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Abstract: Unmanned aerial vehicles (UAVs) are able to act as movable aerial base stations to enhance
wireless coverage for edge users with poor ground communication quality. However, in urban
environments, the link between UAVs and ground users can be blocked by obstacles, especially when
complicated terrestrial infrastructures increase the probability of non-line-of-sight (NLoS) links. In
this paper, in order to improve the average throughput, we propose a multi-UAV multicast system,
where a multi-agent reinforcement learning method is utilized to help UAVs determine the optimal
altitude and trajectory. Intelligent reflective surfaces (IRSs) are also employed to reflect signals to
solve the blocking problem. Furthermore, since the UAV’s onboard power is limited, this paper
aims to minimize the UAVs’ energy consumption and maximize the transmission rate for edge users
by jointly optimizing the UAVs’ 3D trajectory and transmit power. Firstly, we deduce the channel
capacity of ground users in different multicast groups. Subsequently, the K-medoids algorithm is
utilized for the multicast grouping problem of edge users based on transmission rate requirements.
Then, we employ the Multi-Agent Deep Deterministic Policy Gradient (MADDPG) algorithm to learn
an optimal solution and eliminate the non-stationarity of multi-agent training. Finally, the simulation
results show that the proposed system can increase the average throughput by 14% approximately
compared to the non-grouping system, and the MADDPG algorithm can achieve a 20% improvement
in reducing the energy consumption of UAVs compared to traditional deep reinforcement learning
(DRL) methods.

Keywords: unmanned aerial vehicles (UAVs); trajectory optimization; power allocation; multicast;
intelligent reflecting surface (IRS); multi-agent deep deterministic policy gradient (MADDPG)

1. Introduction

Recently, unmanned aerial vehicles (UAVs) have attracted much attention due to their
flexible position adjustment capability, which enhances the probability of line-of-sight (LoS)
communication links to ground users (GUs). In wireless communication systems, UAVs can
provide storage and computational resources to alleviate the communication pressure of the
whole network. UAVs can be used as relays between GUs and ground base stations (GBSs)
in a store-carry-forward manner. They can also serve as aerial base stations to improve
the coverage of GBSs. Additionally, overloaded GBSs can offload the traffic to UAVs.
Therefore, UAVs are widely employed in scenarios such as disaster management, traffic
monitoring, and emergency rescue, assuming the roles of data coverage, data collection,
and information transmission.

In this paper, UAVs are considered to act as aerial base stations. When utilized as an
aerial mobile base station to serve GUs, UAVs possess the following advantages [1]:
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1. On-demand deployment: While conventional terrestrial base stations are fixed and
immovable, UAVs are able to be deployed more flexibly and on-demand in accordance
with GUs’ locations.

2. Better communication quality: Instead of more obstacle blocking between GBSs and
GUs, the air-to-ground link is dominated more by the LoS link.

3. Mobility over time: UAVs have the capacity to move over time, adjusting their
positions to satisfy the demands of GUs and enhance communication performance.

Meanwhile, the research about using UAVs as aerial base stations has encountered
challenges, as follows:

1. Trajectory design complexity: Since UAVs can move in multiple dimensions and need
to be positioned to meet the needs of GUs; optimal deployment and trajectory design
strategies need to be addressed.

2. Energy limitation: How to optimize the performance with the restricted energy needs
to be taken into account because UAVs consume energy both during their flight and
communication.

3. Signal blocking: In practical applications, the air-to-ground link is more likely to
be blocked by territorial obstacles when UAVs fly at low altitudes in complicated
environments.

Motivated by the above advantages and challenges, this paper considers a multi-cell
cellular network in which UAVs act as aerial base stations to expand coverage and improve
communication quality for edge GUs at a long distance. Furthermore, IRSs are deployed
on the surface of ground buildings to reflect the UAVs’ signals to GUs.

For GUs, various users have different transmission rate requirements. Some GUs
request high-latency-sensitivity services such as virtual reality and Internet of Vehicles
(IoV), while others only request fundamental data computing services. In order to improve
service efficiency, multicast channels with fixed transmitters have been extensively studied
in wireless communications [2]. The capacity of a multicast channel is determined by the
data rate of the GU with the worst channel quality in order for all users to successfully
decode the common information from the transmitter. On one hand, the transmission
rate is constrained if all the edge GUs are considered as one multicast group, which
leads to more energy consumed by UAVs for hovering and transmission. On the other
hand, when the UAV communicates with each GU in unicast mode, a higher transmission
rate can be guaranteed. However, the UAV will consume more energy to travel longer
distances. In order to trade off the two schemes, the GUs are divided into multiple multicast
groups based on the transmission rate requirement in this paper. As a result, the average
throughput of the entire system is improved since the transmission rate of each multicast
group is determined by the GU with the worst channel condition within the group. UAVs
can act as mobile transmitters [2] and leverage Orthogonal Frequency Division Multiple
Access (OFDMA) technology to achieve multicast communication, thereby reducing energy
consumption while overcoming user bottlenecks.

