (6G) technology. The rollout of 5G networks brings unparalleled
data speeds, ultra-low latency, and increased capacity, significantly enhancing the capabili-
ties of IoT devices and applications [2]. With 5G, IoT solutions can deliver real-time insights
and responses, enabling faster data processing for critical applications like autonomous
vehicles, smart cities, and augmented reality. Furthermore, 5G’s network slicing capabilities
allow operators to create dedicated segments for IoT services, ensuring efficient resource
allocation and improved overall performance [3].

Drones 2023, 7, 622. https://doi.org/10.3390/drones7100622 https://www.mdpi.com/journal/drones

https://doi.org/10.3390/drones7100622
https://doi.org/10.3390/drones7100622
https://creativecommons.org/
https://creativecommons.org/licenses/by/4.0/
https://creativecommons.org/licenses/by/4.0/
https://www.mdpi.com/journal/drones
https://www.mdpi.com
https://orcid.org/0000-0003-4326-3946
https://orcid.org/0000-0003-2362-3270
https://orcid.org/0000-0002-1610-9612
https://orcid.org/0000-0001-9349-1985
https://orcid.org/0000-0003-0213-8145
https://orcid.org/0000-0002-5068-2033
https://orcid.org/0000-0002-1165-7812
https://doi.org/10.3390/drones7100622
https://www.mdpi.com/journal/drones
https://www.mdpi.com/article/10.3390/drones7100622?type=check_update&version=1

Drones 2023, 7, 622 2 of 23

As we look ahead to the era of 6G, even more transformative opportunities for IoT de-
vices emerge. Through virtually eliminating latency and accommodating an unprecedented
number of connected devices, 6G is expected to push the boundaries of data speeds to
terabits per second [4]. These advancements will unlock the potential for highly immersive
IoT applications, such as massive-scale augmented reality experiences, remote robotic
control with minimal delay, and the real-time monitoring of vast and complex systems [5].
The convergence of IoT with 5G and 6G technologies will propel the growth of smart cities,
precision agriculture, industrial automation, and personalized healthcare, further blurring
the lines between the physical and digital worlds [6].

IoT holds immense promise for the future, and its potential is further magnified in
the era of 5G and 6G technologies. These next-generation networks will empower IoT
applications with unprecedented speed, responsiveness, and capacity, revolutionizing
industries and enhancing overall quality of life. Nevertheless, addressing the design
challenges associated with security, interoperability, resource efficiency, and scalability is
crucial to harness IoT’s full potential and drive its continued growth and success in the
increasingly connected world [2,7].

Despite the promise of IoT, the deployment and management of large-scale IoT net-
works present several significant design challenges. One of the primary concerns is ensuring
5G/6G coverage and the availability requirements of IoT networks. Also, ensuring dense
deployment at the latency requirements is another significant challenge. Moreover, IoT
devices often operate with limited resources, particularly in terms of power and computa-
tional capacity. Balancing functionality with energy efficiency becomes a delicate trade-off,
especially for battery-operated devices or those deployed in remote and hard-to-reach
locations [8].

IoT networks must address the scalability and management of a vast number of con-
nected devices. As the number of IoT devices grows exponentially, network infrastructures
must accommodate for the surge in data traffic and processing demands [9]. Effective de-
vice management, network monitoring, and predictive maintenance strategies are required
to ensure the reliability, availability, and performance of IoT networks as they continue to
expand and evolve [10].

Edge computing is a promising paradigm to overcome these issues and empower
IoT networks with coverage and resources [11]. Fog computing extends the cloud com-
puting model, where computing capabilities are distributed closer to the network’s edge
rather than relying solely on centralized cloud servers. This approach drastically reduces
latency, minimizes bandwidth usage, and enhances the overall performance of IoT de-
vices by processing critical data at the network edge itself [12]. However, deploying static
fog servers has its limitations, especially in scenarios where constant mobility and flex-
ibility are required. Moreover, static fog servers have network coverage and scalability
limitations [13].

Flying fog computing is a novel paradigm that empowers fog computing with a level
of mobility. By incorporating fog servers into unmanned aerial vehicles (UAVs) such as
drones, it leverages the advantages of both fog computing and drone technologies to offer
unprecedented benefits [14]. These fog-enabled drones can be deployed rapidly to specific
locations, fly directly to where data is generated, and provide on-demand processing
capabilities to nearby IoT devices. As a result, they empower IoT networks with enhanced
real-time data analytics, low-latency responses, and improved data privacy, all while
ensuring a higher degree of fault tolerance [15,16].

Flying fog, i.e., fog servers on drones, can assist IoT networks in many ways [15–17].

a. Edge data processing: Flying fog computing moves data processing tasks closer to the
source, which is particularly advantageous when real-time analysis is crucial. Drones
equipped with fog servers can process data on-site, reducing the need to transmit
raw data over long distances, thus conserving bandwidth and reducing latency.

b. Scalability and flexibility: The mobility of drones enables dynamic scalability, allow-
ing fog servers to be redeployed and allocated based on the changing demands of the

Drones 2023, 7, 622 3 of 23

IoT network. Drones can adjust their routes and position autonomously, ensuring
seamless adaptability to varying data loads and network requirements.

c. Reliable connectivity in remote and harsh areas: Conventional IoT networks may
face connectivity issues in remote or challenging terrains. Flying fog computing
overcomes this limitation by flying fog-enabled drones to these locations, creating
temporary communication hotspots and ensuring uninterrupted data transmission
and processing.

d. Data privacy and security: Since data remains within the local network and is
processed in the drone, in proximity to devices, the risk of sensitive information
being exposed to external threats is significantly reduced. This added layer of security
bolsters the confidence of users and organizations in adopting IoT solutions.

e. Disaster response and emergencies: In disaster-stricken areas, where infrastructure
may be compromised or non-existent, fog-enabled drones can rapidly deploy and
establish a communication and data processing network, facilitating critical informa-
tion exchange and aiding rescue efforts.

Flying fog computing represents an innovative and dynamic approach to revolution-
izing the capabilities of IoT networks [14]. By integrating fog servers into drones, this
visionary technology brings the advantages of fog computing to even the most remote and
challenging environments, facilitating efficient data processing, real-time analytics, and
robust connectivity [14,15]. As this nascent field continues to advance, it promises to shape
the future of IoT networks and pave the way for a more interconnected and responsive
world. However, the dynamic and mobile nature of drones poses significant challenges in
task offloading decisions to optimize resource utilization and overall network performance.
This work aims to develop a dynamic, optimized offloading scheme for flying fog-based
IoT networks. The contributions of this work are as follows:

1. Designing a general framework for flying fog-based IoT networks.
2. Developing a computational model of the proposed flying fog-based IoT networks.
3. Developing an optimized dynamic offloading strategy for flying fog-based IoT networks.
4. Developing an evaluation testbed that is used to emulate flying fog-based IoT networks.
5. Evaluating the proposed offloading model via simulations and experiments.

The remainder of this work is structured as follows: In Section 2, we delve into related
studies and pertinent works. In Section 3, we introduce our proposed IoT model, which is
based on flying fog technology. Section 4 outlines both the proposed computation model
and algorithm. In Section 5, we discuss the testbed development for system evaluation.
Finally, Section 6 presents the results we obtained using the proposed model.

2. Related Work

Fog computing is a promising paradigm that addresses the limitations of cloud-centric
IoT networks, particularly in scenarios with low-latency and real-time processing require-
ments. Bonomi et al. [18] introduced the concept of fog computing, highlighting its benefits
in reducing data transfer latency and enhancing overall system responsiveness. Since then,
several studies have explored the integration of fog computing with IoT networks to im-
prove computation and storage capabilities at the network edge [19,20]. However, most of
the existing approaches assume static fog nodes, and there is a need for dynamic solutions
to cater to the unique challenges presented by mobile fog nodes in flying IoT networks.

Computation offloading is a critical technique in IoT-based fog computing environ-
ments; it is used to balance computational workloads and optimize resource utilization. The
development of offloading algorithms for fog computing-based IoT networks has gained
significant attention in recent years. Researchers have explored various approaches to
efficiently manage resources and improve the overall performance of such networks [21,22].
This section presents an overview of the most relevant studies and approaches that have
been proposed to address the challenges of resource offloading in the context of fog
computing-based IoT networks.

Drones 2023, 7, 622 4 of 23

Chen et al. [23] investigated the multi-user multi-server offloading problem. The
objective was to minimize user costs and maximize edge server profits. To address this,
the authors proposed an efficient offloading and resource purchasing strategy involving
a joint optimization methodology of two stages. The first stage utilizes a multi-channel
access game (MCA-Game) to find Nash equilibrium, employing the MCA-Game algorithm.
The second stage uses Stackelberg game theory for resource allocation. The proposed
game-based pricing and purchasing (GPAP) method was shown to be incentive-compatible
with the existence of Stackelberg equilibrium. Despite the work providing novel and
well-evaluated offloading criteria, it did not consider the mobility of edge nodes. Moreover,
latency is the main concern in our proposed approach since we target enabling the uRLLC.

