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Abstract: Vespa velutina is an ecosystem disruptor that causes annual damage worth KRW 170 billion
(USD 137 million) to the South Korean beekeeping industry. Due to its strong fertility and high-lying
habitat, it is difficult to control. This study aimed to develop a system for the control of V. velutina
nests using drones for detection and tracking the real-time location of the nests. Vespa velutina nest
image data were acquired in Buan-gun and Wanju-gun (Jeollabuk-do), and artificial intelligence
learning was conducted using YOLO-v5. Drone image resolutions of 640, 1280, 1920, and 3840 pixels
were compared and analyzed. The 3840-pixel resolution model was selected, as it had no false
detections for the verification image and showed the best detection performance, with a precision
of 100%, recall of 92.5%, accuracy of 99.7%, and an F1 score of 96.1%. A computer (Jetson Xavier),
real-time kinematics module, long-term evolution modem, and camera were installed on the drone
to acquire real-time location data and images. Vespa velutina nest detection and location data were
delivered to the user via artificial intelligence analysis. Utilizing a drone flight speed of 1 m/s
and maintaining an altitude of 25 m, flight experiments were conducted near Gyeongcheon-myeon,
Wanju-gun, Jeollabuk-do. A total of four V. velutina nests were successfully located. Further research
is needed on the detection accuracy of artificial intelligence in relation to objects that require altitude-
dependent variations in drone-assisted exploration. Moreover, the potential applicability of these
research findings to diverse domains is of interest.

Keywords: artificial intelligence; Vespa velutina nest detection; unmanned aerial vehicle; real-time
kinematics; long-term evolution; YOLOv5

1. Introduction

Approximately 75% of the plant species grown for human consumption are pollinated
by pollinators, such as bees and butterflies [1]. Honeybees are important for agriculture;
therefore, population management is essential [2]. Vespa velutina, which was introduced
to Busan via Shanghai, China in 2003, is a subtropical hornet native to tropical Asia that
threatens honeybees and other pollinators in South Korea [3]. The annual damage caused
by V. velutina is estimated to be approximately KRW 170 billion (USD 137 million) [1].
Unlike Korean hornets, V. velutina is highly successful in the rapid hunting of honeybees.
This species accounts for 72% of the hornet populations collected nationwide and has
strong reproductive power and adaptability to the urban environment [4]. A V. velutina
nest colony includes 10,000–12,000 individuals, and during the breeding season, 300–500 V.
velutina queens may be released from each nest, with efficient dispersibility [5]. Therefore,
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V. velutina was classified as an ecosystem disturbance species in South Korea in 2019 [6].
From March to May, V. velutina queens that have overwintered begin to emerge. From
April to May, when the weekly average maximum temperature is 27–28 ◦C, mating and
larval development occur. Hornet numbers increase from the end of June, and intensive
activities occur from August to September, which is the period when the number of V.
velutina nests increase. These hornets are active until mid-October, when they overwinter
and emerge in the following spring. Vespa velutina inhabit trees over 10 m high in the
surrounding forests of nearby villages, and their life radius is approximately 1 km from
the nests [7]. They are mostly undetectable with the human eye; hence, they are difficult
to remove. Recent research has focused on automating the detection of V. velutina using
optical sensors and machine learning to analyze the wingbeat frequencies of seven species,
including bees, wasps, and hornets. The study was conducted within an entomological tent
in a laboratory setting, where V. velutina individuals were differentiated from other species
based on their wingbeat frequencies [8]. Previous research used a deep-learning-based
portable monitoring system to mitigate the damage caused by V. velutina in apiaries [9].
Furthermore, research on the exploration of hornet nests has been undertaken. Moreover,
dynamic hornet nest detection, tracking, and extermination systems based on unmanned
aerial vehicles have been studied [10,11].