In contrast to conventional fixed GBSs, UAVs can adjust their positions horizontally
and vertically over time, thus improving the wireless channel quality of users with different
locations and transmission rate requirements. Therefore, optimizing the deployment
location and trajectory of UAVs has become an important topic. The majority of current
research focuses on optimizing UAV flight trajectory with a fixed altitude, ignoring the
impact of NLoS links when UAVs fly at a low altitude. In terms of vertical altitude,
for GUs with high transmission rate requirements, UAVs can appropriately shorten the
communication link distance, thus increasing link capacity or saving transmit power.
However, as shown in Figure 1, the lower the UAV’s altitude is, the more dominant the
NLoS link will be [3]. Signals emitted by the aerial base station and received by the UAV
propagate through the LoS link until reaching the urban environment, where additional
loss is incurred due to shadowing and scattering caused by obstacles, such as buildings.
Therefore, the 3D trajectory optimization problem needs to be tackled to design the optimal
altitude over time.
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Figure 1. Signal propagation of UAV in urban environment.

In summary, this paper investigates the joint optimization problem of UAV 3D tra-
jectory and power allocation in edge regions in a multi-UAV multicast network. GUs are
categorized into multiple multicast groups, and each UAV serves one group at a time slot.
The objective of this paper is to minimize the energy consumption of UAVs. To achieve
this goal, GUs are first divided into different multicast groups depending on the relative
distances and transmission rate requirements. This grouping issue is resolved by the K-
medoids algorithm [4,5]. Next, it is important to find the 3D trajectory and power allocation
that minimize UAVs’ energy consumption. This is known as an NP-hard problem because
it involves coupled optimization variables, such as the UAVs’ association with the multicast
group, the transmission power, the UAV data rate, and the UAV trajectory. The problem
also consists of several non-convex constraints. Since multiple UAVs are considered in the
system and each UAV needs to learn a policy, we utilize multi-agent deep reinforcement
learning (MADRL) to solve the problem. MADRL can address the problem that the envi-
ronment becomes non-stationary from the perspective of any individual agent with each
agent’s policy updated [6]. For each agent, the Deep Deterministic Policy Gradient (DDPG)
algorithm is applied which can learn policies in high-dimensional and continuous action
spaces [7]. The main contributions in this paper are summarized as follows:

1. We propose a multi-UAV multicast system assisted by IRSs in which we formulate
the multicast grouping problem and an optimization problem aiming to minimize the
UAVs’ energy consumption.

2. We utilize the K-medoids algorithm [4,5] to solve the multicast grouping problem, and
the MADRL framework is employed to efficiently obtain the optimal 3D trajectory and
power allocation scheme and eliminate the non-stationarity of multi-agent training.

3. The performance can be evaluated by the provided simulation results. We verify
that the proposed system can improve the average throughput, and the MADDPG
algorithm can reduce the energy consumption of UAVs effectively compared to
traditional DRL methods.

The rest of the paper is organized as follows. The literature review is presented in
Section 2. Section 3 introduces the system model. Section 4 states the problem description
and formulates the optimization objective. Section 5 illustrates the solution, including the
grouping algorithm and the optimization algorithm. The simulation results are discussed
in Section 6. Finally, Section 7 concludes this paper. The methodology is shown in the
following Figure 2.
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Figure 2. Flowchart of the methodology in this paper.

2. Related Works

In light of the challenges mentioned in Section 1, we investigated some of the literature
on UAVs serving as aerial base stations in wireless communication systems. The literature can
be reviewed from two perspectives: the problem statement and the optimization methods.

As for the problem statement, Deng et al. [8] investigated UAVs as aerial base stations
to multicast public information to GUs and proposed a machine learning method to jointly
optimize the multicast grouping and trajectory planning scheme. However, they solely
considered a single-UAV network. Chen et al. [9] studied multiple UAVs as aerial base
stations to enhance the coverage of cellular networks and proposed a decentralized joint
trajectory and power control (DTPC) algorithm to minimize the UAVs’ overall energy
consumption. Heuristic algorithms were proposed to formulate the trajectory optimization
problem to minimize the total travel time of the UAVs in the multi-cell network in [10,11],
where UAVs are employed as flying base stations to serve GUs in collaboration with
GBSs. However, none of the above papers considered the multicast grouping problem
based on user features or a situation in which the UAV-GU communication link may be
blocked in practical low-altitude environments. In [12–17], intelligent reflection surfaces
(IRSs) were introduced into UAV systems to assist the transmission between UAVs and
GUs. Nguyen et al. [18] deployed IRSs to combat air-to-ground (A2G) blockage events
and derived closed-form expressions for Signal-to-Interference-Plus-Noise-Ratio (SINR)
distributions. The literature shows that IRSs can reduce blockage effectively in the UAV-GU
communication link.

As for optimization methods, heuristic algorithms are typically used to solve the
trajectory optimization problem. In [10,11], a set of local search heuristic algorithms was
proposed considering the curse of dimensionality problem. Xue et al. [19] proposed a
heuristic algorithm based on alternating descent and successive convex approximation
(SCA) to solve a joint 3D location and transmit power optimization problem. However,
typical heuristic algorithms are more suitable for static optimization problems without
taking historical data into consideration. In [20], the authors formulated the problem as
Budgeted Multi-Armed Bandits (BMABs) to optimize the UAV trajectory and minimize
battery consumption and used two Upper Confidence Bound (UCB) BMAB schemes to
tackle the issue. Nowadays, with the development of artificial intelligence technology,
more and more researchers use machine learning techniques to solve optimization issues.
The interaction between the agent and the environment in reinforcement learning (RL) is
more similar to the mechanism by which UAVs make decisions based on the observation.
The Double Deep Q-Network (DDQN) and DDPG algorithms were utilized in [12] to solve
the UAV trajectory optimization problem in the IRS-assisted UAV system. Fan et al. [21]
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proposed a novel multi-agent DRL method with global–local rewards for UAVs’ dynamic
trajectory planning and data offloading decisions. In the multi-agent case, the intricate
process of interactions between agents makes the environment constantly and dynamically
changing. The non-stationarity will reduce the stability of the algorithm.

