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Abstract: Autonomous underwater vehicles (AUVs) have been applied in various scientific missions
including oceanographic research, bathymetry studies, sea mine detection, and marine pollution
tracking. We have designed and field-tested in the ocean a backseat driver autonomous system for a
5.5 m survey-class Explorer AUV to detect and track a mixed-phase oil plume. While the first driver
is responsible for controlling and safely operating the vehicle; the second driver processes real-time
data surrounding the vehicle based on in situ sensor measurements and adaptively modifies the
mission details. This adaptive sensing and tracking method uses the Gaussian blur and occupancy
grid method. Using a large bubble plume as a proxy, our approach enables real-time adaptive
modifications to the AUV’s mission details, and field tests show successful plume detection and
tracking. Our results provide for remote detection of underwater oil plumes and enhanced autonomy
with these large AUVs.

Keywords: autonomous underwater vehicle; adaptive algorithm; acoustic sensor; sonar detection;
micro-size bubble plume; oil pollution; backseat driver

1. Introduction

Large amounts of incidentally released oil in an aquatic environment can disturb
an entire ecosystem by reducing the chance of survival of wildlife and living organisms.
For example, marine mammals coated in crude oil can die from hypothermia due to the
ruined insulating properties of their coats [1], the ability of oil-covered birds to fly can be
impaired [2], and reproductive rates of affected animals may severely drop due to ingestion
of toxic oil [3]. Inevitably, the costs for recovery and rehabilitation of the ecosystem after an
oil spill incident are considerable in both economic and ecological respects [4].

Spills can be categorized by their spilled size: less than 7 tonnes, between 7 and
700 tonnes, and more than 700 tonnes [5]. While only major spill accidents (>700 tonnes)
attract public attention, a number of minor accidents (<7 tonnes) occur on a regular basis.
It takes months to years to bring back a contaminated region to its pre-accident state.
Hydrocarbon loadings, once they enter the ocean, go through physical, chemical and bio-
logical processes such as weathering, evaporation, emulsification, dissolution, oxidation
and transport [6]. For example, oil slicks on a sea surface are transported with the surface
current (normally 2.5–4.0% of the wind speed) [7] and the subsurface oil particles move
vertically and horizontally at randomized turbulent diffusive velocities in three dimen-
sions [8]. Emulsification changes the spilled material into a semi-solid heavy material by
increasing density (from 0.80 to 1.03 g/mL), viscosity, water content (60–85%) and thus its
total volume (three to five times the original volume) [9]. As a result of these changes in
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properties, the formation of emulsion, also called ‘chocolate mousse’ by responders, has a
significant influence on the choice of oil spill recovery method.

Owing to these unpredictable changes, oil spill response is a time-sensitive, dynamic,
and complex process dealing with numerous constraints and challenges. Therefore, accu-
rate fact-finding of the spill is key to making an opportune decision in response operations
and remediating the oil pollution. Usually, more than one assessment technique and clean-
up method are integrated into treating a spill because of the complexity of the spill situation,
which is governed by many factors [10]. For example, the second largest oil spill in U.S.
waters, the Exxon Valdez oil spill in Alaska, occurred in March 1989. The ship grounded on
Bligh Reef, spilling about 10.8 million gallons of oil into Prince William Sound. Due to its
remote location, the methods for clean-up were limited to ship-based burning, mechanical
methods, and helicopter-based chemical dispersants; thus, the whole process was inevitably
slow. Despite various attempts, only 10% of the total volume of oil was recovered in the
end. More than three decades on, the crude oil is still lying beneath the beaches along
Alaska’s Prince William Sound. In 2010, about twenty years after the Exxon Valdez incident,
the world’s largest accidental marine oil spill in history took place: the Deepwater Horizon
offshore rig explosion spilled an unprecedented amount (210 million gallons) into the Gulf
of Mexico. Unlike in previous spills, a significant quantity of crude oil, released from a
depth of 1500 m, became trapped at around 1000 m depth due to its increased density as a
result of emulsification [11]. So, the tremendously extended (both horizontally and verti-
cally) oil plume could not be clearly determined from the surface. Therefore, autonomous
underwater vehicles (AUVs) presented almost the only safe solution to investigate the
oil leak situation near the wellhead in the deep ocean. A few AUVs equipped with a
number of payloads to detect hydrocarbons and water samplers were sent down to the
presumed water depth: the ‘Sentry’ AUV of the Woods Hole Oceanographic Institution
(WHOI) [12] and the ‘Dorado’ AUV of the Monterey Bay Aquarium Research Institute
(MBARI) [13]. Although an immense amount of oil continued to leak for 87 days during
this catastrophic accident before the wellhead was fully capped [14], it served to provide
important momentum to spur the development of AUV technology as a new oil spill
delineation tool [15].