IoT networks suffer from bandwidth overhead, increased delays, resource manage-
ment issues, and reduced system throughput. To address these issues and enhance the
quality of service (QoS), Wadhwa et al. [24] presented an optimized task scheduling and
preemption (OSCAR) approach for fog-enabled IoT networks. The OSCAR model involved
several steps, including task clustering, scheduling the clustered tasks, and resource allo-
cation. The clustering of IoT tasks can be achieved using an expectation–maximization
(EM) approach. This was introduced to reduce overhead complexity and bandwidth. The
proposed framework ultimately distributes resources using a deep Q network model. IoT
tasks are performed through task preemption using a ranking approach, where higher-
priority tasks with shorter deadlines replace lower-priority tasks, moving them to a waiting
queue. The OSCAR approach was evaluated using the iFogSim platform, and the results
showed its superiority over existing models in achieving QoS. This work considered fixed
fog computing servers.

Offloading policies can be centralized or distributed. However, with the growth of IoT
entities and the expansion of the fog computing layer, centralized scheduling faces chal-
lenges of complexity and lack of fault tolerance. Ataie et al. [25] addressed these issues and
developed a scalable decentralized approach where a small number of nodes collaborate
autonomously to schedule tasks. The authors proposed a scalable technique for offload-
ing time-critical jobs through a semi-network-aware distributed scheduling method. The
results showed that, on average, the proposed method outperformed existing approaches.

Offloading strategies face challenges in reducing delays due to the resource constraints
of fog nodes and the imbalance of workload distribution caused by plenty of work requests
and demanding workloads. To tackle these issues, Tran-Dang et al. [26] presented a dynamic
collaborative task offloading (DCTO) method that considers the fog nodes’ resource status
in order to arrive at an offloading approach. This approach allows tasks to be performed
by single or multiple fog nodes, effectively reducing execution latency. Their results
demonstrated that the offloading approach significantly reduced latency at high service
request rates. Furthermore, the model’s low computational complexity enables online
implementation, distinguishing it from other algorithms.

Dynamic programming has proven to be a powerful technique for optimization prob-
lems in various domains. Shahzad et al. [27] applied dynamic programming to optimize
computation offloading decisions for stationary edge nodes. Shahzad et al. [27] proposed
a new computational offloading approach using dynamic programming with Hamming
distance termination (DPH) to deal with the limited battery power of mobile devices. When
the network bandwidth is high, DPH offloads as many tasks as possible to the cloud,
enhancing task execution time and reducing the mobile device’s energy usage. Moreover,
DPH is scalable and can efficiently handle larger offloading problems. Their results showed
that the DPH approach achieved minimum energy consumption.

Hybrid approaches that combine multiple optimization techniques have been explored
in the context of resource offloading. Wang et al. [28] presented a hybrid algorithm that
combined genetic algorithms and integer programming for the purposes of offloading
decisions in static edge computing environments. The work enhanced user satisfaction,
directly impacting the profitability and reputation of service providers. To achieve this,
the authors addressed the task offloading issue within the context of edge–cloud cooper-

Drones 2023, 7, 622 5 of 23

ative computing. The proposed model deployed an integer genetic algorithm. Through
experiments, the authors demonstrated that the method yielded superior results regarding
resource efficiency. While the study demonstrated enhanced resource allocation, it did
not investigate the application of hybrid approaches for tackling the unique challenges of
flying fog computing-based IoT networks.

Reddy et al. [29] presented a task offloading and scheduling method inspired by an
osmotic process. This algorithm involved classifying devices and tasks and subsequently
assigning tasks to the appropriate nodes according to their capacity. The proposed osmotic-
based scheduling algorithm demonstrated significantly superior performance compared
to traditional random and round-robin task offloading algorithms. The comparison was
conducted using synthetic data sets, confirming the effectiveness of the proposed approach
compared to other algorithms.

Lakhan et al. [30] focused on allocating fog resources in a fog-enabled software-defined
network (SDN) consisting of multiple fog nodes. The problem involved meeting strict
constraints like mobility, deadlines, and resource capacity while executing applications.
The work proposed a container-based approach to enhance fog network performance by
reducing latency and energy consumption. Within this approach, they introduced a deep-
learning–Q-network approach comprising components like mobility control and resource
searching for allocating resources. Their results demonstrated that the developed approach
outperformed other approaches and models proposed by other studies, achieving a 30%
improvement in application costs.

Fog empowers vehicular ad hoc network evolution; however, balancing the load
among fog nodes in such systems is challenging. This devastates the availability of network
services and the effectiveness with which resources are used. Thanedar et al. [31] considered
this issue by presenting a dynamic resource management (DRM) method that used service
migration between nodes to allocate fog resources to autonomous cars. The problem is
solved in polynomial time (modeled as a graph). The suggested method considered a set of
cars in the overlapping coverage regions of the fog nodes and established communication
with the appropriate fog nodes. Extensive simulations were run on the DRM, and the results
of these simulations revealed improved capacity, maintainability, accessibility, availability,
and throughput.

Hosseini et al. [32] addressed task scheduling in mobile fog computing to handle
resource limitations in mobile devices. The existing research on scheduling in fog nodes
lacks an in-depth exploration of multiple criteria. The authors addressed this challenge
by introducing a scheduling algorithm that combined priority queue and fuzzy logic. The
proposed model considered various aspects, including delay, energy, RAM usage, and
deadlines, and achieved better results than existing algorithms. The proposed algorithm
significantly improved fog computing efficiency, reducing delay and energy consumption
while enhancing the service level.

Flying fog is a promising paradigm for IoT networks. It is an emerging research area
with potential advantages for extending the capabilities of IoT networks through mobile
fog nodes (e.g., drones). While this technology holds promise, researchers have addressed
several main problems and issues to make it more practical and effective. A summary of
these issues can be seen below [15,16,33]:

a. Mobility and connectivity management: Managing the movement of flying fog
nodes and ensuring seamless connectivity with ground-based IoT devices present
challenges. Effective handover mechanisms and protocols are needed to maintain
connectivity as the drones move.

b. Energy constraints: Flying fog nodes are typically powered by batteries with limited
capacity. Prolonged flight durations and data processing tasks may drain energy
quickly. Energy-efficient strategies for flight planning, task allocation, and communi-
cation are essential.

Drones 2023, 7, 622 6 of 23

c. Resource allocation: Optimally allocating computing, storage, and communication re-
sources among multiple flying fog units and IoT nodes is complex. Resource management
algorithms must be designed to handle dynamic and heterogeneous environments.

d. Communication latency and bandwidth: Low latency is critical for real-time IoT
applications. The limited wireless communication bandwidth between flying fog
nodes and ground devices can impact data transmission and processing delays.

e. Security and privacy: Flying fog nodes introduce new security challenges due to
their mobility and potential vulnerability to physical attacks. Ensuring data privacy,
authentication, and secure communication between nodes is paramount.

f. Scalability: The network must scale efficiently due to the growth in IoT and flying fog
devices. The architecture and protocols must be scalable to accommodate growing
connected devices.

g. Fault tolerance and reliability: In dynamic environments, flying fog nodes may
encounter various challenges, such as signal interference, adverse weather condi-
tions, or mechanical failures. Mechanisms for fault tolerance and reliable operations
are crucial.

h. Regulatory and legal considerations: Deploying flying fog nodes in urban areas may
involve compliance with aviation regulations, privacy laws, and safety standards. Under-
standing and adhering to these requirements is necessary for practical implementations.

i. Cost and deployment challenges: The cost of flying fog nodes, their maintenance,
and the logistics of deploying them at scale can be significant barriers to adoption.
Developing cost-effective and easily deployable solutions is essential.

j. Integration with existing IoT ecosystems: Integrating flying fog technology with ex-
isting IoT infrastructure and protocols is complex. Compatibility and interoperability
must be considered to leverage the full potential of both technologies.

This work addresses these challenges’ first, second, and fourth issues due to the
following reasons.

• These challenges are closely related to our major focus and work objectives. These
specific challenges have a direct impact on our main problem and are an important
component of our research area.

• Our review of the available literature and early investigations demonstrated that
these three issues have significance to IoT applications and should be prioritized. By
addressing these specific gaps, we may also give useful insights and solutions to the
scientific community.

• Each of the chosen tasks has numerous issues that must be thoroughly investigated.
We may provide a more extensive analysis and propose well-founded ways to address
these difficulties effectively by reducing our focus.

• Addressing all possible difficulties within a single research article may result in a lack
of practicality or answers that are too broad in some circumstances. We want to make
recommendations that practitioners and researchers may easily put into action.

Few research works have considered flying fog for IoT, and none have considered
proposing an optimized offloading model for this paradigm.