Artificial intelligence is a technology that allows machines to have reasoning and judg-
ment capabilities that is applied in various fields, leading to technological innovation [12].
Artificial intelligence is divided into three main categories based on learning methods:
supervised learning, unsupervised learning, and reinforcement learning [13]. Supervised
learning involves the use of input and output data [14]. The artificial intelligence model
analyzes input data and obtains previously provided predictive output data. Applications
include classification or regression [15]. In unsupervised learning, data patterns and struc-
tures are identified based only on the input data [16], with applications for clustering or
dimensionality reduction. Reinforcement learning maximizes the reward that a system can
obtain when interacting with its environment [17]. The development of artificial intelli-
gence technology is progressing rapidly due to advances in dealing with large amounts of
data, computer hardware, and algorithms. Artificial intelligence can replace human labor
in tasks ranging from simple to advanced [18]. Therefore, it is suitable for the detection of
V. velutina nests, which requires accurate and fast analysis of large amounts of data.

Drones are used in various fields, such as industry, agriculture, the military, and
medicine [19]. Aerial image acquisition using drones can collect visual information de-
pending on the flight method and altitude [20]. However, as altitude increases, objects
can be incorrectly detected as smaller than their actual size. Research on image analysis
is also required for factors such as the flight speed, shooting angle, and light reflection of
drones [21]. After the drone flight, the images stored in the drone are checked for additional
analysis. High-definition images have large data sizes, making data transmission difficult
due to the distance between the drone and the user. Therefore, delays occur in the stages of
drone flight, image extraction, and analysis, resulting in poor real-time performance [22].

This study aimed to develop a notification system using artificial intelligence al-
gorithms on drones for real-time detection of V. velutina nests, thereby enabling swift
responses, collaboration, and precise actions. The research was conducted from October
until overwintering (November). Vespa velutina nests are largest (80–90 cm diameter) before
overwintering and become relatively easy to find as leaves fall. The number of overwin-
tered queens emerging in the following year may be reduced by removing them when the
colony is at its largest in order to reduce later damage.

2. Materials and Methods
2.1. System

The real-time V. velutina detection system using drones was designed to embed an
artificial intelligence computer on the drone to alert the user during flight. When the V.
velutina nest was detected by the analysis unit of the drone, the data were saved to the
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database (DB) and could be accessed on the web service. Figure 1 depicts the overall
configuration.
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Figure 1. Diagram of a real-time Vespa velutina detection system using a drone.

A drone (YRX410 950 mm pre-M quadcopter, Shenzhen, China) was used to configure
the system to fly with a take-off weight of 10 kg or more. The drone was equipped with
modules for the real-time detection of V. velutina nests, including an information unit,
a power supply unit, an analysis unit, and an imaging unit.

The power supply unit was composed of a 22.2 V, 22,000 mAh lithium-ion battery that
powered the drone flight with a stable flight time of 20 min and a 12 V, 5 A battery that
supplied the power for the analysis and imaging units. The information unit consisted of
Pixhawk 4 M8N (HolyBro, Shenzhen, China) global positioning system (GPS) equipment
mounted on the Pixhawk 4 (Holybro, China) flight controller and AsteRx-m3 (Septentrio,
Leuven, Belgium) real-time kinematics (RTK)-GPS to communicate with the ground control
system (ArduPilot Dev Team) module. RTK-GPS can obtain centimeter-level positional
accuracy in real-time in the field using the correction value for the phase of the reference
station that has precise positional information. The imaging unit was equipped with a
camera for video confirmation during flight and a camera capable of acquiring images
of up to 3840 × 2160 pixels in 30 frames on the gimbal. The analysis unit consisted of a
computer (Jetson Xavier AGX, NVIDIA, Santa Clara, CA, USA) for artificial intelligence
analysis. The DB stored information with MySQL (version 5.7) and provided web services
with Node.js.

2.2. Data
Training Data Acquisition and Preprocessing

Vespa velutina nest data were collected from October 2021 to January 2022, the period
when V. velutina colonies grew before overwintering. The size of V. velutina nests increased
with increasing colony size, and in autumn, nest detection was easy with leaf loss exposure.
More V. velutina queen candidates exist in the nest during this period. The data collection
period was set for the ease of detection and elimination of V. velutina queen candidates. The
V. velutina nest images were collected from 19 apiaries located in Buan-gun and Wanju-gun
(Jeollabuk-do; Figure 2). The images were acquired at an altitude of 65–150 m above sea
level using a red-green-blue (RGB) camera mounted on a drone. In the apiaries indicated
by blue circles in Figure 2, V. velutina nests within 1 km of the surrounding area were
detected, and V. velutina nests that existed continuously within a certain radius were
additionally confirmed.
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Figure 2. Vespa velutina nest location used for training. (a) Five nests detected in Sangseo-myeon
(Buan-gun), (b) seven in Gyeongcheon-myeon (Wanju-gun), and (c) seven in Hwasan-myeon and
Gosan-myeon (Wanju-gun) are shown. Red circles indicate V. velutina nests, and blue circles indi-
cate apiaries.