In the pursuit of advancing plume tracking and mission replanning in various under-
water applications, a range of innovative approaches have been explored in the literature.
Farrel et al. [16] offered a bio-inspired plume tracking method, highlighting the potential of
autonomous underwater vehicles (AUVs) in mimicking biological olfaction-based mecha-
nisms for plume tracing over extensive distances. Petillo et al. [17] addressed the critical
concerns surrounding offshore oil spill plumes and they introduced an approach that incor-
porated AUVs capable of onboard data processing and real-time responsiveness to ocean
environment changes without human intervention. This autonomy, although resulting
in more frequent AUV battery recharging, is essential for efficiently tracking plumes that
cannot rely on surface communication or complex ocean models. Instead, their method
leveraged environmental data collected over time and space by AUVs, with the assumption
of an initial large-scale survey or regional ocean model to establish an approximate plume
boundary location at the neutrally buoyant depth during AUV deployment. Their work
provided a conceptual foundation for adaptive, autonomous plume tracking and predic-
tion. Jayasiri et al. [18] significantly expanded the plume tracking repertoire by introducing
a sophisticated multirate unscented Kalman filter-based algorithm for AUV navigation
in GPS-denied environments. Their adaptive plume tracking algorithm demonstrates
adaptability to irregular plume shapes and has broader applications in environmental mon-
itoring. Furthermore, Wang et al. [19] elevated the cooperative aspect of plume tracking by
developing a control framework for autonomous mobile robots, enhancing the tracking of
dynamic pollutant plume propagation in multi-dimensional space. Their work not only
extends the existing literature but also presents promising avenues for future research
in chemical plume source seeking and integration across heterogeneous robot platforms.
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Further information on previous AUV adaptive plume tracking and mission replanning
methods is available in [20].

Inspired by these addressed oil spill incidents, we developed a sensor-trigger-based
AUV survey approach in which an AUV can detect an underwater feature that represents a
subsurface oil plume in real time using in situ acoustic sensor data. The objective of our
project is to establish a robust autonomous system on our AUV with an automatic trigger
mechanism, which allows the capability of making a distinction between the target and
non-target signals and then adaptively modifying the mission without a human in the
decision-making loop. In order to evaluate our developed system, we utilized a large-size
microbubble sheet/plume as a proxy for a real oil plume in terms of the acoustic signal. In
this paper, we present the algorithms implemented on board the Explorer survey-class AUV
of Memorial University. The algorithms were tested through simulations and validated
through field experiments in the ocean in Holyrood Bay, NL, Canada.

2. Methodology

In standard data sampling operations with most large AUVs, the vehicles follow
pre-set trajectories that cover the survey area of interest. So, the ‘mission plan’ defines
geo-referenced waypoints, and the trajectories are fragmented in accordance with certain
conditions at each step, which govern transitions between the execution of each AUV
maneuver [21]. Given that the onboard computers are fully functional without encoun-
tering any unforeseen events, standard AUV sampling missions tend to be deterministic,
meaning that only predetermined ‘mission files’ direct the vehicle. In adaptive sampling
missions, on the other hand, the trajectories of the AUVs are not restricted to predetermined
commands; rather, they can be generated and modified during the mission. It is almost
impossible to forecast the AUV’s desired motions (transitions and rotations) at every step
prior to deployment in an adaptive mission. That is because they should be dependent
on the detected feature in an ad hoc manner. Therefore, adaptive missions are driven by
intelligent behaviors that let the vehicle autonomously make decisions based on in situ
payload data and modify the given trajectory in response to continuous changes in the
vehicle state as well as data and sample collection [20]. As with most other mechatronic
applications, increased autonomy in underwater missions gives rise to cost reductions
through increased efficiency of time and power, improvements in flight performance, and
expanded capabilities, but it also entails increased risks and complexity. Hence, ideally
adaptive missions require an independent command controller that is separated from
the vehicle motion controller, called a Dual or Backseat Driver paradigm [22,23], through
decoupling the systems. This modular architecture permits the distribution of responsible
tasks assigned to each controller; hence, it reduces the chance of compromise or failure of
a mission.

2.1. Design Principle

This section lays the foundation for our tracking algorithm, providing essential insights
into the underlying principles guiding our approach. Conventionally, a decision-making
process for robotic systems consists of Sense, Plan, and Act [24]. More advanced levels
include Perception, Evaluation, Decision, and Action [25]. Seto [26] defined a ‘fully au-
tonomous mission’ in terms of the interaction levels in unmanned vehicle autonomy as that
in which the vehicle performs and modifies the mission based on real-time data without
operator intervention from launch until recovery.