3. Proposed Flying Fog-Based IoT Model

The proposed model consists of a set of IoT nodes distributed over a geographical
area. IoT nodes gather data from the surroundings and always have data to be processed.
The proposed model deploys a set of flying nodes, i.e., micro-drones, to provide either a
wireless interface or assist IoT nodes in processing their data. The deployed drones are
organized into two main sets: relay drones and flying fog drones.

Relay drones are deployed to provide wireless interfaces to IoT nodes or other de-
ployed drones. They act as relays to move data from IoT nodes to the IoT gateway if IoT
nodes cannot reach the gateway directly. Also, relay drones transfer data between drones
and the IoT gateway. Flying fog drones are drones with mounted fog servers. This set

Drones 2023, 7, 622 7 of 23

of drones is deployed to provide computing resources and assist in processing the data
of IoT nodes. This empowers the network with the various benefits of the distributed
computing paradigm. Figure 1 presents the proposed model for a certain use, namely, a
smart city with heterogeneous applications, where many of IoT gateways are deployed far
away from the IoT nodes. Thus, in this scenario and similar scenarios, many nodes are out
of coverage and need a link with the gateway. In this use case, drones carrying fog nodes
fly over the intended regions to provide the required resources to IoT nodes. The signifi-
cance of introducing flying fog nodes to such a use case can be clearly extracted for dense
deployment-based applications. With massive deployment, even if the gateway is close to
the IoT nodes, the need for computing resources is strong. Moreover, flying fog provides a
high level of system flexibility, mainly in terms of computing, due to drone mobility.

Drones 2023, 7, x FOR PEER REVIEW 7 of 25

3. Proposed Flying Fog-Based IoT Model
The proposed model consists of a set of IoT nodes distributed over a geographical

area. IoT nodes gather data from the surroundings and always have data to be processed.
The proposed model deploys a set of flying nodes, i.e., micro-drones, to provide either a
wireless interface or assist IoT nodes in processing their data. The deployed drones are
organized into two main sets: relay drones and flying fog drones.

Relay drones are deployed to provide wireless interfaces to IoT nodes or other de-
ployed drones. They act as relays to move data from IoT nodes to the IoT gateway if IoT
nodes cannot reach the gateway directly. Also, relay drones transfer data between drones
and the IoT gateway. Flying fog drones are drones with mounted fog servers. This set of
drones is deployed to provide computing resources and assist in processing the data of
IoT nodes. This empowers the network with the various benefits of the distributed com-
puting paradigm. Figure 1 presents the proposed model for a certain use, namely, a smart
city with heterogeneous applications, where many of IoT gateways are deployed far away
from the IoT nodes. Thus, in this scenario and similar scenarios, many nodes are out of
coverage and need a link with the gateway. In this use case, drones carrying fog nodes fly
over the intended regions to provide the required resources to IoT nodes. The significance
of introducing flying fog nodes to such a use case can be clearly extracted for dense de-
ployment-based applications. With massive deployment, even if the gateway is close to
the IoT nodes, the need for computing resources is strong. Moreover, flying fog provides
a high level of system flexibility, mainly in terms of computing, due to drone mobility.

Figure 1. System model.

IoT nodes gather data and process it at a nearby flying fog node, multiple access edge
(MEC) server at the gateway, or remotely at the central cloud server. For the first scenario,
flying fog computing, the fog server in a drone is used for processing data. The fog node
is equipped with computing resources and has the ability to store, process, and analyze
data. The second scenario, MEC computing, involves processing data at the MEC server.

Figure 1. System model.

IoT nodes gather data and process it at a nearby flying fog node, multiple access edge
(MEC) server at the gateway, or remotely at the central cloud server. For the first scenario,
flying fog computing, the fog server in a drone is used for processing data. The fog node is
equipped with computing resources and has the ability to store, process, and analyze data.
The second scenario, MEC computing, involves processing data at the MEC server. In this
case, data is processed at a farther distance, i.e., gateway. In each computing model, the IoT
node offloads its data to the processing server either directly or via a relay point.

The proposed model provides a dynamic infrastructure with many use cases, mainly
for dense IoT-based applications in various domains. This includes the following applica-
tions [34,35]:

a. Smart city applications: Flying fog drones can serve as edge nodes to assist smart
cities. They can support many applications, including traffic management, surveil-
lance, public Internet coverage, and public events, enhancing the efficiency and
responsiveness of urban infrastructure.

b. Agriculture applications: Flying fog can assist IoT nodes deployed to monitor and an-
alyze crop health, soil conditions, and weather patterns. They can provide precision

Drones 2023, 7, 622 8 of 23

agriculture solutions, including targeted irrigation, pest control, and fertilizer appli-
cation. Also, flying fog-based IoT systems can identify and target areas affected by
pests, delivering precise pest control measures while minimizing the use of chemicals.
This approach is environmentally friendly and cost-effective.

c. Environmental monitoring: Flying fog can be used with IoT nodes deployed to
collect environmental data, such as air quality, water quality, and temperature, in
remote or inaccessible locations. These data are valuable for environmental research
and monitoring.

d. Industrial IoT (IIoT) applications: Flying fog nodes can be employed in industrial
settings to monitor equipment health, perform inspections, and collect data on
manufacturing processes. This helps in predictive maintenance, reducing downtime,
and improving efficiency.

The set of flying fog drones is Df, defined in Equation (1), where Nf is the total number
of fog drones used in the system. The set of relay drones is Dr and is defined in Equation
(2), where Nr is the total number of used relay drones.

D f =
{

D1, D2, D3, · · · , DN f

}
∀ N f ∈ R, N f < N, D f ⊂ D, (1)

Dr = {D1, D2, D3, · · · , DNr} ∀ Nr ∈ R, Nr < N, Dr ⊂ D, (2)

D = Dr ∪ D f , (3)

where D is the set of drones used in the systems, and N is the size of the set, i.e., the total
number of system drones. IoT nodes are assumed to have dynamic workloads that need to
be processed, where workloads of devices are independent.

To accomplish a task, the data will be offloaded and processed either at the fog server
when a binary computation offloading decision αi is “1” or at the MEC server when a
binary offloading decision αi is “0”. When the task is transferred to MEC, it goes via a direct
interface or a relay drone.

αi =

{
1 o f f load to f lying f og

0 o f f load to gateway MEC
, (4)

The calculation of the highest data transmission rate achievable for the computation
task over the wireless channel between the IoT node and the relay drone is as follows.

RIoT,drone = w ∗ log2

(
1 +

ε IoT,droneηIoT,drone

σw

)
, (5)

where w represents the bandwidth of the wireless link, ηIoT,drone is the gain of the channel
between IoT node and drone, εIoT,drone is the power rate of drone and IoT nodes, and σ is
the noise power.

4. Computation Model

This section presents the computation model used by the proposed network. IoT
nodes possess K separate computation tasks that require execution. Each computation task
i is described by a tuple {Si, Ci, Ti

constraint}, where Si denotes the workload size, Ci refers to
the CPU cycles needed for the workload of task (i), and Ti

constraint indicates the necessary
time for the task i’s completion.

4.1. Flying Fog Computing

In the scenario, IoT nodes search for available resources at flying fogs to determine
whether they can handle the task. The time taken to transmit a workload of task (i) from
the IoT node to the flying fog j can be formulated as follows:

Ttrans−Ti
IoT− f og−j =

Si
RIoT,drone

∀ i, j ∈ R, j ≤ N f , (6)

Drones 2023, 7, 622 9 of 23

This transmission time mainly depends on the transmission rate and the task size. The
time required to process the ith task in the jth flying fog is formulated as follows:

Tprocess−Ti
drone− f og−j =

Ci
ω f og

∀ i, j ∈ R, j ≤ N f , (7)

where ωfog is the set of computational capabilities of the flying fog j. This time is educed if
the current processing resources are high. The total latency for processing the workload of
the ith task at the jth flying fog can then be calculated as follows:

Ttotal−Ti
drone− f og−j = Ttrans−Ti

IoT− f og−j + Tprocess−Ti
drone− f og−j, (8)

Ttotal−Ti
drone− f og−j =

Si
RIoT,drone

+
Ci

ω f og
∀ i, j ∈ R, j ≤ N f , (9)

4.2. MEC Computing

IoT nodes transfer their data to the MEC server at the gateway for edge–cloud server
computing. This data transfer is performed via a direct link or through a relay drone. The
time taken to transmit a workload of task (i) from the jth drone bridge to the MEC server is
calculated as follows:

Ttrans−Ti
f og−j−MEC =

Si
Rdrone, MEC

∀ i, j ∈ R, j ≤ N f , (10)

where Rdrone, MEC is the achievable rate between the drone and the MEC server. For a
communication interface with a large transmission rate, the delay for transmission between
the drone and IoT node is reduced. The processing delay of task (i) at the MEC server is
calculated as follows based on the MEC allocated processing resources:

Tprocess−Ti
server =

Ci
ωserver

, (11)

where ωserver is the set of processing resources of the MEC. For latency-sensitive applications,
this time should be reduced by allocating more resources. The total delay for processing
the workload of the ith task at the MEC can then be calculated as follows:

Ttotal−Ti
server = Ttrans−Ti

IoT− f og−j + Ttrans−Ti
f og−j−MEC + Tprocess−Ti

server ∀ i, j ∈ R, j ≤ N f , (12)

Due to the completion of the ith task, the communication overhead is calculated
as follows:

Ttotal−overhead
i = αiTtotal−Ti

drone− f og−j + (1− αi)Ttotal−Ti
server , (13)

4.3. Problem Statement

Addressing delay challenges in flying fog computing is critical to enhance IoT network
performance and support ultra-low latency communications. We consider optimizing
offloading strategy to minimize the total delay in task completion. This constrained
optimization problem aims to intelligently allocate computational tasks to appropriate fog
nodes or drones while satisfying specific criteria and limitations. The optimization process
seeks to minimize latency and ensure reliable communication between IoT and fog nodes.
The problem is formulated as follows:

min∑N
i=1 Ttotal

i , (14)

S.T.
C1: Ttotal

i ≤ Tconstraint
i , (15)

C2: αi ∈ {0, 1}, (16)

C3: ωserver ≤ ωserver−max, (17)

Drones 2023, 7, 622 10 of 23

C4: ω f og ≤ ω f og−max (18)

The problem aims to reduce the combined delay (weighted by specific factors) by
optimizing the distribution of tasks through offloading strategies. To achieve this goal, the
study introduces four essential constraints. Firstly, constraint C1 sets upper limits on the
time consumption for the offloading process. By imposing these bounds, we ensure that
the total time taken for task offloading remains within acceptable limits. This constraint
plays a crucial role in maintaining the overall efficiency and responsiveness of the system.

Secondly, constraint C2 is designed to ensure that the decisions regarding task of-
floading are binary. In other words, tasks can either be completely offloaded to the fog,
MEC, or entirely executed on the IoT devices themselves. This binary characteristic of
the offloading decisions contributes to simplifying the optimization process and aids in
achieving more practical and feasible solutions. The other two constraints ensure working
under the maximum capacity of fog and the MEC server’s resources. The third constraint
ensures that the processing status of the MEC unit is less than the full processing capacity.
Also, the fourth constraint ensures that the flying fog nodes unload their processors by
using processors below their maximum capacities. By addressing these constraints, we seek
to devise an effective and efficient approach to task offloading, allowing for a reduction
in delays in the network while maintaining resource utilization and system reliability at
desirable levels.

4.4. Computational Offloading Algorithm

The proposed computational model for the previously proposed flying fog-based IoT
network is based on a dynamic programming technique and hamming distance termina-
tion [27]. In order to determine the best computation offloading choices for a flying fog
computing system, the method provides an all-encompassing process. Initially, IoT nodes
offload the ith workload to a nearby fling fog server when αi = 1 or to the MEC server
when αi = 0. The developed approach is based on dynamic programming using a (K × K)
table, which stores a bit stream. The stored bits indicate the execution server, which is
where workloads will be executed, ensuring task processing at the nearby server (either
fog or MEC).

The first cell in the table is always left empty, and the other cells are filled with the
generated random bit streams as ones (1) in the upcoming horizontal unit and zeros (0) in
the upcoming vertical unit. From the table, we can calculate the delay of each task by using
each cell; 0 s for the flying fog computing case, and 1 s for the MEC server computing case.
This choice is made due to the following reasons:

• Achieving a neutral initial state: Leaving the first cell empty signifies a neutral or
undefined starting state for the dynamic offloading decision process. In dynamic
offloading, there might not be a clear initial decision or offloading strategy until the
algorithm begins evaluating the tasks and their characteristics.

• Random exploration: Filling subsequent cells with random bit streams can introduce
an element of randomness or variability into the initial state. This randomness may be
useful for exploring different offloading strategies or scenarios, especially when the
optimal offloading decision is uncertain or context-dependent.

• Task dynamics: In dynamic offloading scenarios, the characteristics of computing
tasks, network conditions, and device capabilities can change over time. Using random
bit streams might simulate the evolving nature of these parameters, allowing the algo-
rithm to adapt and make dynamic offloading decisions based on simulated changes.

• Algorithm flexibility: By initializing with randomness, the algorithm is not pushed to-
ward any particular offloading decision at the start. This approach provides flexibility
to adapt to various tasks and network conditions encountered during the dynamic
offloading process.

• Algorithm exploration: Dynamic programming algorithms often involve exploring
different states and transitions to find optimal solutions. The randomness in the

Drones 2023, 7, 622 11 of 23

initialization can lead to diverse paths of exploration, helping the algorithm identify
suitable offloading decisions.

The algorithm iteratively updates the dynamic programming table to identify the opti-
mal offloading strategy as it considers various combinations of tasks, states, and transitions.
The pseudo-code of the developed offloading model is presented in Algorithm 1.

Algorithm 1. The flying fog-based computation offloading algorithm using dynamic programming.

Input data: Ti
constraint, Rdrone, MEC, and Rdrone, IoT

1. InitializeTimeMatrices()
2. SetCompletionDeadline(Ti

constraint)
3. SetTransmissionRate(Rdrone, MEC, Rdrone, IoT)
4. GenerateRandomTask()
5. randomBitStream = GenerateRandomBitStream()
6. Drone_FogDelay = CalculateDelayAt-Drone-Fog(randomBitStream)
7. MECServerDelay = CalculateDelayAtMECServer(randomBitStream)
8. If (randomBitStream [0] == 1):
9. StartCell = Drone_FogDelay
10. Else
11. StartCell = MECServerDelay
12. End if
13. For (i = 0: K − 1)
14. If (randomBitStream[i] == 1):
15. randomBitStream[i] = GenerateRandomBit()
16. End if
17. PutBitInCorrectPosition(randomBitStream[i], Table)
18. If CellVisitedBefore (Table):
19. If (NewTotalDelay < PreviousTotalDelay):
20. ReplaceTotalDelayWithNew(Table)
21. CalculateRemainingBitStreamDelay(Table)
22. Else
23. KeepPreviousTotalDelay(Table)
24. CalculateRemainingCellDelay(Table)
25. End if
26. End if
27. End for
28. If ((NumberOfBitsInTable == N) & (Ttotal < T_iconstraint) & (HammingDistanceCriterionMet)):
29. Return (Ttotal)
30. End if
31. End

5. Developed Testbed for System Evaluation

The Doppler effect occurs when relative motion between a source and an observer
exists. It causes a change in the frequency or wavelength of the wave as perceived by the
observer, moving towards or away from the source. It plays a significant role in wireless
communication systems, especially mobile devices and fast-moving objects. Understanding
and mitigating the effects of Doppler shifts is crucial for ensuring reliable and efficient
communication [36].

Significant Doppler shift fluctuations are introduced when the drone is used as a relay,
which impacts the system as follows [36,37]:

1. Frequency shift: The relative motion between the drone and IoT nodes or between
a drone and another causes a Doppler shift in the received signal’s frequency. This
frequency shift can lead to a deviation from the expected frequency, which may result
in signal distortions and errors.

2. Doppler spread: As drones/devices move, the Doppler effect affects different parts of
the transmitted signal differently. Some parts may experience a positive frequency
shift, while others may have a negative one. This spread of frequencies is referred to

Drones 2023, 7, 622 12 of 23

as Doppler spread, which depends on the relative velocity between the transmitter
and the receiver. This spread can cause frequency-selective fading and interference
between symbols in the received signal, leading to inter-symbol interference (ISI) and
impacting the data transmission reliability.

3. Fading and signal loss: The Doppler effect’s frequency shifts can lead to fading, where
the received signal strength fluctuates rapidly over time. This fading can cause a
momentary loss of signal or reduced signal quality, leading to dropped calls, data
packet errors, or reduced data rates in IoT systems.

Doppler shifts with time lag are most noticeable in drone-based scenarios. The rate
and pattern of the channel’s growth also change over time. This occurs for several reasons,
the most significant of which are the Doppler shifts brought on by the interaction of drones
and IoT nodes in the multipath channel. The delay and Doppler spectra in the channel are
influenced by other factors, including the radiation pattern of the antenna and the dynamic
changes in individual multipath propagation components (MPCs) [38].