In summary, very little of the literature focuses on both the multicast grouping issue
based on users’ characteristics and the joint optimization problem. Since machine learning
techniques have become the new research trend, MADRL can be utilized to handle the
issues in traditional DRL methods.

3. System Model
3.1. System Model

We consider a multi-cell cellular network, as shown in Figure 3, where multiple UAVs
serve as aerial base stations to provide access to edge GUs that cannot be effectively served
by GBSs. The set of edge GUs is represented by N = {n|n = 1, 2, . . . , N}. The GUs are di-
vided into K multicast groups, with different transmission rate requirements for each group.
The set of multicast groups is denoted as K = {k|k = 1, 2, . . . , K}. Nk represents the num-
ber of GUs within the kth multicast group, satisfying N = ∑Nk

k∈K, Ni
⋂

Nj = ∅, ∀i 6= j ∈ N ,
which means there’s no overlap between groups. The location of the ith GU is denoted as
LGU

i = (xi, yi), i ∈ N , and the transmission rate is denoted as γi. The two characteristics are
used as metrics to classify multicast groups. When grouping has been completed, in order
to satisfy the transmission rate requirement of all users in each group, the transmission rate
requirement of the kth group is denoted as γk = max

i∈Nk
γi.

Figure 3. Multi-UAV multicast system model.

UAVs fly within the multi-cell edge region and serve terrestrial multicast groups. Let
T = {t|t = 1, 2, . . . , T} denote the set of service time slots, which is also termed as an
episode. The length of each time slot is defined as ∆t. Assume that there are U UAVs,
and the set of UAVs is represented by U = {u|u = 1, 2, . . . , U}. LUAV

u,t = (xu,t, yu,t, hu,t)
denotes the trajectory of the uth UAV at time slot t. Each multicast group is served by the
closest UAV at each time slot. If the closest UAV is already occupied by its closest group,
the second closest UAV will work. We assume that there are sufficient UAVs to ensure that
each multicast group is served by one UAV at each time slot.
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Meanwhile, in order to solve the signal-blocking problem when UAVs fly at low
altitudes, an IRS is deployed on the surface of the building near each multicast group
to avoid the NLoS link between UAVs and GUs. Denote R = {r|r = r1, r2, . . . , rK} as
the set of IRSs. rk is the IRS corresponding to the kth multicast group, and its location
is defined as LIRS

rk
= (xrk , yrk , hrk ). For the IRS, we assume that a uniform planer array

(UPA) consists of Mc ×Mr passive reflection units (PRU). Each PRU can passively change
its phase-shift with an independent reflection coefficient: rrk ,mc ,mr = aejθrk ,mr ,mc , ∀k ∈ K;
∀mr ∈ 1, 2, . . . , Mr; ∀mc ∈ 1, 2, . . . , Mc where a ∈ [0, 1] is the fixed reflection loss of the IRS
and θrk ,mr ,mc ∈ [−π, π) is the phase shift inserted at PRU (mr, mc) [12].

3.2. Transmission Model

The transmission model consists of two parts: the GBS-GU link and the UAV-GU link.
UAVs provide supplemental services when the GBS is unable to meet the needs of the edge
GUs. The service procedure of the uth UAV for the multicast group is shown in Figure 4.
The uth UAV serves the kth multicast group at time slot t, during which other UAVs serve
the other multicast groups. Over time, the UAV continues to fly to serve the next multicast
group at time slot t + 1.

Figure 4. The service process of the uth UAV.

3.2.1. GBS-GU Link

In the GBS-GU link, the ith GU is served by the closest GBS. The GBS-GU link channel
is assumed according to [22], where it can be assumed to be a fading channel with a distance-
dependent path loss with the exponent δ > 2 and an additional random term ζg,i ∼ Exp(1)
accounting for small-scale fading. As a result, the received signal-to-noise-ratio (SNR) at
the ith GU from the GBS can be expressed as

SNRG
i = γG

i =
GGPGg0

σ2(r2
g,i + H2

G)
δ/2

(1)

where i ∈ N ; GG, HG, ri, and PG denote a fixed antenna gain, the height of the GBS, the dis-
tance between the ith GU and the GBS, and the transmit power of the GBS, respectively;
g0 = ( c

4π fc
)2 denotes the average channel power gain at a reference distance of d0 = 1m;
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and σ2 denotes the noise power. According to Shannon’s theorem, the transmission rate
from the GBS to the ith GU is calculated as

Rg,i = B log2(1 + γG
i ζi) (2)

where B is the total transmission bandwidth.

3.2.2. GBS-GU Link Outage Probability

An outage occurs when the GBS is unable to meet the ith GU’s transmission rate
requirement γi because of the small-scale fading between the GBS and GUs. The outage
probability is expressed as

Pg,i = Pr{Rg,i < γi}
= Pr{B log2(1 + γG

i ζg,i) < γi}

= Pr{ζg,i <
2γi/B − 1

γG
i

}

= 1− exp(−2γi/B − 1
γG

i
)

(3)

3.2.3. UAV-GU Link

When GBSs are unable to provide reliable communication to the ith GU, the service
is provided by UAVs in the multicast mode. In order to avoid NLoS links induced by
shadowing and scattering caused by building complexes in urban environments, IRSs are
introduced to reflect UAV-GU signals. As shown in Figure 5, the UAV-GU link can be
replaced by the two UAV-IRS and IRS-GU links, both of which are LoS connections.