We developed an adaptive reaction mechanism consisting of ‘Sense, Analyze and
Reaction’, which allows a sensor-triggered AUV survey to facilitate autonomous behaviors
as shown in Figure 1.
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Figure 1. A closed-loop process of an adaptive reaction mechanism consisting of three segments:
Sense, Analysis, and Reaction.

During the first segment of the loop, Sense, an AUV will acquire information about its
surroundings via taking raw acoustic measurements using, in our case, a payload sonar
sensor, the output of which is analyzed through a data process model. The obtained data
undergo a series of analysis processes during the Analysis stage to identify sensed features
in the water and to confirm the presence of a desired target. Since almost all of the sensor
measurements include noise and different types of errors, typically they are eliminated
or filtered prior to the analysis process. The final segment is Reaction. In this stage, the
specification of the originally given trajectory will be modified, and new AUV headings
will be calculated in accordance with the freshly generated course and trajectory.

2.2. Acoustic Detection

Sensing the environment or perceiving the phenomena is one of the most critical steps
in the course of AUV operations. It allows the AUV to have an ‘eye’ to see the survey area
and therefore to make better decisions during its survey. Especially in a less-structured
environment, the AUV has neither prior knowledge nor other options but has to turn to
its sensed measurements. In the end, the choice of appropriate sensor/s and the sensor
performance are key in the successful detection of the target of interest. In this section,
we introduce our payload sensor and identification of micro-sized air bubbles as valuable
targets in the context of our research.

2.2.1. Payload Sensor

Our preliminary sensor studies revealed an acoustic sensor’s ability to observe oil
droplets and an oil plume through wave tank tests [27]. Among the available sonars that
can be operated on our Explorer AUV, the Ping360 scanning sonar from BlueRobotics (See
Figure 2) was selected for its advantages as follows compared with other types of sonar.
The Ping360 sonar head has an acoustic transducer, which continuously emits a narrow
beam of acoustic pings through the water. This transducer can be mechanically rotated to a
desired incremental angle (≥1◦) allowing the vehicle to visualize its surroundings up to a
360◦ swath without having to turn the vehicle orientation itself. This is a great advantage
especially for a large-sized vehicle such as the Explorer AUV as it enables rapid collection
of real-time data over a wider space.
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Although we set the scanning mechanism to work in the horizontal plane, the beamwidth
angle (25◦) of the signal expands the vertical coverage to some extent, resulting in a quasi-
three-dimensional survey. Lastly, the Ping360 was a cost-effective choice because of its
relatively low price compared with other sonars.

2.2.2. Target: Micro-Sized Air Bubbles

For open water experiments, we explored several options for a potential proxy that
can best emulate oil droplets in seawater [27,28]. Two indispensable conditions were
considered: first, it must be environmentally safe, unlike a real chemical plume; second, it
must have acoustically similar characteristics to a multiphase oil plume, meaning that it
should be visible by our primary sensor, the Ping360.

To satisfy both conditions, we selected air bubbles. Field trial results indicated that
small air bubble plumes appeared just like discrete oil patches on the sonar images [27]. For
an air bubble plume to be suspended for a sufficient length of time during the experiment,
the size of the air bubbles was defined via research, which was around 100 microns in our
application [28].

We investigated several methods to generate air bubbles of diameters less than
100 microns. Microbubbles have been widely studied and used in various fields including
water treatment, water purification, mineral processing, natural ecology restoration, clean-
ing, and medicine [29,30]. Different types of microbubble generators have been developed
for large-scale applications and many are commercially available. We tested bubbles gener-
ated with the Dissolved Air Flotation (DAF) bubble-generating system developed by Zedel
and Butt [28,31]. The average size of the bubbles ranged between 100 and 200 microns. The
collective rise velocity of the plume of bubbles was five to ten times higher than the velocity
estimated for individual bubbles of the same sizes [29]. We tested another commercial
off-the-shelf microbubble-generating system developed by Nikuni Japan [30]. The system
uses a centrifugal pump [32] to mix and dissolve the air at a high pressure into water, thus
eliminating the need for an air compressor and a large mixing tank (see Figure 3). The sizes
of the bubbles vary depending on operating conditions, including air and water flow rates,
pressure, and release depth. The pump system was configured to be able to operate from a
vessel, creating a moving source and, in turn, a longer plume.
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Figure 3. Installation of Nikuni’s micro-sized bubble generator. (a) The diver from the Marine
Institute gives the Okay sign after adjusting the valve at the end of the pipe. (b) The generated
bubble plume.