The proposed flying fog-based IoT model should implement a compensation technique
to overcome the challenges posed by the Doppler effect. The gain and phase shifts of
individual MPCs are just two examples of channel properties that complex time-varying
processes can describe. More MPC parameters need to be estimated for a more precise
estimation of the channel model. The channel between mobile entities in a flying fog-based
IoT system has a continuous function impulse response, denoted by h(t), at which a signal
is transmitted and processed. It is calculated as the aggregation of MPCs as follows [38]:

h(t, T) = ∑p
p=1 hp(t)δ

(
τ − τp(t)

)
, (19)

where p represents the specific MPC, T represents the transmission time of the signal, and t
represents the processing time of the signal. The impulse response of the beam p is the hp(t)
component, which is calculated as follows:

hp(t) = ηpη̂p(t)ej(2πv(t)+φ(t)), (20)

where ηp is the attenuation factor of the beam p, and v(t) is the value of the Doppler effect.
Then, the received signal r(t) can be calculated as follows:

r(t) = s(t)× h(t), (21)

r(t) =
∫ ∞

−∞
h(t, t− τ)s(τ)d(τ) = ∑p

p=1 hp(t)(s)(t− τ) ∀ t = mT, m = 1, 2, 3, · · · (22)

In this work, we deployed drones to expand the IoT network coverage and assist
IoT nodes by providing computing resources. However, the work aims to maintain the
QoS of all communications held over the proposed model. To evaluate flying fog-based
terrestrial networks, including the considered flying fog-based IoT network, we modified
our previously developed emulator (introduced in [38]).

The emulator implements the radio channel between drones and IoT nodes and
compensates for the previously introduced channel effects. The emulator deploys software-
defined radio (SDR) technology to achieve the following benefits [38,39]:

a. Flexibility and adaptability: SDR allows for flexible and adaptable radio communi-
cation systems. This flexibility enables easy reconfiguration and updates, making
it possible to support multiple communication standards and protocols with the
same hardware.

b. Reduced hardware complexity: SDR reduces the need for specialized hardware
components for different radio applications. With SDR, much of the functionality is
implemented in software, simplifying the hardware design and reducing the number
of physical devices required.

c. Cost-effectiveness: The use of common hardware for multiple communication stan-
dards and the ability to reconfigure devices through software updates can lead to
cost savings in the long run. SDR eliminates the need to replace or upgrade hardware

Drones 2023, 7, 622 13 of 23

for each new communication standard, which is particularly beneficial in rapidly
evolving technology landscapes.

d. Interoperability: SDR allows for seamless interoperability between different radio
systems and protocols. By reconfiguring the software, an SDR device can communi-
cate with various existing communication standards, enabling better coordination
and compatibility between different systems.

e. Enhanced performance: SDR enables the implementation of advanced signal process-
ing techniques such as digital filtering, error correction, and adaptive modulation.
These capabilities can improve signal quality, increase data rates, and improve over-
all performance.

f. Rapid prototyping and development: Developing and prototyping new radio sys-
tems is faster and more straightforward with SDR. Researchers can quickly modify
and test new algorithms and protocols in software without requiring extensive hard-
ware changes.

g. Spectrum efficiency: SDR allows for dynamic spectrum access, where the radio
system can intelligently adapt its frequency and bandwidth usage based on the
current spectrum availability. This feature enhances spectrum efficiency and makes
better use of available resources.

h. Reducing energy consumption: SDR systems can optimize power consumption
by dynamically adjusting signal processing and transmission parameters. This
adaptability can lead to energy-efficient radio communications.

i. Remote management and monitoring: With SDR, remote management and the
monitoring of radio devices have become easier. Software updates, performance
monitoring, and troubleshooting can be carried out remotely, reducing the need for
physical intervention.

The emulator was implemented using a universal software radio peripheral (USRP)
module, USRP 2954, with the specifications introduced in [40]. The emulator employs a 0.01
to 6 GHz channel with a 160 MHz channel bandwidth. The proposed real-time emulator
deploys an embedded FPGA kit that executes the signal processing operations, including
the convolution process of Equation (22). The detailed description of the proposed emulator
was introduced in [38]. A block diagram of the transmit–receive process over the proposed
emulator is shown in Figure 2.

Drones 2023, 7, x FOR PEER REVIEW 15 of 25

Figure 2. Block diagram of the transmit–receive process over the proposed emulator [38].

6. Simulation and Results
The proposed flying fog-based IoT model and the developed offloading scheme were

evaluated using simulation and emulation processes. In this section, we introduce and
discuss the obtained results. We first simulated the system for various scenarios and then
emulated some scenarios. The emulator was limited in terms of hardware; thus, not all
scenarios could be emulated (e.g., dense deployment scenario).

6.1. Simulation Evaluation
The system was simulated using Matlab for the network with the specifications in-

troduced in Table 1. A network of fifty randomly distributed IoT nodes and a single cen-
tralized gateway was simulated. Figure 3 presents the recorded delay versus transmission
data rate for MEC and flying fog servers. The delay decreases whenever the transmission
data rate increases for all IoT nodes offloading to either a fog or MEC server. However,
the delay achieved by flying fog handling is longer than that of the ground MEC unit
dedicated to the gateway. This is due to the larger communication distances and limited
computational capabilities.

Table 1. Simulation parameters.

Parameter Value
Nf 5
Si ϵ [10–30] MB
Nr 5
Ci 1900 Cycle/s

Ticonstraint 2 ms
RIoT,Drone, RDrone, IoT, RDrone-MEC ϵ [3–9] Mbps

ωfog ϵ [0.5–3] GHz
ωMEC ϵ [12–15] GHz

Figure 2. Block diagram of the transmit–receive process over the proposed emulator [38].

Drones 2023, 7, 622 14 of 23

6. Simulation and Results

The proposed flying fog-based IoT model and the developed offloading scheme were
evaluated using simulation and emulation processes. In this section, we introduce and
discuss the obtained results. We first simulated the system for various scenarios and then
emulated some scenarios. The emulator was limited in terms of hardware; thus, not all
scenarios could be emulated (e.g., dense deployment scenario).

6.1. Simulation Evaluation

The system was simulated using Matlab for the network with the specifications intro-
duced in Table 1. A network of fifty randomly distributed IoT nodes and a single centralized
gateway was simulated. Figure 3 presents the recorded delay versus transmission data
rate for MEC and flying fog servers. The delay decreases whenever the transmission
data rate increases for all IoT nodes offloading to either a fog or MEC server. However,
the delay achieved by flying fog handling is longer than that of the ground MEC unit
dedicated to the gateway. This is due to the larger communication distances and limited
computational capabilities.

Table 1. Simulation parameters.

Parameter Value

Nf 5
Si ε [10–30] MB
Nr 5
Ci 1900 Cycle/s

Ti
constraint 2 ms

RIoT,Drone, RDrone, IoT, RDrone-MEC ε [3–9] Mbps
ωfog ε [0.5–3] GHz

ωMEC ε [12–15] GHz
Drones 2023, 7, x FOR PEER REVIEW 16 of 25

Figure 3. Delay vs. data rate.

Moreover, Figure 4 provides the recorded delay versus computational capability in
the case of flying fog computing and MEC server computing. With the increased compu-
tational capability of the handling server, the total required delay decreased in both cases.
This is due to the reduction in processing time. Also, flying fog computing takes slightly
longer due to higher communication distances.

Figure 4. Delay vs. computational capability.

Figure 3. Delay vs. data rate.

Drones 2023, 7, 622 15 of 23

Moreover, Figure 4 provides the recorded delay versus computational capability in the
case of flying fog computing and MEC server computing. With the increased computational
capability of the handling server, the total required delay decreased in both cases. This is
due to the reduction in processing time. Also, flying fog computing takes slightly longer
due to higher communication distances.

Drones 2023, 7, x FOR PEER REVIEW 16 of 25

Figure 3. Delay vs. data rate.

Moreover, Figure 4 provides the recorded delay versus computational capability in
the case of flying fog computing and MEC server computing. With the increased compu-
tational capability of the handling server, the total required delay decreased in both cases.
This is due to the reduction in processing time. Also, flying fog computing takes slightly
longer due to higher communication distances.

Figure 4. Delay vs. computational capability. Figure 4. Delay vs. computational capability.

Figures 5 and 6 provide the average delay with the change in data size and number of
available tasks. The average delay increased linearly with the increase in the data size and
number of IoT tasks. The delay, in the case of flying fog computing, is considerably longer
than the delay of handling at the MEC server because of the higher computation capacity of
the MEC server and the lower communication distances. The longer delays introduced in
flying fog computation are reasonable compared to the other benefits that could be enjoyed.
Also, this increase does not affect the QoS because the proposed model introduces a time
constraint to handle tasks in a way that meets the QoS requirements. After this time, the
task is terminated. Accordingly, to reduce the delay of flying fog computation, we need to
increase the flying fog computational capacity or the number of fog nodes.

To evaluate the effect of changing the number of deployed flying fog drones on the
delay, we simulated a cluster of the IoT using a variable number of flying fog drones.
Figure 7 presents the average delay in handling IoT tasks using different numbers of flying
fog units. As the number of flying fog drones increases, the delay decreases considerably.