A DJI Mavic2 Enterprise (DJI, Shenzhen, China) drone was used, and an RGB camera
with a resolution of 3840 × 2160 pixels collected data at 30 frames/s. The video data were
divided into frames, resulting in a total of 11,838 images. A total of 11,838 pieces of image
data were used for learning, and 10,095 pieces of image data included the V. velutina nest
coordinated information. The remaining 1173 were image data without V. velutina nests.
Data preprocessing was performed using a Massachusetts Institute of Technology program
(LabelImg v.1.8.6, MIT; Figure 3).
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were collected and preprocessed.

2.3. Artificial Intelligence Model Training

An Intel i7-11700k 3.6 GHz (CPU), a 128 GB memory card (RAM), and a NVIDIA
GeForce RTX 3080TI 12 GB graphics card (GPU) were used for the artificial intelligence
training. The artificial intelligence model was trained using YOLO-v5s. YOLO-v5s is largely
composed of the backbone, neck, and head [23–26]. The backbone extracts the feature
points of an object, the neck works to improve the performance through convergence and
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data interpolation from the extracted feature points, and the head converts the feature
points into a bounding box. The convolution layer (Conv) is a basic module used to extract
feature points from an object, and C3 is a module that combines three Conv and bottleneck
structures. Bottleneck is a module that is used to reduce the dimension of a channel when
the channel value increases due to repeated Convs [27–29]. Spatial pyramid pooling–fast is
a module that extracts fixed-size feature points for object images of different sizes [30,31].
Upsample is a module that increases the size of an image through data interpolation, and
concat is a module that connects two or more data (Figure 4).
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Figure 4. YOLO-v5s structure. The backbone extracts feature points, the neck improves the perfor-
mance through convergence and interpolation of extracted feature points, and the head converts
feature points into a bounding box. SPPF, Spatial pyramid pooling–fast.

The flight altitude is positively corelated with the range of data that can be obtained
dependent on the angle of the installed camera equipment and the resolution. Resolution
is a unit representing the number of pixels constituting the screen; generally, the higher
the resolution, the clearer and more detailed the screen expression becomes. This means
that the quantity and quality of information configured on the screen also increase; for
data analysis, high-resolution images that contain more abundant and detailed data are
advantageous for object detection using drones. As data continuously acquired in real-time
must be processed without delay and accurate information must be detected, the learning
image resolution was set and compared according to the performance of the analysis unit
of the drone. In artificial intelligence learning, YOLO-v5s changes the size of the anchor
box according to the input image size. Accordingly, the maximum and minimum sizes of
detectable objects are different. Therefore, the model was trained by changing the size of the
input image, changing the size of the detection box, randomly adjusting within the range of
50% of the input image (multi-scale) size, changing the minimum number of images used
in learning (batch size), and setting parameters. To augment data on various image changes
and locations according to the weather, image processing techniques, such as image mosaic
and brightness contrast, were used to easily detect objects in drone flight images [32].
According to the processing speed in Table 1, four resolutions were set for learning.
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Table 1. Real-time analysis unit processing speed performance table according to resolution.