2.3. Real-Time Data Process

A sensor model for processing sonar data was developed consisting of a sequence of
analysis modules. Whenever new measurement updates take place, each module analyzes
the collected sonar data accordingly within a set of criteria. Throughout the mission, the
data are processed and updated in real time.

2.3.1. Onboard Computer Interface

In this section, we introduce the onboard computer interface, which involves the
integration of an independent control computer, facilitating bidirectional data transfer and
enabling adaptive mechanisms for underwater missions. An AUV mission file typically
runs on the manufacturer’s main vehicle control computer (VCC or frontseat driver),
which controls the AUV’s dynamic motions to maintain the desired vehicle state (course,
speed, and depth). However, with the demand for increased autonomy in underwater
missions, many AUVs nowadays have been equipped with an additional system (a backseat
driver architecture) where a dedicated software environment is implemented [33]. This
separation of the vehicle’s dynamics control processor (frontseat) from the intelligent
control processor (backseat) can be extremely beneficial for underwater missions, which
demand adaptive mechanisms. Furlong [34] explained that the primary benefit of having a
separate frontseat/backseat architecture is the increased software portability because the
higher-level autonomy system is decoupled from the lower-level vehicle details.

International Submarine Engineering (ISE), the AUV manufacturer, integrated an
independent control computer on Memorial University’s Explorer AUV during a major
vehicle upgrade in 2019. There are several available frameworks for an adaptive mission
system that were specifically designed for underwater vehicles [24]. Examples include
MOOS-IvP [35], ROS [36], T-REX [37], ORCA [38], and so on. Among those options, the
Mission-Oriented Operating Suite (MOOS-IvP) software was implemented in our system.
The pMoosCrossing application allowed bidirectional data transfer between the frontseat
(ACE) and the backseat (MOOS) through the UDP protocol as shown in Figure 4. Therefore,
data from various sensors on the Explorer (e.g., depth sensor, velocity sensor, altimeter,
and GPS) along with data from the payload sensor (Ping360) were regularly updated to
the MOOSDB so that IvP-Helm could make decisions on the desired vehicle state in the
following control cycle.
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2.3.2. Sonar Noise Band

The Ping360 is an active sonar, which sends a ping (a pulse of sound) and receives a
reflected wave (echo) in order to detect objects. While operating, the Ping360 also generates
strong noise around the sonar head presumably emanating from the transducer during
its rotational motion [27]. Unlike possible ambient noises, this noise is persistent, and the
thickness of the surrounding noise band is approximately 0.25 m. This means that the
analysis algorithm would not be able to distinguish an object within this band. In other
words, valid detection can be made only in the range outside of this proximate region. In
order to eliminate unnecessary confusion in the later analysis process and keep the total
data size as low as possible, any measurements obtained in this proximate region (0–0.25 m
sonar range) were excluded.

2.3.3. Propagation Speed of Sonar

Sound travels at different speeds depending on the physical properties of the medium,
while it is independent of frequency (called non-dispersive): for example, it travels at
about a speed of 1500 m/s in seawater and 340 m/s in air. So, the speed of sound in a
non-dispersive medium such as water is affected by oceanographic parameters such as the
ambient temperature (T), salinity (S), and pressure (p) of the water [39]. As a general rule,
increases of 1 ◦C, 100 m of depth, and 1 ppt salinity result in 3, 1.7, and 1.3 m/s increases in
sound speed, respectively [40]. More empirical data on this correlation were published by
Roemmich and Gilson [41].

In our system, we take into account the variability of sound speed due to changes in
oceanographic parameters. We employ the formula presented in [42] and used in experi-
ments by the authors of [43] to calculate sound speed, as shown in the following equation:

C(T, S, z) = 1449.2 + 4.6T − 0.055T2 + 0.00029T3 + (1.34 − 0.010T)(S − 35) + 0.016z (1)

where T represents temperature (◦C), S represents salinity (p.s.u.), and z represents the
depth of water (m). This formula provides accurate sound speed calculations up to a water
depth of 400 m [44].

To ensure the precision of our system, we continuously update salinity, temperature,
and depth information in real time, operating at a frequency of 1 Hz. The calculated salinity
at the depth of operation is then incorporated into the sound speed formula, allowing us to
accurately determine the speed of sound in the underwater environment. Figure 5 shows
the sound velocity profile calculated using Equation (1). Insets show the temperature and
salinity collected in the ocean in Holyrood Bay as independent variables.
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With the known propagation speed of sound (C), the traveled distance of the sound
(i.e., distance from the sonar head to an object where a strong acoustic signal is reflected)
can be accurately calculated using the following equation:

d = C × 0.5t, (2)

where d is distance, C is the known speed of sound, and t is the measured time for the sound
to return. This approach enables our AUV to adapt to changing conditions and effectively
track plumes even in dynamic underwater settings, as we will elaborate in subsequent
sections. In the following sections, we will present the method used to determine the
detection threshold, which optimizes the performance of our system, as well as a novel
continuity method we developed.