For dense deployment, we simulated the system at different IoT nodes for the same
number of flying fog and relay drones. We simulated two systems: the proposed flying
fog drone-based IoT and the MEC-based IoT without drone assistance. Figure 8 provides
the average latency for both systems. Introducing flying fog drones provides additional
computing resources, which reduces the average delay by a considerable value. This is
mainly applicable to a larger number of deployed devices. Figure 9 provides the blocking
rate of tasks, which is reduced by introducing flying fog.

6.2. Experimental Evaluation

We set up a testbed using our proposed emulator and the structure presented in
Figure 10. The testbed deploys three USRPs connected to a workstation. The system uses a

Drones 2023, 7, 622 16 of 23

40 MHz channel, a sampling rate of 0.4 GHz, and a 16 QAM modulation scheme. Figure 11
presents the real hardware used for implementation.

Drones 2023, 7, x FOR PEER REVIEW 17 of 25

Figures 5 and 6 provide the average delay with the change in data size and number
of available tasks. The average delay increased linearly with the increase in the data size
and number of IoT tasks. The delay, in the case of flying fog computing, is considerably
longer than the delay of handling at the MEC server because of the higher computation
capacity of the MEC server and the lower communication distances. The longer delays
introduced in flying fog computation are reasonable compared to the other benefits that
could be enjoyed. Also, this increase does not affect the QoS because the proposed model
introduces a time constraint to handle tasks in a way that meets the QoS requirements.
After this time, the task is terminated. Accordingly, to reduce the delay of flying fog com-
putation, we need to increase the flying fog computational capacity or the number of fog
nodes.

Figure 5. Delay vs. data size. Figure 5. Delay vs. data size.

Drones 2023, 7, x FOR PEER REVIEW 18 of 25

Figure 6. Delay vs. number of tasks.

To evaluate the effect of changing the number of deployed flying fog drones on the
delay, we simulated a cluster of the IoT using a variable number of flying fog drones.
Figure 7 presents the average delay in handling IoT tasks using different numbers of fly-
ing fog units. As the number of flying fog drones increases, the delay decreases consider-
ably.

Figure 7. Delay vs. the number of flying fog drones.

Figure 6. Delay vs. number of tasks.

Drones 2023, 7, 622 17 of 23

Drones 2023, 7, x FOR PEER REVIEW 18 of 25

Figure 6. Delay vs. number of tasks.

To evaluate the effect of changing the number of deployed flying fog drones on the
delay, we simulated a cluster of the IoT using a variable number of flying fog drones.
Figure 7 presents the average delay in handling IoT tasks using different numbers of fly-
ing fog units. As the number of flying fog drones increases, the delay decreases consider-
ably.

Figure 7. Delay vs. the number of flying fog drones. Figure 7. Delay vs. the number of flying fog drones.

Drones 2023, 7, x FOR PEER REVIEW 19 of 25

For dense deployment, we simulated the system at different IoT nodes for the same
number of flying fog and relay drones. We simulated two systems: the proposed flying
fog drone-based IoT and the MEC-based IoT without drone assistance. Figure 8 provides
the average latency for both systems. Introducing flying fog drones provides additional
computing resources, which reduces the average delay by a considerable value. This is
mainly applicable to a larger number of deployed devices. Figure 9 provides the blocking
rate of tasks, which is reduced by introducing flying fog.

Figure 8. Latency vs. number of IoT nodes.

Figure 9. Blocking rate vs. number of IoT nodes.

6.2. Experimental Evaluation
We set up a testbed using our proposed emulator and the structure presented in Fig-

ure 10. The testbed deploys three USRPs connected to a workstation. The system uses a
40 MHz channel, a sampling rate of 0.4 GHz, and a 16 QAM modulation scheme. Figure
11 presents the real hardware used for implementation.

Figure 8. Latency vs. number of IoT nodes.

Drones 2023, 7, x FOR PEER REVIEW 19 of 25

For dense deployment, we simulated the system at different IoT nodes for the same
number of flying fog and relay drones. We simulated two systems: the proposed flying
fog drone-based IoT and the MEC-based IoT without drone assistance. Figure 8 provides
the average latency for both systems. Introducing flying fog drones provides additional
computing resources, which reduces the average delay by a considerable value. This is
mainly applicable to a larger number of deployed devices. Figure 9 provides the blocking
rate of tasks, which is reduced by introducing flying fog.

Figure 8. Latency vs. number of IoT nodes.

Figure 9. Blocking rate vs. number of IoT nodes.

6.2. Experimental Evaluation
We set up a testbed using our proposed emulator and the structure presented in Fig-

ure 10. The testbed deploys three USRPs connected to a workstation. The system uses a
40 MHz channel, a sampling rate of 0.4 GHz, and a 16 QAM modulation scheme. Figure
11 presents the real hardware used for implementation.

Figure 9. Blocking rate vs. number of IoT nodes.

Drones 2023, 7, 622 18 of 23Drones 2023, 7, x FOR PEER REVIEW 20 of 25

Figure 10. Testbed structure.

Figure 11. Hardware implementation.

Figures 12 and 13 present the cumulative distribution function (CDF) of average de-
lays for both considered computing paradigms. Figure 12 presents the CDF of delay for
the task handling at the flying fog drone; however, Figure 13 presents the results for task
execution at MEC. The average delay of task handling at the flying fog exceeds that of the
MEC due to the greater capabilities. However, this latency cost achieves higher connec-
tivity and system availability. Figure 14 presents the individual measurements of delays
at different sizes of served tasks for both flying fog and MEC. The results are presented at
a confidence interval of 0.99.

Figure 10. Testbed structure.

Drones 2023, 7, x FOR PEER REVIEW 20 of 25

Figure 10. Testbed structure.

Figure 11. Hardware implementation.

Figures 12 and 13 present the cumulative distribution function (CDF) of average de-
lays for both considered computing paradigms. Figure 12 presents the CDF of delay for
the task handling at the flying fog drone; however, Figure 13 presents the results for task
execution at MEC. The average delay of task handling at the flying fog exceeds that of the
MEC due to the greater capabilities. However, this latency cost achieves higher connec-
tivity and system availability. Figure 14 presents the individual measurements of delays
at different sizes of served tasks for both flying fog and MEC. The results are presented at
a confidence interval of 0.99.

Figure 11. Hardware implementation.

Figures 12 and 13 present the cumulative distribution function (CDF) of average delays
for both considered computing paradigms. Figure 12 presents the CDF of delay for the task
handling at the flying fog drone; however, Figure 13 presents the results for task execution
at MEC. The average delay of task handling at the flying fog exceeds that of the MEC due
to the greater capabilities. However, this latency cost achieves higher connectivity and
system availability. Figure 14 presents the individual measurements of delays at different
sizes of served tasks for both flying fog and MEC. The results are presented at a confidence
interval of 0.99.

Drones 2023, 7, 622 19 of 23

Drones 2023, 7, x FOR PEER REVIEW 21 of 25

The mobility of the drone affects the data reliability of the system. This is due to the
change in channel characteristics (e.g., the Doppler effect). Figure 15 presents the total
packet loss at different drone speeds.

Both sets of results obtained from the simulation and emulation processes support
each other. We considered the emulation after simulation processes to ensure the obtained
results for near real scenarios. The results for latency and reliability matched in both con-
sidered evaluation methodologies. These results validate the developed model in terms
of reliability and latency.

Figure 12. CDF of delay for task handling at the flying fog drone.

Figure 13. CDF of delay for task handling at MEC.

Figure 12. CDF of delay for task handling at the flying fog drone.

Drones 2023, 7, x FOR PEER REVIEW 21 of 25

The mobility of the drone affects the data reliability of the system. This is due to the
change in channel characteristics (e.g., the Doppler effect). Figure 15 presents the total
packet loss at different drone speeds.

Both sets of results obtained from the simulation and emulation processes support
each other. We considered the emulation after simulation processes to ensure the obtained
results for near real scenarios. The results for latency and reliability matched in both con-
sidered evaluation methodologies. These results validate the developed model in terms
of reliability and latency.

Figure 12. CDF of delay for task handling at the flying fog drone.

Figure 13. CDF of delay for task handling at MEC. Figure 13. CDF of delay for task handling at MEC.

Drones 2023, 7, 622 20 of 23
Drones 2023, 7, x FOR PEER REVIEW 22 of 25

Figure 14. Delay vs. data size. Fly fog computing (FFC); edge–cloud server (ECS).

Figure 15. Packet loss at different speeds of the drone.

7. Conclusions
In this work, we addressed the growing demand for low-latency and high-through-

put applications in the context of the rapid proliferation of IoT devices. We introduced the
concept of flying fog computing, a promising solution that leverages drones equipped
with fog nodes to enable data processing and storage closer to the network edge. This
demonstrates various benefits over traditional static edge computing paradigms, includ-
ing coverage improvement, enabling dense deployment and increasing availability and
reliability within IoT networks. We developed a novel offloading model using dynamic
programming to harness the full potential of flying fog-based IoT networks. The key fac-
tors considered in this decision-making process were the computational capacity of the
fog nodes, the communication constraints of the IoT devices, and the latency require-
ments. Extensive simulations and experiments were conducted to evaluate our developed

Figure 14. Delay vs. data size. Fly fog computing (FFC); edge–cloud server (ECS).