Resolution (Pixels) Analysis Part Processing Speed

640 × 480 60 frame/s
1280 × 960 30 frame/s

1920 × 1080 15 frame/s
3840 × 2160 3 frame/s

2.4. Model Learning Evaluation
2.4.1. Training

Artificial intelligence learning proceeded until there was no change in each training
loss graph. Adaptive moment estimation (Adam) was used as the optimizer to find the
minimum value of the training loss graph [33]. In Equation (1), θ was the loss function and
gt was the formula for obtaining the previous learning gradient.

gt = ∇θ ft(θt−1) (1)

The formula for Adam provided an estimate of the primary momentum of the gradient
mt and an estimate of the secondary momentum vt. The mt was centered on the slope and
vt was calculated in inverse proportion to the square of the slope, with the advantage of
being able to properly adjust the direction and movement distance (Equations (2) and (3)).

mt = β1mt−1 + (1− β1)gt (2)

vt = β2vt−1 + (1− β2)g2
t (3)

where β was the decay rate for mt and vt, thereby playing the role that increased the
proportion of the latest value and where the user could set the value to adjust the pro-
portion. However, if the initial value of mt, vt was a 0 vector or β1, β2 was close to
1, the bias became severe; therefore, the m̂t, v̂t equation with bias correction was used
(Equations (4) and (5)).

m̂t =
mt

1− βt
1

(4)

v̂t =
vt

1− βt
2

(5)

where η is the learning rate and ε is used to prevent division by 0 (Equation (6)).

θt+1 = θt −
η√

v̂t + ε
m̂t (6)

2.4.2. Evaluating Confusion Matrix Performance

Artificial intelligence learning performance was judged by calculating the precision,
recall, accuracy, and F1 score [34]. Precision refers to the proportion of actual correct
answers among those classified as correct by the neural network. Recall refers to the
proportion of actual correct answers that the neural network calls correct. Accuracy refers
to the proportion of actual correct answers that the neural network considers correct and
incorrect answers that the neural network considers incorrect. The F1 score is obtained
using the harmonic mean of precision and recall. The confusion matrix consists of four
values: true positive (TP), false positive (FP), true negative (TN), and false negative (FN).
TP is when both the actual and predicted values are true. FP is when the predicted value is
true but the actual value is false. TN is when both the actual and predicted values are false.
FN is the case when the predicted value is false but the actual value is true. The precision,
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recall, accuracy, and F1 score were determined using the confusion matrix value, and the
formulae were as follows (Equations (7)–(10)).

Precision =
TP

TP + FP
(7)

Recall =
TP

TP + FN
(8)

Accuracy =
TP + TN

TP + TN + FP + FN
(9)

F1 score =
2

1
Precision + 1

Recall
(10)

2.5. DataBase and Web Server

A DB was built using MySQL and a website was configured with Node.js. Image
data and coordinate data were delivered to the analysis unit in real time, and when V.
velutina nests were detected through artificial intelligence, coordinate information through
RTK-GPS was saved in the DB and displayed on the website. The web service platform
provided V. velutina notifications by accessing terminals such as personal computers, tablets,
and mobile phones that users could communicate with at anytime and anywhere (Figure 5).
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3. Results
3.1. Artificial Intelligence Training Result
3.1.1. Training Graph

The model trained with 640-pixel resolution images was YOLO-v5s-default. The
models trained with 1280-, 1920-, and 3840-pixel resolution images were YOLO-v5s-1280,
YOLO-v5s-1920, and YOLO-v5s-3840, respectively (Figure 6).

The learning with 640-pixel resolution images had 50% random scaling, which was
not applied to the input image size. This was due to image interpolation through resizing
at low resolutions being small, which caused uncertain data increases (Table 2).

Table 2. Training settings for the four models.

Model Epoch Batch Image Size Multi-Scale Image Processing

(a) 77 16 640 X O
(b) 175 8 1280 O O
(c) 179 4 1920 O O
(d) 161 1 3840 O O

(a) YOLO-v5s-default, (b) YOLO-v5s-1280, (c) YOLO-v5s-1920, (d) YOLO-v5s-3840.



Drones 2023, 7, 630 8 of 16
Drones 2023, 7, x FOR PEER REVIEW 8 of 17 
 

 

Figure 6. Training graph. Learning proceeded until there was little change in the graphs. 

The learning with 640-pixel resolution images had 50% random scaling, which was 

not applied to the input image size. This was due to image interpolation through resizing 

at low resolutions being small, which caused uncertain data increases (Table 2). 

Table 2. Training settings for the four models. 