2.3.4. Detection Threshold

When a pulse of sound is emitted from the Ping360, a straight acoustic beam travels
through dark (as in uncharted) water in a wave pattern at 750 kHz frequency. Similar to
someone shining a flashlight in a dark room and only the space where the flashlight’s beam
is reflected becoming visible, an acoustic beam (hereinafter referred to as a ‘scanline’ in this
paper) illuminates the space where the oscillating wave has passed through water [44]. A
reflected pulse is displayed as an individual line depicting the cross-section of an object or
a surface. When there is a target located within the set range, an echo bounced off the object
is displayed as a stronger acoustic signal than the ambient noise level within a scanline
(see Figure 6).

A scanline of the Ping360 consists of 600 bins, equally split, which deliver a piece of
acoustic information on the returned pulse in the form of an analog signal. In our analysis,
the range to the detected target was calculated based on the distance to the bin, which
carries a higher signal than a set detection threshold (DT) (see Figure 6). The size/length of
the bin depends on the set range: for example, the bin size is 3.3 mm when the range is 2 m
while it is 83.3 mm when the range is 50 m (the maximum range of the Ping360).
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The acoustic strength of the returned echo is dependent on two parameters: the size of
the target particles and the density (concentration of the particles) of the target [45]. A larger
and denser material will reflect a stronger signal. Through preliminary tests conducted at
1~2 m depth of water targeting microbubbles as a proxy for a real oil plume, an appropriate
DT was determined. The DT is a key criterion in the first analysis step. It indicates the
minimum required strength of the signal for detection.

The DT was determined through systematic experimentation using a mobile bubble
generator and the Ping360 sonar, as detailed in our prior article [27]. After evaluating
various DT values, we found that a threshold of 10,000 acoustic intensity units provided a
balance between sensitivity and specificity, enabling precise plume target recognition while
minimizing false positives.

2.3.5. Stalled Continuity Method

The Continuity method is one of the automatic detection methods that have been
applied in image processing [46,47]. A similar concept is also used in the saturated raw
distance function of the Tangent Bug algorithm, which detects discontinuities that separate
a continuity interval to define an obstacle ahead [48,49]. The continuity/discontinuity in
these applications mainly identifies the border between the object and its surrounding
environment. This can work well where there is a significant difference in density between
the material particle and the ambient medium (i.e., air) displaying a distinctive boundary.
However, a multiphase oil plume in seawater is characterized by being discontinuous,
having an unevenly distributed density, and having an ambiguous boundary especially
while it is dispersing. Hence, it is essential to have a second criterion to determine how
to demarcate an oil patch and water from other patches. Therefore, we utilized the stalled
continuity (SC) method.

An individual oil patch can be identified by observing the number of consecutive
signals passing the DT level in a scanline (see Figure 7). For example, in our setup, any
detected oil patch larger than 1 m was considered as a valid oil patch of interest. So,
when the required number of consecutive bins (equivalent to 1 m) shows signals above the
detection threshold, continuity becomes true.
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scanline data; (b) processed data on a polar plot with detection threshold applied.

However, non-oiled spaces between small oil droplets may result in intermittent
non-passed signals among the passed data, which we treated as a false discontinuity. This
means that valid continuity information is repeatedly impaired; hence, we introduced a
counter-counter (CC) to nullify this false discontinuity. Therefore, when discontinuity takes
place, the counter-counter begins to take a count of the number of negative signals. An
allowable droplet gap (AG) is another criterion used here to confirm whether it is a true
discontinuity (CC > AG) or a false discontinuity (CC < AG): 0.5 m in our case. While the
counter-counter is active, the continuity is stalled rather than terminated. To some extent,
this helps to alleviate intricacy in discerning a multiphase oil mixture.

2.3.6. Gaussian Blur

In this section, we present a sonar image blurring technique for enhancing the clarity
of data inputs, leading to better tracking outcomes.

The valid data that have passed the applied criteria are sent to a sector process module.
This stage is a 2-dimensional areal analysis as opposed to the 1-dimensional line analysis,
which was conducted in the previous stage. A set of scanline data piled up from the start
angle (e.g., −22◦) to the stop angle (e.g., +22◦) completes a fan-shaped sonar image (see
Figure 8), which makes a full azimuth angle of 44◦ ahead of the AUV. This complete sonar
image is called a “fully scanned image”. The original time-indexed data feature somewhat
scattered (noisy) data for two reasons: first, there is a difference between the observed data
and real data. Some true signals might not have been reflected while some false signals
might have been faultily reflected.
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plane view.