The mobility of the drone affects the data reliability of the system. This is due to the
change in channel characteristics (e.g., the Doppler effect). Figure 15 presents the total
packet loss at different drone speeds.

Drones 2023, 7, x FOR PEER REVIEW 22 of 25

Figure 14. Delay vs. data size. Fly fog computing (FFC); edge–cloud server (ECS).

Figure 15. Packet loss at different speeds of the drone.

7. Conclusions
In this work, we addressed the growing demand for low-latency and high-through-

put applications in the context of the rapid proliferation of IoT devices. We introduced the
concept of flying fog computing, a promising solution that leverages drones equipped
with fog nodes to enable data processing and storage closer to the network edge. This
demonstrates various benefits over traditional static edge computing paradigms, includ-
ing coverage improvement, enabling dense deployment and increasing availability and
reliability within IoT networks. We developed a novel offloading model using dynamic
programming to harness the full potential of flying fog-based IoT networks. The key fac-
tors considered in this decision-making process were the computational capacity of the
fog nodes, the communication constraints of the IoT devices, and the latency require-
ments. Extensive simulations and experiments were conducted to evaluate our developed

Figure 15. Packet loss at different speeds of the drone.

Both sets of results obtained from the simulation and emulation processes support
each other. We considered the emulation after simulation processes to ensure the obtained
results for near real scenarios. The results for latency and reliability matched in both
considered evaluation methodologies. These results validate the developed model in terms
of reliability and latency.

Drones 2023, 7, 622 21 of 23

7. Conclusions

In this work, we addressed the growing demand for low-latency and high-throughput
applications in the context of the rapid proliferation of IoT devices. We introduced the con-
cept of flying fog computing, a promising solution that leverages drones equipped with fog
nodes to enable data processing and storage closer to the network edge. This demonstrates
various benefits over traditional static edge computing paradigms, including coverage
improvement, enabling dense deployment and increasing availability and reliability within
IoT networks. We developed a novel offloading model using dynamic programming to
harness the full potential of flying fog-based IoT networks. The key factors considered in
this decision-making process were the computational capacity of the fog nodes, the commu-
nication constraints of the IoT devices, and the latency requirements. Extensive simulations
and experiments were conducted to evaluate our developed algorithm’s performance. The
proposed flying fog model outperformed traditional static edge computing. It reduced the
average rate of task blocking and the latency required to handle IoT tasks.

Author Contributions: Conceptualization, A.A.A., A.M., M.E., and W.M.; methodology, A.A.A.,
A.K., A.M., and A.A.A.E.-L.; software, A.A.A., A.K., W.M., and A.M.; validation, A.A.A., M.S.A.M.,
A.K., W.M., and A.A.A.E.-L.; formal analysis, A.A.A., A.M., M.S.A.M., A.K., and W.M.; investi-
gation, A.A.A., A.K., and A.M.; resources, A.A.A.E.-L., A.M., W.M., and A.A.A.; data curation,
M.S.A.M., A.M., and A.A.A.E.-L.; writing—original draft preparation, A.A.A., A.K., A.M., and W.M.;
writing—review and editing, M.S.A.M., A.A.A., A.M., and A.A.A.E.-L.; visualization, A.A.A., A.M.,
and A.A.A.E.-L.; supervision, W.M. and A.M.; project administration, A.A.A. and A.A.A.E.-L.; fund-
ing acquisition, W.M. All authors have read and agreed to the published version of the manuscript.

Funding: This work was supported by The National Key Research and Development Program of
China (2021YFB3301000) and The Chongqing Talent Plan Project (cstc2021ycjh-bgzxm0206).

Data Availability Statement: The data are contained within the article and/or available from the
corresponding author upon reasonable request.

Acknowledgments: The authors would like to acknowledge the support of Prince Sultan Univer-
sity, Riyadh, Saudi Arabia, in part to acknowledge the support by the RUDN University Strategic
Academic Leadership Program (recipient Abdukodir Khakimov).

Conflicts of Interest: The authors declare no conflict of interest.

References
1. Furstenau, L.B.; Rodrigues, Y.P.R.; Sott, M.K.; Leivas, P.; Dohan, M.S.; López-Robles, J.R.; Cobo, M.J.; Bragazzi, N.L.; Choo,

K.-K.R. Internet of Things: Conceptual Network Structure, Main Challenges and Future Directions. Digit. Commun. Netw. 2023, 9,
677–687. [CrossRef]

2. Ateya, A.A.; Algarni, A.D.; Hamdi, M.; Koucheryavy, A.; Soliman, N.F. Enabling Heterogeneous IoT Networks over 5G Networks
with Ultra-Dense Deployment—Using MEC/SDN. Electronics 2021, 10, 910. [CrossRef]

3. Jin, B.; Long, F.; Xia, F.; Chen, S.; Xu, H.; Zhan, W.; Feng, W.; Zhang, R. Advantages of 5G Slicing technology in the internet of
things. In Proceedings of the 2023 IEEE International Conference on Integrated Circuits and Communication Systems (ICICACS),
Raichur, India, 24–25 February 2023; pp. 1–5.

4. Qadir, Z.; Le, K.N.; Saeed, N.; Munawar, H.S. Towards 6G Internet of Things: Recent Advances, Use Cases, and Open Challenges.
ICT Express 2023, 9, 296–312. [CrossRef]

5. Ateya, A.A.; Muthanna, A.; Koucheryavy, A.; Maleh, Y.; El-Latif, A.A.A. Energy Efficient Offloading Scheme for MEC-Based
Augmented Reality System. Cluster Comput. 2023, 26, 789–806. [CrossRef]

6. Bhatia, S.; Mallikarjuna, B.; Gautam, D.; Gupta, U.; Kumar, S.; Verma, S. The Future IoT: The current generation 5G and next
generation 6G and 7G technologies. In Proceedings of the 2023 International Conference on Device Intelligence, Computing and
Communication Technologies, (DICCT), Dehradun, India, 17–18 March 2023; pp. 212–217.

7. Jamshed, M.A.; Ali, K.; Abbasi, Q.H.; Imran, M.A.; Ur-Rehman, M. Challenges, Applications, and Future of Wireless Sensors in
Internet of Things: A Review. IEEE Sens. J. 2022, 22, 5482–5494. [CrossRef]

8. You, K.Y. A Summary on 5G and Future 6G Internet of Things. In Advances in Wireless Technologies and Telecommunication; IGI
Global: Hershey, PA, USA, 2023; pp. 196–243. ISBN 9781799892663.

9. Fortino, G.; Savaglio, C.; Spezzano, G.; Zhou, M. Internet of Things as System of Systems: A Review of Methodologies,
Frameworks, Platforms, and Tools. IEEE Trans. Syst. Man Cybern. Syst. 2021, 51, 223–236. [CrossRef]

https://doi.org/10.1016/j.dcan.2022.04.027
https://doi.org/10.3390/electronics10080910
https://doi.org/10.1016/j.icte.2022.06.006
https://doi.org/10.1007/s10586-022-03914-7
https://doi.org/10.1109/JSEN.2022.3148128
https://doi.org/10.1109/TSMC.2020.3042898

Drones 2023, 7, 622 22 of 23

10. Sefati, S.S.; Halunga, S. Ultra-reliability and Low-latency Communications on the Internet of Things Based on 5G Network:
Literature Review, Classification, and Future Research View. Trans. Emerg. Telecommun. Technol. 2023, 34, e4770. [CrossRef]

11. Ateya, A.A.; Ali Alhussan, A.; Abdallah, H.A.; Al duailij, M.A.; Khakimov, A.; Muthanna, A. Edge Computing Platform with
Efficient Migration Scheme for 5G/6G Networks. Comput. Syst. Sci. Eng. 2023, 45, 1775–1787. [CrossRef]

12. Hazra, A.; Rana, P.; Adhikari, M.; Amgoth, T. Fog Computing for Next-Generation Internet of Things: Fundamental, State-of-the-
Art and Research Challenges. Comput. Sci. Rev. 2023, 48, 100549. [CrossRef]

13. Apat, H.K.; Nayak, R.; Sahoo, B. A Comprehensive Review on Internet of Things Application Placement in Fog Computing
Environment. Internet Things 2023, 23, 100866. [CrossRef]

14. Hayawi, K.; Anwar, Z.; Malik, A.W.; Trabelsi, Z. Airborne Computing: A Toolkit for UAV-Assisted Federated Computing for
Sustainable Smart Cities. IEEE Internet Things J. 2023, 10. [CrossRef]

15. Gupta, A.; Gupta, S.K. A Survey on Green Unmanned Aerial Vehicles-based Fog Computing: Challenges and Future Perspective.
Trans. Emerg. Telecommun. Technol. 2022, 33, e4603. [CrossRef]

16. Devraj; Rao, R.S.; Das, S. Fog computing environment in flying ad-hoc networks. In Cloud Computing Enabled Big-Data Analytics in
Wireless Ad-Hoc Networks; CRC Press: Boca Raton, FL, USA, 2022; pp. 31–48. ISBN 9781003206453.