Model Epoch Batch Image Size Multi-Scale Image Processing 

(a) 77 16 640 X O 

(b) 175 8 1280 O O 

(c) 179 4 1920 O O 

(d) 161 1 3840 O O 

(a) YOLO-v5s-default, (b) YOLO-v5s-1280, (c) YOLO-v5s-1920, (d) YOLO-v5s-3840. 

3.1.2. Validation 

The TPs determined an actual V. velutina nest to be a V. velutina nest, the FPs deter-

mined a non-V. velutina nest to be a V. velutina nest, the FNs determined a V. velutina nest 

to be a non-V. velutina nest, and the TNs determined a non-V. velutina nest to be a non-V. 

velutina nest. A total of 7158 frames were used by dividing the 3840 × 2160-pixel images 

taken for 3 min and 58 s at 30 frames/s in Wanju-gun (Jeollabuk-do) using the frame unit. 

The image included one V. velutina nest and was captured at an altitude of 40 m and a 

speed of 1 m/s. 

At resolutions of 640, 1280, 1920, and 3840 pixels, the V. velutina nests were detected 

through each learning model. However, all 229 V. velutina nests in 7158 frames were not 

detected. The higher the resolution, the lower the number of false detections. YOLO-v5s-

3840 trained with the highest resolution images obtained 98% better precision, 89.5% bet-

ter recall, 7.5% better accuracy, and a 91.7% better F1 score than those of YOLO-v5s-default 

trained with the lowest resolution images (Table 3). False detections did not consistently 

decrease with resolution but occurred frequently at low resolutions, and the highest num-

ber of false detections was found with 1280-pixel resolution images. 

Table 3. Confusion matrix. 

Model Confusion Matrix Precision Recall F1 Score 

Figure 6. Training graph. Learning proceeded until there was little change in the graphs.

3.1.2. Validation

The TPs determined an actual V. velutina nest to be a V. velutina nest, the FPs determined
a non-V. velutina nest to be a V. velutina nest, the FNs determined a V. velutina nest to be a
non-V. velutina nest, and the TNs determined a non-V. velutina nest to be a non-V. velutina
nest. A total of 7158 frames were used by dividing the 3840 × 2160-pixel images taken for
3 min and 58 s at 30 frames/s in Wanju-gun (Jeollabuk-do) using the frame unit. The image
included one V. velutina nest and was captured at an altitude of 40 m and a speed of 1 m/s.

At resolutions of 640, 1280, 1920, and 3840 pixels, the V. velutina nests were detected
through each learning model. However, all 229 V. velutina nests in 7158 frames were not
detected. The higher the resolution, the lower the number of false detections. YOLO-v5s-
3840 trained with the highest resolution images obtained 98% better precision, 89.5% better
recall, 7.5% better accuracy, and a 91.7% better F1 score than those of YOLO-v5s-default
trained with the lowest resolution images (Table 3). False detections did not consistently
decrease with resolution but occurred frequently at low resolutions, and the highest number
of false detections was found with 1280-pixel resolution images.

Table 3. Confusion matrix.

Model
Confusion Matrix

Precision Recall Accuracy F1 Score
TP FP FN TN

(a) 7 332 222 6597 2.0% 3.0% 92.2% 2.4%
(b) 214 726 15 6203 22.7% 93.4% 89.6% 36.5%
(c) 213 220 16 6709 49.1% 93.0% 96.7% 61.2%
(d) 212 0 17 6929 100% 92.5% 99.7% 96.1%

(a) YOLO-v5s-default, (b) YOLO-v5s-1280, (c) YOLO-v5s-1920, (d) YOLO-v5s-3840, Confidence threshold ≥ 0.600
and IoU (intersection of union) ≥ 0.500. TP, True Positive; FP, False Positive; FN, False Negative; TN, True
Negative.

Figure 7 is a cropped image of the V. velutina nest detection area as a rectangle of the
same size in each resolution image. The lower the resolution, the less data it contained in the
wider range, and the higher the resolution, the more data it contained in the smaller range.
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Figure 7. Detection of Vespa velutina nest in the image data. (a) YOLO-v5s-default (640-pixel reso-
lution), (b) YOLO-v5s-1280 (1280-pixel resolution), (c) YOLO-v5s-1920 (1920-pixel resolution), and
(d) YOLO-v5s-3840 (3840-pixel resolution).