Second, a lot of small gaps between tiny bubbles result in sporadic signals. Then,
those low signals that did not pass the DT (undetected) were excluded in the processed
data. They all inevitably lead to noise-like and patchy profiles (see Figure 9). Since the
scattered data are difficult group, we adopted a Gaussian blur (also known as Gaussian
smoothing) method to reduce the noise. Gaussian smoothing is a type of convolution
operator using a mathematical model [50] called a “2D isotropic Gaussian function” as
shown in Equation (3),

G(x, y) =
1

2πσ2 e−
x2+y2

2σ2 , (3)

where σ is the standard deviation of the distribution and (x, y) is the location index. The
Gaussian function generates a circularly symmetric distribution, hence a bell curve shape
(see Figure 9). It has been widely applied in image processing, usually in the digital editing
of photos and videos [51–54]. More recently, coupled with machine learning or artificial
neural networks, its application has expanded [50,55–57]. Like digital images constructed
of pixels, a fully scanned acoustic image is also made up of numbers in a lot of cells (or
kernels). Despite the disadvantage of losing fine image details through this process, the
process facilitates grouping of the scattered data, which enables us to overcome the errors
in the identification of small patches.
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For Gaussian smoothing the control of both the kernel size and sigma was guided by
a preliminary iterative process based on the raw data presented in Figure 9a. Subsequently,
we maintained a constant set of coefficients (kernel size and sigma) for each sonar image
throughout the mission. This decision was driven by the nature of the application, char-
acterized by fixed parameters such as the sonar range (50 m), the number of bins (600),
and the azimuth (turning) angle (44◦). These constants provided stability in the plume
tracking methodology and effectively bridged gaps between detected bubbles, enabling the
recognition of the plume as a cohesive entity rather than a collection of individual bubbles.

2.3.7. Labeling Oil Patches

The Gaussian blurred image can be expressed as convolution kernels as shown in
Figure 10a. The kernels that touch or share their edges become connected and the adjoined
kernels are considered as a part of the same object if they are horizontal, vertical, or
in a diagonal direction as shown in Figure 10b. Once each patch is grouped together,
each clustered patch is labeled. Although the actual values in the kernel are multilevel
(i.e., non-binary), all non-zero values are treated equally when being labeled.
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Figure 10. (a) Gaussian blurred patches; (b) labeled patches. Two patches are labeled as 2 and 3,
respectively, meaning that they are the 2nd and the 3rd detected patches within one fully scanned
sonar image.

2.3.8. Occupancy Polar Grid Mapping

Generating a map based on sensor data to understand the environment is one of the
fundamental tasks in robotics [58]. The concept of the occupancy grid is to create a map of
the environment as an equally spaced field of binary (random) variables, which represent
the presence of an object at that location in the environment. So, usually true (1) means
that an object occupies the location, and false (0) represents an empty space. In comparison,
when adding the concept of probability, each occupied cell holds a probability value instead
of a binary value (1 or 0). The occupancy grid method has become popular through the
work of Moravec and Elfes [59]; then map building using occupancy grids was improved
by Konolige [60]; and more recently, metrical mapping work was conducted by Thrun [61],
who enhanced the accuracy of the grid map.
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The fundamental assumption of occupancy grid mapping is that the environment
map is constructed, as the vehicle pose is known and the location of the detected object
is static. As we disregard the density of our target (plume) in our paper and the plume
is considered to be dynamically dispersing (non-static), the acquired information of the
map is only taken into account as a temporal view of the world. So, the total percentage of
the occupied cells within the cone-shaped binary kernels is the key criterion to determine
the next desired pose of the vehicle (see Figure 11). The occupied cells in red represent the
detected plume within the fully scanned sector.
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Figure 11. The labeled patches occupied at the full azimuth angle (44◦) are displayed in a scan
window. The total percentage of the occupied cells is 30.2%, which in this case leads through the
plume tracker algorithm to a 1.6◦ desired turning angle to starboard.

We established an AUV turning angle in accordance with the percentage of the total
occupied cells as determined below, so that the vehicle can follow the edge of the plume
while still maintaining a certain distance from the plume:

y =
max(turning range)

step size
occupancy, (4)

where occupancy is the difference between the average of the full (60%) and empty (0%)
percentage and the percentage of the total occupied cells; control turning ranges (±10.0◦);
and control step size is 60.