17. Fernando, N.; Loke, S.W.; Avazpour, I.; Chen, F.-F.; Abkenar, A.B.; Ibrahim, A. Opportunistic Fog for IoT: Challenges and
Opportunities. IEEE Internet Things J. 2019, 6, 8897–8910. [CrossRef]

18. Bonomi, F.; Milito, R.; Zhu, J.; Addepalli, S. Fog computing and its role in the Internet of Things. In Proceedings of the 1st Edition
of the MCC Workshop on Mobile Cloud Computing, Helsinki, Finland, 17 August 2012; ACM: New York, NY, USA, 2012.

19. Verma, U.; Bhardwaj, D. Fog Computing paradigm for Internet of Things: Architectures, issues, challenges, and applications. In
Lecture Notes in Networks and Systems; Springer Nature Singapore: Singapore, 2022; pp. 1–11. ISBN 9789811910173.

20. Hazra, A.; Adhikari, M.; Amgoth, T.; Srirama, S.N. Fog Computing for Energy-Efficient Data Offloading of IoT Applications in
Industrial Sensor Networks. IEEE Sens. J. 2022, 22, 8663–8671. [CrossRef]

21. Kumari, N.; Yadav, A.; Jana, P.K. Task Offloading in Fog Computing: A Survey of Algorithms and Optimization Techniques.
Comput. Netw. 2022, 214, 109137. [CrossRef]

22. Gasmi, K.; Dilek, S.; Tosun, S.; Ozdemir, S. A Survey on Computation Offloading and Service Placement in Fog Computing-Based
IoT. J. Supercomput. 2022, 78, 1983–2014. [CrossRef]

23. Chen, Y.; Zhao, J.; Hu, J.; Wan, S.; Huang, J. Distributed Task Offloading and Resource Purchasing in NOMA-Enabled Mobile
Edge Computing: Hierarchical Game Theoretical Approaches. ACM Trans. Embed. Comput. Syst. 2023, 14. [CrossRef]

24. Wadhwa, H.; Aron, R. Optimized Task Scheduling and Preemption for Distributed Resource Management in Fog-Assisted IoT
Environment. J. Supercomput. 2023, 79, 2212–2250. [CrossRef]

25. Ataie, I.; Taami, T.; Azizi, S.; Mainuddin, M.; Schwartz, D. D2FO: Distributed dynamic offloading mechanism for time-sensitive
tasks in Fog-Cloud IoT-based systems. In Proceedings of the 2022 IEEE International Performance, Computing, and Communica-
tions Conference (IPCCC), Austin, TX, USA, 11–13 November 2022; pp. 360–366.

26. Tran-Dang, H.; Kim, D.-S. Dynamic Collaborative Task Offloading for Delay Minimization in the Heterogeneous Fog Computing
Systems. J. Commun. Netw. 2023, 25, 244–252. [CrossRef]

27. Shahzad, H.; Szymanski, T.H. A dynamic programming offloading algorithm for mobile cloud computing. In Proceedings of the
2016 IEEE Canadian Conference on Electrical and Computer Engineering (CCECE), Vancouver, BC, Canada, 15–18 May 2016;
pp. 1–5.

28. Wang, B.; Lv, B.; Song, Y. A Hybrid Genetic Algorithm with Integer Coding for Task Offloading in Edge-Cloud Cooperative
Computing. IAENG Int. J. Comput. Sci. 2022, 49, 503–510.

29. Reddy, P.B.; Sudhakar, C. An Osmotic Approach-Based Dynamic Deadline-Aware Task Offloading in Edge–Fog–Cloud Computing
Environment. J. Supercomput. 2023, 1–23. [CrossRef]

30. Lakhan, A.; Mohammed, M.A.; Obaid, O.I.; Chakraborty, C.; Abdulkareem, K.H.; Kadry, S. Efficient Deep-Reinforcement Learning
Aware Resource Allocation in SDN-Enabled Fog Paradigm. Autom. Softw. Eng. 2022, 29, 20. [CrossRef]

31. Thanedar, M.A.; Panda, S.K. A Dynamic Resource Management Algorithm for Maximizing Service Capability in Fog-Empowered
Vehicular Ad-Hoc Networks. Peer Peer Netw. Appl. 2023, 16, 932–946. [CrossRef]

32. Hosseini, E.; Nickray, M.; Ghanbari, S. Optimized Task Scheduling for Cost-Latency Trade-off in Mobile Fog Computing Using
Fuzzy Analytical Hierarchy Process. Comput. Netw. 2022, 206, 108752. [CrossRef]

33. Yao, J.; Ansari, N. Online Task Allocation and Flying Control in Fog-Aided Internet of Drones. IEEE Trans. Veh. Technol. 2020, 69,
5562–5569. [CrossRef]

34. Serdaroglu, K.C.; Baydere, Ş.; Saovapakhiran, B.; Charnsripinyo, C. Location aware fog computing based air quality monitor-
ing system. In Proceedings of the 2023 International Conference on Smart Applications, Communications and Networking
(SmartNets), Istanbul, Turkiye, 25–27 July 2023.

35. Khuwaja, A.A.; Chen, Y.; Andreou, A.; Mavromoustakis, C.X.; Batalla, J.M.; Markakis, E.K.; Mastorakis, G.; Mumtaz, S. UAV
Trajectory Optimisation in Smart Cities using Modified A* Algorithm Combined with Haversine and Vincenty Formulas. IEEE
Trans. Veh. Technol. 2023, 72, 9757–9769.

36. Zhao, N.; Alouini, M.-S.; Dobbins, P. A Survey of Channel Modeling for UAV Communications. IEEE Commun. Surv. Tutor. 2018,
20, 2804–2821. [CrossRef]

https://doi.org/10.1002/ett.4770
https://doi.org/10.32604/csse.2023.031841
https://doi.org/10.1016/j.cosrev.2023.100549
https://doi.org/10.1016/j.iot.2023.100866
https://doi.org/10.1109/JIOT.2023.3292308
https://doi.org/10.1002/ett.4603
https://doi.org/10.1109/JIOT.2019.2924182
https://doi.org/10.1109/JSEN.2022.3157863
https://doi.org/10.1016/j.comnet.2022.109137
https://doi.org/10.1007/s11227-021-03941-y
https://doi.org/10.1145/3597023
https://doi.org/10.1007/s11227-022-04747-2
https://doi.org/10.23919/JCN.2023.000008
https://doi.org/10.1007/s11227-023-05440-8
https://doi.org/10.1007/s10515-021-00318-6
https://doi.org/10.1007/s12083-023-01451-7
https://doi.org/10.1016/j.comnet.2021.108752
https://doi.org/10.1109/TVT.2020.2982172
https://doi.org/10.1109/comst.2018.2856587

Drones 2023, 7, 622 23 of 23

37. Park, S.; Kim, H.T.; Lee, S.; Joo, H.; Kim, H. Survey on Anti-Drone Systems: Components, Designs, and Challenges. IEEE Access
2021, 9, 42635–42659. [CrossRef]

38. Khakimov, A.; Mokrov, E.; Poluektov, D.; Samouylov, K.; Koucheryavy, A. Evaluating the Quality of Experience Performance
Metric for UAV-Based Networks. Sensors 2021, 21, 5689. [CrossRef]

39. Kafetzis, D.; Vassilaras, S.; Vardoulias, G.; Koutsopoulos, I. Software-Defined Networking Meets Software-Defined Radio in
Mobile Ad Hoc Networks: State of the Art and Future Directions. IEEE Access 2022, 10, 9989–10014. [CrossRef]

40. USRP-2954 Specifications. Available online: https://www.ni.com/docs/en-US/bundle/usrp-2954-specs/page/specs.html
(accessed on 25 July 2023).

Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual
author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to
people or property resulting from any ideas, methods, instructions or products referred to in the content.

https://doi.org/10.1109/ACCESS.2021.3065926
https://doi.org/10.3390/s21175689
https://doi.org/10.1109/ACCESS.2022.3144072
https://www.ni.com/docs/en-US/bundle/usrp-2954-specs/page/specs.html

	Introduction
	Related Work
	Proposed Flying Fog-Based IoT Model
	Computation Model
	Flying Fog Computing
	MEC Computing
	Problem Statement
	Computational Offloading Algorithm

	Developed Testbed for System Evaluation
	Simulation and Results
	Simulation Evaluation
	Experimental Evaluation

	Conclusions
	References