Figure 5. IRS reflects UAV-GU signals in one multicast group.

Similar to [22], we assume the corresponding antenna gain in direction (α, β) as

GU(α, β) =

{
G0/Θ2

U , −ΘU 6 α 6 ΘU ,−ΘU 6 β 6 ΘU

g0 ≈ 0, otherwise
(4)

where G0 = 30000
22 ∗ ( π

180 )
2 ≈ 2.2846 and ΘU ∈ (0, π

2 ). Thus, the ground coverage region of
the UAV’s antenna main lobe corresponds to the disk region with a radius ru,t = hu,t tan ΘU
that is centered on the projection of the UAV on the ground. Determining the beamwidth
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ΘU , the coverage radius can be adjusted by changing the UAV’s altitude hu,t so that the
GUs are located within the coverage area of the UAV.

When the signal reaches the urban environment, obstacles, such as building complexes,
cause additional losses in the UAV-GU link. Define the outage probability at time slot t of
the uth UAV with the ith GU in the kth multicast group as:

pu,i,t = PNLoS = 1− 1

1 + Cexp
(
− D

(
arctan( hu,t

du,i,t
)− C

)) (5)

where i ∈ Nk, k ∈ K; du,i,t =
√
(hu,t)2 + (xi − xu,t)2 + (yi − yu,t)2 is the distance between

the ith GU and the uth UAV’s at time slot t; arctan( hu,t
du,i,t

) denotes the elevation angle of the
UAV to the ith GU; and D and C are constant values depending on the environment.

On one hand, when the UAV-GU link is unblocked, and assuming free space fading
channel gain, the channel gain between the uth UAV and the ith GU at time slot t can be
expressed as

gLoS
u,i,t = g0d−δ

u,i,t (6)

where δ = 2 and g0 = ( c
4π fc

)2. On the other hand, when the UAV-GU link is blocked, IRS
is applied, as shown in processes ­ and ® of Figure 5.

(1) UAV-IRS link

At time slot t, let ω1,u,rk ,t =
|xrk−xu,t |

du,rk ,t
, ω2,u,rk ,t =

|yrk−yu,t |
du,rk ,t

, and ω3,u,rk ,t =
|hrk−hu,t |

du,rk ,t

denote the cosine and sine of the horizontal angle of arrival (AoA) of the signal at the
IRS rk from the uth UAV and the sine of the vertical AoA of the signal at the IRS rk, re-

spectively [12]. du,rk ,t =
√
(hu,t − hrk )

2 + (xu,t − xrk )
2 + (yu,t − yrk )

2 denotes the Euclidean
distance between the uth UAV and IRS rk near the kth multicast group at time slot t.
The channel gain between the uth UAV and IRS rk at time slot t can be expressed as

gu,rk ,t =
√

g0d−δ
u,rk ,t ·Ωu,rk ,t (7)

where dr and dc denote the length and the width of each UPA, respectively;

Ωu,rk ,t = [1, e−j 2π
λ drω1,u,rk ,tω3,u,rk ,t , . . . , e−j 2π

λ (Mr−1)drω1,u,rk ,tω3,u,rk ,t ]T⊗ [1, e−j 2π
λ dcω2,u,rk ,tω3,u,rk ,t , . . . ,

e−j 2π
λ (Mc−1)dcω2,u,rk ,tω3,u,rk ,t ]T represents the reflecting array response vector of the IRS [23].

(2) IRS-GU link

Similar to the UAV-IRS link, we define the cosine and sine of the horizontal angle of arrival

(AoA) of the signal at the ith GU from the IRS rk as ω1,rk ,i =
|xrk−xi |

drk ,i
and ω2,rk ,i =

|yrk−yi |
drk ,i

.

ω3,rk ,i =
hrk
drk ,i

is the sine of the vertical AoA. drk ,i =
√
(hrk )

2 + (xi − xrk )
2 + (yi − yrk )

2

denotes the Euclidean distance between the IRS rk and the ith GU in the k multicast group.
The channel gain from the IRS rk multicasting to the ith GU is

grk ,i =
√

g0d−δ
rk ,i ·Ωrk ,i (8)

where Ωrk ,i = [1, e−j 2π
λ drω1,rk ,iω3,rk ,i , . . . , e−j 2π

λ (Mr−1)drω1,rk ,iω3,rk ,i ]T⊗ [1, e−j 2π
λ dcω2,rk ,iω3,rk ,i , . . . ,

e−j 2π
λ (Mc−1)dcω2,rk ,iω3,rk ,i ]T .

(3) IRS-Assisted UAV-GU link

The channel gain of the UAV-GU link assisted by the IRS rk is given by

gIRS
u,i,t = a(grk ,i)

T ·Mrk ,t · gu,rk ,t (9)
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where Mrk ,t = diag(ejθt
rk ,1,1 , . . . , ejθt

rk ,mr ,mc , . . . , ejθt
rk ,Mr ,Mc ) denotes the IRS reflection phase coef-

ficient matrix.
Combining (5), (6) and (9), the achievable average channel gain and SNR at the ith GU

are expressed as
gu,i,t = (1− pu,i,t)gLoS

u,i,t + pu,i,tgIRS
u,i,t (10)

SNRU
u,i,t = γU

u,i,t =
GU Pu,tgu,i,t

σ2 (11)

where Pu,t is the uth UAV’s transmit power at time slot t and σ2 denotes the thermal noise
power, which is linearly proportional to the allocated bandwidth [24].