3. System Design

In this section, we will delve into the comprehensive system design, providing a
detailed overview of its architecture and functionality. Our objective is to present a clear
and concise representation of the system’s underlying structure and operation through
the incorporation of well-structured pseudocode. Additionally, visual aids in the form
of diagrams will be included to aid in visualizing and understanding the system’s com-
ponents and their interactions. By combining these elements, we aim to offer readers a
comprehensive understanding of the system’s design and implementation, facilitating a
deeper comprehension of its capabilities and potential implications.

The following Figure 12a is the pseudocode of our system described in the previous
section. This pseudocode represents a loop that continuously gathers and processes sonar
data to track an underwater plume. After creating a binary vector from the sonar data
using a threshold, we apply Gaussian blurring to reduce noise and detail in the data.
Subsequently, we perform occupancy grid mapping to represent the AUV’s environment.
The algorithm then proceeds with the labeling, analysis, and decision-making steps as
previously described. It is important to note that this pseudocode serves as a simplification
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and may not include all the details required for an actual implementation. Proper initial-
ization of parameters, such as thresh, bin_total, s_count, cw, full_scan, scan_count, kernel_size,
sigma, and updated_grid are necessary. Additionally, specific functions like sonar_field, Gaus-
sianBlur, OccupancyGridMapping, turn_angle, and t_gain should be defined in the actual
implementation. Figure 12b presents a comprehensive view of our system design, which is
a culmination of various components working together to achieve a specific goal. This loop
diagram illustrates the iterative process of the plume tracking algorithm. The loop begins
with data acquisition from the sonar sensors and continues through various stages. Overall,
the system is designed around the principles of ‘Sense, Analyze, and Reaction’, enabling it to
adapt to real-time data and make autonomous decisions.
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4. Field Experiment

The field experiment was conducted with the Memorial University Explorer survey-
class AUV from October 2022 to February 2023 in Holyrood Bay, which serves as the marine
base of the university. The sheltered bay provides water depths ranging from around 10 to
50 m for the experiment. The detailed experimental setup and trial results are described in
the following sections.

4.1. Experimental Setup

The developed tracking module (named pPlumeTracker) was implemented on MOOS,
and the backseat driver computer on the Explorer AUV. The AUV was launched through a
slipway near the AUV workshop. To create a plume, the bubble generator was strategically
positioned on the edge of the dock. The generated bubble was released from the bubble
outlet (100 m off the dock) through the extended pipe. The experimental site on the map is
shown in Figure 13.
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The decision to place the plume on the port side of the AUV deserves further eluci-
dation. The location of the plume was a result of careful consideration of several factors.
Notably, the bubble generator’s installation site, fixed on the dock, introduced constraints
on the plume’s proximity to the harbor. Given the limited length of the pipeline connected
to the generator, the bubble plume had to be generated in relatively close proximity to the
harbor wall. To ensure the AUV’s safety and alignment with its designated heading, we
decided to position the plume on the port side of the vehicle. This configuration allowed
for controlled and safe passage of the AUV while the plume was situated to the left of
its trajectory.

The selection of the scanning parameters, including the 44◦ azimuth angle and 50 m
range, was made after careful consideration of the trade-offs between scanning parameters,
mission objectives, and the AUV’s cruising speed [27]. This configuration resulted in a 12 s
duration for a single scan of 44◦, during which the AUV would travel approximately 18 m.
This setup was optimized for the specific experiment, taking into account the expected size
of the target plume, mission goals, and the need for real-time responsiveness. The data and
analysis guiding this decision can be found in our previous publication [27]. This configu-
ration allowed us to effectively track the target plume within the experiment’s scope.

4.2. Experimental Result

The sonar images collected from the Ping360 against the microbubble plume are
presented in this section and the virtual tracking performance by the pPlumeTracker module
of the backseat driver is discussed.

The primary objective of this field trial was to confirm the function and operation of
the module, pPlumeTracker, developed based on the proposed detection method. While
conducting consecutive line-following missions, the Ping360 continued to capture the
micro-sized bubble plume for about 270 s (4.5 min) as shown in Figure 14. Each full scan
took approximately 12 s to complete each fan-shaped sonar screen.