For the 3840-pixel resolution model, there was no FP for the verification images. The
640-, 1280-, and 1920-pixel resolution models misdetected objects with similar colors and
textures to V. velutina nests. Figure 8 is an image of false detection. Leaves, stones that
looked white due to light reflection, and round stones with rough surfaces were mainly the
objects falsely detected.
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3.1.3. Selection of the Artificial Intelligence Model Used in the Drone System

When applying the trained artificial intelligence model to the real-time drone system,
it was necessary to consider that object detection should be performed through artificial
intelligence in the analysis unit of the drone for real-time captured images. The artificial
intelligence object detection should proceed in the analysis unit until the next set of data
is acquired, while obtaining the most accurate data without data loss based on the flight
speed and altitude. Therefore, for accuracy, a detection model with a 3840-pixel resolution
was selected; however, the processing speed was 3 frames/s. When 30 frames of real-
time images are acquired per second, only 3 frames are used for artificial intelligence
object detection. However, if a V. velutina nest was detected in even a single frame of
229 frames, coordinate information data that can be used to estimate the position of the
nest could be obtained. YOLO-v5s-default detected the position of V. velutina nests at
7 frames, YOLO-v5s-1280 at 214 frames, YOLO-v5s-1920 at 213 frames, and YOLO-v5s-3840
at 212 frames. It was concluded that all four neural networks could estimate V. velutina
nest locations. Moreover, images from drones flying at a constant speed at high altitudes
had a large overlapping range of shooting areas and the size of objects changed every
moment depending on the terrain and height of trees. Accurate high-resolution data were
important, and even if a specific object appeared for only 1 s, it was repeatedly filmed at
more than 30 frames. Even with the performance of 3 frames/s, it was possible to search
for V. velutina nests, and the 3840-pixel resolution model was applied to the drone system
to conduct demonstration search flights.

3.2. DataBase and Web Site

During drone flight, real-time RTK-GPS information was stored in the database
through uniform resource locator (URL) transmission and added to the website map
(Figure 9).
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Figure 9. Implementation of the Vespa velutina nest location information and notification website.
(a) The transmission of uniform resource locator (URL) coordinate information sends the command to
save the coordinate information to the database (DB). (b) The DB where previously saved coordinate
information and added information can be checked. (c) The website where a new marker created
according to the changed coordinate information in the DB can be checked.
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3.3. Demonstration of the V. velutina Nest Real-Time Detection System in Drones
3.3.1. Routed Detection Flight Settings

In November 2022, on-site verification was conducted in Gyeongcheon-myeon (Wanju-
gun). To perform uniform and accurate detection over a certain range, the drone was flown
with a routed automatic flight using an automatic flight setting program that specified
the speed, altitude, route, camera angle, and direction of the drone (Figure 10). The
analysis unit of the drone detects V. velutina nests using three frames at 30 frames/s with
3840 × 2160-pixel resolution acquired from the imaging unit. The drone flew at 1 m/s at a
set height of 25 m above the ground.
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Figure 10. Routed automatic flight program for drones. (a) The mission planner main screen showing
the status of the drone. (b) The process of specifying the drone flight path. (c) The process of setting
drone flight details (speed, drone direction, etc.). (d) The command procurement button screen
after setting.

3.3.2. Demonstration Detection Flight

Four V. velutina nests in Gyeongcheon-myeon (Wanju-gun) that had been spotted in
advance were searched for using the routed automatic flight settings for the drone. Vespa
velutina nests of various shapes were detected according to topography, V. velutina nest size,
tree height, etc., and it was difficult to search due to the influence of light according to the
weather and time of day. Image and coordinate information were saved only when the
V. velutina nest was detected in the acquired image during the routed automatic flight. In
addition, real-time coordinate information was created on the web server simultaneously
with the V. velutina nest detection process (Figure 11).