We utilize OFDMA technology for multicasting. The transmission rate for the kth
multicast group at time slot t is decided by the GU with the worst channel quality within
the group:

Ru,k,t = min
i∈Nk

B
|Nk|

log2(1 + γU
u,i,t) (12)

where |Nk| denotes the number of GUs in the kth multicast group, and B is the total
transmission bandwidth. According to (2), (3) and (12), the channel capacity of the ith GU
in the kth multicast group can be calculated by

Ri,t = (1− Pg,i)Rg,i︸ ︷︷ ︸
GBS-GU

+ Pg,iRu,k,t︸ ︷︷ ︸
UAV-IRS-GU

, i ∈ Nk (13)

Therefore, the average throughput of the system is

throughput = ∑
i∈Nk ,k∈K

Ri,t (14)

4. Problem Formulation
4.1. Multicast Grouping

Our goal is to optimize the 3D trajectory of the UAVs based on the transmission rate
requirements of different GUs while minimizing energy consumption. First, we divide
the N GUs into K multicast groups based on the characteristics of the GUs. We assume
that the GUs remain static during the grouping procedure. The characteristics of the ith
GU is defined by φi = {LGU

i , γi}, i ∈ N, which denotes the location and transmission rate
requirement, respectively. Let xi,k ∈ {0, 1} indicate the correspondence between the GUs
and multicast groups. xi,k = 1 indicates that the ith GU belongs to the kth multicast group.
The multicast grouping problem can be formulated as

P1 : min
X,ψ

K

∑
k=1

N

∑
i=1

xi,k‖φi −ψk‖2 (15)

s.t. xi,k ∈ {0, 1}, ∀i ∈ N (16)

∑K
k=1 xi,k = 1, ∀i ∈ N (17)

∑N
i=1 xi,k > S, ∀k (18)

where ψk is the characteristics of the GU selected as the kth multicast group’s center.
The constraints in (17) guarantee that a GU can only be in one multicast group. The con-
straints in (18) ensure that the number of GU within a group cannot exceed S.

4.2. Trajectory Optimization and Resource Allocation
4.2.1. UAV Energy Consumption

UAVs are mostly battery-powered with limited energy storage, so we aim to minimize
the energy consumption of UAVs. At time slot t, the energy consumption of a UAV consists
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of the energy used to transmit signals to GUs and the energy for UAVs flying in the air.
The hovering energy consumption can be neglected compared to both of them [9].

First, the delay of transmission from the uth UAV to the kth multicast group at time
slot t can be denoted as Tu,k,t =

Su,k,t
Ru,k,t

, Tu,k,t 6 ∆t, where Su,k,t is the size of the transmission
data; the transmission should be finished within the time slot. Therefore, the transmission
energy consumption at time slot t can be calculated as

Eu,m,t = Pu,tTu,k,t = Pu,t
Su,k,t

Ru,k,t
(19)

Then, according to [12], the flying propulsion consumption at time slot t is calculated as

Eu, f ,t =
(

P0(1 +
3‖v2

u,t‖V2
max

U2
tip

) + P1vh,u,t

)
∆t (20)

where P0 is the blade power; Utip is the tip speed of the rotor; P1 is the descending/ascending
power; Vmax is the achievable maximal speed of UAVs; vu,t = (vx,u,t, vy,u,t, vh,u,t) denotes the
normalized speed of the uth UAV at time slot t, where ‖vu,t‖ 6 1 and
−1 6 vx,u,t, vy,u,t, vh,u,t 6 1. Therefore, the location of the uth UAV at time slot t + 1 is

LUAV
u,t+1 = LUAV

u,t + vu,t∆t (21)

Furthermore, as for obstacle avoidance, we consider the collision between the UAVs.
UAVs have to keep a minimum distance from each other at any time. In other words,

‖LUAV
u,t − LUAV

u′ ,t ‖
2 > d2

min; ∀u 6= u′ ∈ U, t (22)

where dmin is the minimum distance UAVs should keep between each other.
In order to minimize the energy consumption in (19), the transmission rate Ru,k,t

needs to be maximized. The channel gain gu, i, t also needs to be maximized according to
(11) and (12). The probability of the NLoS link PNLoS in (5) is a monotonically decreasing
function as the UAV’s altitude increases. When the altitude hu,t is elevated, its elevation
angle to the GU increases, and the probability that the LoS link is dominated increases.
However, as the UAV is elevated and the distance between the UAV and the GU increases,
the channel gain gLoS

u,i,t decreases. Therefore, in order to achieve the goal of minimizing
energy consumption, altitude optimization needs to be tackled.