The AUV trajectory recorded in the local frame of reference (local Cartesian coor-
dinates) by the backseat driver is plotted in Figure 15. The approximate location of the
plume relative to the AUV path is presented (not to scale). There were two significant
(high peaks: marked as A and B) and one suspected (low peak: marked as C) moments
where the microbubble plume appeared on the sonar screen and was confirmed by the
pPlumeTracker module. The pPlumeTracker module response during the mission is shown
in Figure 16. The total detection result (one of the main outcomes from pPlumeTracker)
indicated that the highest detection was 2669 while the background average was about
1515. We only generated the turning commands within the local module instead of parsing
them as the real vehicle driving commands to the backseat drive system, for the sake of
the vehicle safety at this stage. Hence, these presented commands were all virtual. The
virtual turning command from the pPlumeTracker module remained between −9.5◦ and
−10.0◦ (see Figure 16), which was not ideal since it would lead to a continuous turning.
Considering the turning angle ranges being between −10.0◦ and +10.0◦, the result revealed
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that the set background threshold was too high, which impacted the turning commands
in a way that the vehicle was (virtually) directed to turn to the port side. Therefore, the
guiding threshold to determine the presence of the plume was re-set to the average (1515).
Also, the maximum turning angles were increased to the range between −20.0◦ and +20.0◦.
After those coefficients were tuned, the data were replotted as shown in Figure 17. The
tuning process produced a more optimized command result.
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threshold and turning angles (±40◦).

5. Discussion

The MOOS plume tracking algorithm worked successfully during the mission, con-
firming the presence of the plume. In this trial using the real vehicle in open water, the
adaptive component was conducted virtually by making the “heading command” mute to
the vehicle-driving computer, allowing further tuning with pPlumeTracker. Two variables
were tuned during the post-processing step, thus improving the output of the pPlumeTracker.

The Ping360 is a “3D scanning sonar” with a mechanically rotating transducer inside
the sonar head. This rotating action causes a delay between each beam of the scan of up to
35 s. For example, if the sonar completes the full scan (360◦) with an incremental angle of 1◦

while the vehicle keeps moving forward at its cruise speed (1.5 m/s), the complete scanned
coverage is not a circle, but rather an oblong shape. This distortion of the sonar coverage
can be minimized when the sonar is set to scan the forward section from the vehicle only
(see Figure 18). The sensing coverage and the time delay are traded off against each other.
Hence, to minimize the delayed time and to maximize the areal coverage, it is crucial to
find the most optimal setup: incremental angle (1◦ or 2◦), sonar range (20–50 m), and total
scanning azimuth (fan-shape or full scan).
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Figure 18. The areal coverage by Ping360 at the vehicle cruise speed of 1.5 m/s when scanning 44◦ in
the forward section.

The developed method encompasses four key contributions that enhance the AUV’s ca-
pabilities in detecting and tracking oil plumes in complex underwater environments. First,
the implementation of the stalled continuity (SC) method enables the precise identification
and demarcation of individual oil patches within the multiphase oil plume. The introduc-
tion of the counter-counter (CC) mechanism effectively addresses intermittent non-passed
signals, ensuring the preservation of valid continuity information. Second, the adoption of
Gaussian blur in a 2-dimensional areal analysis significantly reduces noise and enhances
data coherence in fully scanned acoustic images. This approach successfully overcomes the
challenges of scattered and noisy data, improving the accuracy in identifying small patches.
Third, the approach to labeling oil patches enhances the AUV’s ability to recognize oil
plumes by providing crucial contextual information. With the labeled patches, the AUV’s
detection algorithms make more accurate and informed decisions, resulting in improved
detection sensitivity. Finally, the incorporation of occupancy polar grid mapping, with
probability values for occupied cells, allows for a temporal view of the world. Utilizing the
percentage of occupied cells within cone-shaped binary kernels, an AUV turning angle was
established to follow the plume’s edge while maintaining a safe distance, enabling effective
plume tracking in our missions.

6. Conclusions

In this study, our contribution is to present a comprehensive algorithm that integrates
a payload sensor, identifies micro-sized air bubbles as targets, and employs advanced
real-time data processing techniques. The design principles and methodologies were found
to improve the accuracy and effectiveness of oil patch tracking, thereby contributing to the
field of environmental monitoring and pollution control.

During ocean field trials, we developed and tested an adaptive algorithm using a
MOOS plume tracking algorithm and the Ping360 sonar for detecting and tracking an
underwater plume. This study successfully demonstrated the use of bubbles as a proxy for
plume tracking, demonstrating an effective approach for remote detection of an underwater
oil plume. The results of the experiment indicated that the MOOS plume tracking algorithm
was able to successfully respond to the bubble plume and confirm its presence. The
utilization of sonar, particularly the Ping360, was also shown to be effective in detecting
the plume and providing real-time data during the mission.

The work highlighted the importance of the backseat driver approach in plume track-
ing. This approach showed that our developed pPlumeTracker algorithm was able to
effectively generate the heading commands and enable the AUV to respond to the plume
in real time in an adaptive mission.

Overall, the results of this study demonstrate successful implementation of a backseat
driver approach for the remote detection of an underwater oil plume using bubbles as a
proxy and sonar as a detection tool on a survey-class AUV.
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