Drones 2023, 7, 630 12 of 16Drones 2023, 7, x FOR PEER REVIEW 13 of 18 
 

  

 

 

 
 

   

   

(a) (b) (c) 

Figure 11. Images of detection and real-time coordinate generation during the demonstration flight. 
(a) Photo of a V. velutina nest taken by an actual drone in flight. (b) The result of V. velutina nest 
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Figure 11. Images of detection and real-time coordinate generation during the demonstration flight.
(a) Photo of a V. velutina nest taken by an actual drone in flight. (b) The result of V. velutina nest
detection in the analysis unit of the drone during flight. (c) Image that the analysis unit transmits
when saving the coordinate information on a DB and simultaneously informing the website (경천면
is Gyeongcheon-myeon).
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4. Discussion

South Korea experiences very cold winters due to being a four-seasons country; during
this time, insects hibernate. Except for the queen hornet, all the other hornets die during the
winter, which can cause the extinction of the colony. Therefore, the queen hornet does not
hibernate in the colony’s hive but hibernates among the surrounding trees or fallen leaves.
This leads the queen hornets becoming active in the spring. The queen hornet establishes a
nest and produces worker hornets [5]. It is advisable to remove the queen hornet and the
nest early on. Due to that reason, we are conducting research to detect and remove hornets
in apiaries in the spring [9]. However, finding hornet nests is exceedingly difficult in the
summer when the nest is small and the forest is dense. Therefore, our goal was to search
and remove the nest during the fall when the colony is at its largest, reducing the number
of hornet individuals that could possibly emerge the following year. As a result, we were
determined and have conducted some research during the period when we could find the
most nests in a short period of time. This study was conducted from October until winter.
The nests are at their largest sizes (80–90 cm diameter) before winter and become relatively
easy to find as leaves have fallen from the trees.

In this study, exploration of designated areas was possible using predefined drone
paths and both exploration and notifications occurred simultaneously. Moreover, general
drone image analysis was feasible; however, the drone’s flight time and image analysis
time are separate, thereby necessitating additional time. This results in a time delay for
subsequent actions, such as a delay in emergency evacuation notifications. The real-time
detection and notification system studied in this paper offers the advantage of enabling
immediate follow-up. It can also explore multiple nests on a single flight by navigating
local ranges rather than tracking a single object.

However, there were shortcomings in terms of the artificial intelligence algorithms.
There were no mid-flight misidentifications, but the frequency of V. velutina nest detection
was low. The detection numbers in the first, second, third, and fourth flights were 3, 5, 3,
and 8, respectively (Figures 12–15).

It is expected that search performance can be enhanced by improving performance
through the addition of V. velutina nest data acquired in more diverse regions or by utilizing
artificial intelligence models with higher performance than YOLOv5 [35,36].

In this study, the field inspections for nests were conducted in locations entirely
different from the ones used for training video data. The inspections took place in four
different locations, each with varying shapes and sizes of the nests. To achieve robust
results and confidence, extensive testing is necessary. However, since drone flights and
video shootings are only possible in places permitted by Korean law, the study was only
conducted in a limited number of places. Therefore, a future detection plan is needed.

Due to the current size of drones, exploration in areas with many obstacles is not
feasible. This leads to the conclusion that research on miniaturized and lightweight drone
designs is crucial to address the challenges of our research.
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5. Conclusions

This study aimed to reduce apiary damage in the following year by targeting
V. velutina queen candidates before they overwintered using real-time location information
notifications. To obtain an artificial intelligence model suitable for real-time video analysis
during drone flights, we conducted comparative experiments based on different resolu-
tions. The 3840-pixel resolution model had no false detection for the verification image and
obtained the best detection values, with a precision of 100%, a recall of 92.5%, an accuracy
of 99.7%, and an F1 score of 96.1. As a result of routed and automatic flight detection at a
drone flight speed of 1 m/s and an altitude of 25 m, four V. velutina nests were detected.
In addition, we were able to exploit the advantage of receiving real-time alerts during the
flight through actions such as pest control and evacuation. Further research is needed to
increase the detection accuracy of artificial intelligence for objects that vary according to
altitude in detection using drones; this is expected to be able to be applied in other fields.
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