4.2.2. Joint Trajectory Optimization and Power Allocation Problem

Based on the above analysis, to minimize the total energy consumption of multiple
UAVs, the joint optimization problem about the 3D trajectory and power allocation can be
formulated as

P2 : min
V,P

T

∑
t=1

U

∑
u=1

Eu,m,t + Eu, f ,t (23)

s.t ‖vu,t‖ 6 1; (24)

Pu,t 6 Pmax; (25)

Tu,k,t 6 ∆t; (26)

‖LUAV
u,t − LUAV

u′ ,t ‖
2 > d2

min; ∀u 6= u′ ∈ U, t; (27)

where V = {vu,t|u ∈ U} indicates the speed of the UAVs and P = {Pu,t|u ∈ U} indicates
the transmit power of the UAVs. The constraints in (24) ensure the normalized speed,
and (25) guarantees that the UAV’s transmit power cannot exceed the maximal power.
The constraints in (26) ensure that the data transmission at time slot t must be completed
within it. The constraints in (27) guarantee that individual UAVs do not collide during their
respective flights.
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5. Proposed Solution
5.1. K-Medoids for Multicast Grouping

We utilize K-medoids, an improved algorithm of the K-means clustering algorithm,
to solve the multicast grouing problem P1. In the K-medoids algorithm, when given
the location of the cell edge GUs and the number of multicast groups K, we can find
the corresponding multicast group centers and edge GUs contained in each multicast
group [4,5].

First, the K medoids are randomly initialized, and the iteration is set as t = 0. Subse-
quently, the medoids are continuously updated in iterations. When the medoids and their
characteristics ψk are given, P1 can be simplified as

min
X

K

∑
k=1

N

∑
i=1

xi,k‖φi −ψk‖2, s.t.(16)(17)(18) (28)

Problem (28) can be solved by the branch and bound method [5]. In iteration t + 1,
the medoid of each multicast group is updated to be the member point with the smallest
criterion function, which is the distance of the user characteristics between one member
point and the other member points. The medoid in the kth multicast group is updated as

ψt+1
k = arg min

φt
i

‖φt
i −φt

j‖2, ∀i, j ∈ mk; i 6= j (29)

where mk denotes the set of members in the kth group. Repeat the above process until
all the medoids do not change. The algorithm outputs the optimal medoids’ location
LMG

k = (xk, yk), ∀k ∈ K and the GUs’ location in the kth multicast group LGU
mk

= (xi, yi),
i ∈ Nk, k ∈ K.

The specific algorithm is shown in Algorithm 1.

Algorithm 1 Constrained K-medoids

Input: GUs’ location LGU, number of groups K
Output: optimal grouping strategy X∗

1: Initialization: set iteration t = 0 and randomly initialize ψ0
k .

2: for the iteration t = 1, 2, 3, . . .
3: Given ψt

k, solve (28) to find current optimal grouping strategy Xt.
4: Update multicast group medoids ψt+1

k using (29).
5: until medoids no longer change.

5.2. MADDPG for Optimization Problem

After solving the grouping problem, the joint trajectory optimization and power
allocation problem is solved based on the best grouping strategy. In this section, we
propose solving P2 with the MADDPG algorithm.

Each UAV acts as an agent that interacts with the environment over T time slots.
At time slot t, an action at is generated based on the state st of the environment around the
agent, and a reward rt is obtained for judging the action at generated in the current state.
The goal of each agent is to train a policy π that can generate the action at that makes the
reward rt the highest based on the current state. Subsequently, at time slot t + 1, the state st
transits into a new state st+1 due to the action at, and the process is repeated till the end of
an episode.

5.2.1. State, Action, and Reward

In order to solve P2 with MADDPG, we define the state, action, and reward of each
UAV, which acts as an agent at time slot t.
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(1) State

For each agent, the state includes information perceived from the environment based
on which the agent determines its action and evaluates long-term rewards. Since the
transmission rate is related to the distance between the UAV and GU, each agent’s perceived
information includes the observed multicast groups and the locations of its member users
along with the UAVs’ locations. Then, the state of the uth UAV can be formulated as

su,t = [LUAV
1,t , LUAV

2,t , . . . , LUAV
Mu ,t , LGU

m1,t, LGU
m2,t, . . . , LGU

mMk
,t] (30)

which includes the locations of the Mu closest neighbor UAVs that can be observed at the
current time slot and the locations of GUs in the Mk closest multicast group.

(2) Action

In P2, we need to determine the speed and the power allocation of the UAV at time
slot t. The action of the uth UAV can be formulated as

au,t = [vu,t, Pu,t] (31)

where (24) and (25) are satisfied.

(3) Reward

The reward function determines the objective of the RL problem. The objective
function of P2 is to minimize the energy consumption of the UAV, while the objective of
RL is to maximize the reward. The reward of each agent can be set as negative energy
consumption:

ru,t = −(Eu,m,t + Eu, f ,t) (32)

5.2.2. MADDPG Algorithm

The 3D trajectory and power allocation to be optimized in Problem P2 are both
continuous variables. DDPG, based on an actor–critic architecture, is able to learn a
deterministic policy for continuous actions, which can directly output the optimal action.
However, in the multi-agent case, if each agent only considers its own observations and
actions to learn its own policy using DDPG, the environment will become non-stationary
from the perspective of any individual agent. This is due to the fact that the policies of
other agents are also constantly updated and changing, and the sampled data of the agent
does not follow a consistent probability distribution.

Therefore, Ref. [6] proposed a framework of centralized training and decentralized
execution, which allows the critic to obtain the policy information of other agents during
the training process. Only local information is needed when applying the actor to make
decisions. The framework is shown in Figure 6. On one hand, the centralized critics Qu that
MADDPG trains for each agent use the observed states and actions of all agents as input.
As a result, critics are able to capture changes in all agents’ policies, thus eliminating non-
stationarity [9]. The Q-value computed by the critic Qu is used to update the corresponding
actor’s policy network πu. On the other hand, when each agent is sufficiently trained,
the actor can compute the policy independently based on the state, without the feedback of
the critic and the state or action information of other agents. Hence, MADDPG facilitates
fully decentralized execution. In general, MADDPG can be regarded as a centralized RL
technique when training.
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Figure 6. The centralized training and decentralized execution framework of MADRL.

As shown in Figure 7, the training process of MADDPG includes data sampling,
model training, and parameter updating. We define the state set, the action set, and the
reward set from all of the agents as st = {s1,t, s2,t, . . . , sU,t}, at = {a1,t, a2,t, . . . , aU,t}, and
rt = {r1,t, r2,t, . . . , rU,t}, respectively. According to [9], setting a specific reward in (32) for
each agent will lead to increasing training complexity, so we set the reward of each agent to

be the cumulative reward of all agents,
U
∑

u=1
ru,t. The reward in (32) is changed to be

ru,t = −
U

∑
u=1

(Eu,m,t + Eu, f ,t) (33)

Figure 7. The training procedure of each agent (agent u) in MADDPG.

Each agent contains four networks during training. The actor network and target actor
network share the same network architecture. The input is the current state su,t of agent
u, and the output is the action au,t. The critic network has the same network architecture
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as the target critic network. The inputs are the states and actions of all the agents, and the
output is the Q-value, which is defined as

Qπ
u (s, a) = E

∞

∑
t=0

γtru,t (34)

where γ denotes the discount factor.
Let π = {π1, π2, . . . , πU} denote the policies of U agents, which are fitted, respectively,

by U actor networks parameterized by θπ = {θπ
1 , θπ

2 , . . . , θπ
U}. As shown in Figure 7,

the parameters of the actor are updated by policy gradient, which is calculated as

∇θu J(θu) = E(s,a)~D [∇au Qπ
u (s, a)|au=πu(su)∇θu πu(su)] (35)

where D represents the experience replay buffer. Each state transition (su,t, au,t, ru,t, su,t+1)
of agent u with other agents is stored in the buffer.

U critic networks are parameterized by θQ = {θQ
1 , θQ

2 , . . . , θQ
U}. The updating process

of the critic is shown in Figure 7. The gradient descent method is used to minimize the
following loss function

L(θQ
u ) = E(s,a,r,s′)~D [Q

π
u (s, a)− y]2 (36)

where y = ru + γQ′π
′

u (s′, a′)|a′u=π′u(su), Q′π
′

u and π′u denote the target critic and the target
actor, respectively. After the actor and critic are updated, we use a soft update to update
the two target networks as

θπ′ ← τθπ + (1− τ)θπ′

θQ′ ← τθQ + (1− τ)θQ′
(37)

where τ is typically set as τ = 0.001.
The specific steps are shown in Algorithm 2.

Algorithm 2 MADDPG for Optimization Problem

1: Initialization: Randomly set θπ , θπ′ , θQ, θQ′ ; D = ∅.
2: for episode = 1 to max-episode-num do
3: Reset the environment, and receive initial state s = {s1, s2, . . . , sU}.
4: for t = 1 to max-episode-length T do
5: for each agent u, select action au = πu(su) + noise.
6: Execute actions a = {a1, a2, . . . aU} and observe reward r = {r1, r2, . . . rU} and

next state s′.
7: Push (s, a, r, s′) into replay buffer D.
8: s← s′.
9: if length ofD larger than given length then

10: for UAV agent u=1 to U do
11: Sample a random batch of S samples {(sj, aj, r j, s′j)}j=1,. . . ,S from D.

12: Set yj = rj
u + γQ′π

′
u (s′j, a′j)|

a′ju=π′u(s
j
u)

.

13: Update critic θQ
u by minimizing the loss L(θQ

u ) = 1
S ∑j(Qπ

u (sj, aj)− yj)2.
14: Update actor θπ

u using the sampled policy gradient ∇θπ
u J(θπ

u ) ≈
1
S ∑j[∇aj

u
Qπ(sj, aj)|

aj
u=πu(s

j
u)
∇

θ
j
u
πu(s

j
u)].

15: end for
16: Update target network parameters by θπ′ ← τθπ + (1 − τ)θπ′ and θQ′ ←

τθQ + (1− τ)θQ′ .
17: end if
18: end for
19: end for
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6. Simulation Results

In this section, we simulate the performance of MADDPG in the multi-UAV multicast
system, comparing it with DDPG, Deep Q-Network (DQN), DDQN, and a classical RL
algorithm Upper Confidence Bound (UCB) designed for Budgeted Multi-Armed Bandits
(BMABs) problems. This paper considers a three-dimensional space with four cellular cells,
each equipped with a GBS at the center. A total of 100 GUs are randomly distributed in the
targeted area. The GUs are determined whether or not they are served by a UAV acting
as an aerial base station according to (3). The GUs are divided into five multicast groups
according to their locations and transmission rate requirements. There are five UAVs to
serve them, and the initial positions of the UAVs are set as (400, 400, 200), (400,−400, 200),
(−400, 400, 200), (−400,−400, 200), and (0, 0, 0), respectively. For the channel model, we
set C = 5 and D = 0.35 in (5) [25]. The total transmission bandwidth and noise power
are B = 2 MHz and σ2 = −100 dBm, respectively. The maximal power, the UAV’s
maximal speed, and the rotor tip speed are set as Pmax = 500 mW, Vmax = 30 m/s, and
Utip = 200 m/s, respectively. We utilize PyTorch and Gym to model the environment and
simulate the algorithms. In MADDPG, the actor and critic networks are both set as fully
connected neural networks with [128, 64] neurons where the activation function of the two
hidden layers is ReLU. We utilize tanh as the activation function of the actor network’s out-
put layer, which can restrict the output action within (−1, 1). For the optimizer, the Adam
optimizer is applied to train the DNNs in the policy network and Q-Network. During the
training, the length of an episode is set as T = 25. The capacity of the buffer and the batch
size are 105 and 1024, respectively. The specific simulation settings are shown in Table 1.

Table 1. Parameters settings on simulation.

Parameter Value

Number of ground users N 100
Number of UAVs K 5

Number of multicast groups k 5
Blocking parameters C, D 5, 0.35

Bandwidth B 2 MHz
UAV maximal power Pmax 500 mW

Noise power σ2 −100 dBm
Blade power P0

12×303×0.43

8 ρsG
Descending/Ascending power P1 11.46

Vmax, Utip 30, 200
s, ρ, G 0.05, 1.225, 0.503 [26]
S, dmin 30, 20 m

Number of episodes 15,000
Length of an episode T 25

Batch size, Learning rate 1024, 0.001

In Figure 8, we plot the performance of Algorithm 1 to solve the multicast grouping
problem. There are 160 edge GUs that cannot obtain reliable communication from the GBS
in the figure and are classified into K = 8 multicast groups. As shown in Figure 8, there are
seven cellular cells in the two-dimensional space of (−500, 500)× (−500, 500), and the red
triangle in the center of each cell denotes the GBS. The scatters denote randomly distributed
GUs in the space of (−350, 350)× (−350, 350), and scatters with the same color indicate
that the users are classified into the same multicast group.

In Figure 9, we depict the average reward of different algorithms during
15,000 episodes. The average reward in each episode is set as the negative value of the av-
erage energy consumed per UAV within a time slot. We compare the training procedure of
MADDPG with that of three DRL methods. For the discrete action space, we discretized the
continuous action space, where the transmit power set is Pu,t = Pmax · {0.1, 0.2, . . . , 1} and
the UAV’s speed set is vu,t = {[−1,−1,−1], [−1,−1, 1], [−1, 1,−1], [−1, 1, 1], [1,−1,−1],
[1,−1, 1], [1, 1,−1], [1, 1, 1]}. As shown in Figure 9, the average reward of all algorithms
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increases with the number of episodes. The discrete action space of DQN is only a subset
of that of DDPG. As a result, DQN converges more quickly compared to DDPG, but the
final performance of DDPG is slightly higher than that of DQN. DDQN performs similarly
to DQN. As for MADDPG, since the framework of centralized training and distributed
execution can solve the issue of non-stationarity, MADDPG can achieve a higher average
reward and save the UAVs’ energy more effectively.

Figure 8. Multicast grouping results for N = 160 and K = 8. The triangles represent the ground base
stations. The dots denote ground edge users. The crosses denote different multicast group centers.

Figure 9. Training procedure of different algorithms for minimizing UAV energy consumption.

The optimal 3D trajectory of the UAV obtained by solving P2 with MADDPG is plotted
in Figure 10. The order in which each agent serves the multicast groups is basically the
same, and different UAVs serve different multicast groups in the same time slot. For the
sake of observation, only the trajectory of one UAV is plotted, and it can be seen that the
UAVs decide the altitude that minimizes the energy consumption based on the served
multicast group’s transmission rate requirement.
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Figure 10. The 3D flying trajectory of UAV using MADDPG.

In Figure 11, we compare the average throughput of different algorithms when group-
ing GUs and not grouping. In contrast to communicating with all users by broadcasting,
the average throughput is improved by multicast grouping considering the characteristics
of the GUs’ respective transmission rate requirements. In that case, the average throughput
is not restricted to the GUs with the worst channel but only to those within the multicast
group. Meanwhile, MADDPG also performs well in improving the GUs’ throughput
compared to DQN and DDPG.

Figure 11. Comparison of average throughput per user of grouping and non-grouping.

In Figure 12, we plot the energy consumption as the number of multicast groups K
varies under different algorithms. As K increases, UAVs need to travel longer distances to
serve more multicast groups and consume more energy for transmission. However, if a
smaller K is chosen, although the energy consumption decreases, the average throughput
will also reduce. As a result, we chose an intermediate value K = 5 to make a trade-off.
As for different algorithms, MADDPG performs better than DQN, DDQN, DDPG, and the
classical RL method UCB in reducing the energy consumption of UAVs. The results are
consistent with those in Figure 9.
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Figure 12. Energy consumption with varying number of multicast groups K and different algorithms.

7. Conclusions

This paper investigates the optimization of grouping, joint 3D trajectories, and power
allocation in multi-UAV multicast systems, aiming to minimize the energy consumption of
UAVs. To achieve this goal, this paper first solves the multicast grouping problem for users
with different transmission rate requirements using the constrained K-medoids algorithm.
Then, due to the problem of non-stationarity caused by multiple agents training in the
traditional DRL algorithm, this paper adopts MADDPG to eliminate the non-stationarity
and set the negative value of UAVs’ energy consumption as the reward. Simulation results
show that MADRL can effectively reduce the energy consumption of UAVs, and, at the
same time, the combination of a multicast communication approach and using UAVs as
aerial base stations can effectively improve the average throughput. Based on this work,
we will investigate the performance of the proposed multi-UAV multicast system in other
scenarios, such as vehicular environments.
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