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Abstract: In this study, a reconfigurable intelligent surface (RIS)-assisted wireless-powered mobile
edge computing (WP-MEC) system is proposed, where a single-antenna unmanned aerial vehicle
(UAV)-mounted cloudlet provides offloading opportunities to K user equipments (UEs) with a single
antenna, and the K UEs can harvest the energy from the broadcast radio-frequency signals of the UAV.
In addition, rate-splitting multiple access is used to provide offloading opportunities to multiple UEs
for effective power control and high spectral efficiency. The aim of this paper is to minimize the total
energy consumption by jointly optimizing the resource allocation in terms of time, power, computing
frequency, and task load, along with the UAV trajectory and RIS phase-shift matrix. Since coupling
issues between optimization variable designs are caused, however, an alternating optimization-based
algorithm is developed. The performance of the proposed algorithm is verified via simulations and
compared with the benchmark schemes of partial optimizations of resource allocation, path planning,
and RIS phase design. The proposed algorithm exhibits high performance in WP-MEC systems with
insufficient resources, e.g., achieving up to 40% energy reduction for a UAV with eight elements
of RIS.

Keywords: mobile edge computing; wireless energy transfer; reconfigurable intelligent surfaces;
offloading; unmanned aerial vehicle; rate-splitting multiple access

1. Introduction

The advancement of 6G network technologies has generated low-latency and high-
throughput Internet of Things (IoT) applications such as autonomous driving, X-reality
(XR), and remote surgery. However, small IoT devices with battery power constraints
cannot process large amounts of data required for seamless communication and real-time
data computation, which is crucial for such emerging applications. To address this issue,
mobile edge computing (MEC) is a promising solution for IoT devices because it provides
the computing ability of the edge server, thereby reducing their energy consumption and
extending their lifetime [1–3]. Moreover, from radio-frequency signals broadcast nearby
the user equipment (UE) of the MEC systems, the energy can be harvested at the battery-
power-constrained UE. This is motivated by wireless-powered communication networks
(WPCNs) and simultaneous wireless information and power transfer (SWIPT) techniques,
and it is referred to as a wireless-powered MEC (WP-MEC) system [4–7]. In this system, it is
a key challenge to guarantee the wireless link quality between the UE and edge for reducing
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the energy consumption of the UE during offloading and for harvesting the energy for
sustaining their operation.

Unmanned aerial vehicles (UAVs), e.g., drones, have been used as an edge server
for MEC systems, as the line-of-sight (LOS) link can be easily obtained by adjusting the
flying path via their free mobility in a three-dimensional (3D) space [8–10]. In particular,
UAV-mounted cloudlets can be deployed in the proximity of the desired offloading devices,
obtaining high-quality links, which accelerate to replenish the battery of the UE and
transmit the offloaded input and output in WP-MEC systems. However, when severe
channel attenuation or physical blockages, such as high-rise buildings and skyscrapers,
interfere with the LOS links between the UAV and UE, the performance of such systems
deteriorates. In such cases, reconfigurable intelligent surfaces (RISs) can be alternatively
used in various communication systems, such as millimeter wave [11], nonorthogonal
multiple access (NOMA) [12], and free-space optical (FSO) [13]. By controlling the large
number of low-cost reflecting elements of RISs in the vicinity of a transmitter or a receiver,
virtual links can be obtained to encourage the preferred signal propagation environment. To
this end, we aim at minimizing the energy consumption of WP-MEC systems by leveraging
RISs and UAVs.

Main Contributions

Herein, a novel framework of an RIS-assisted WP-MEC system with a UAV-mounted
cloudlet is proposed, which uses rate-splitting multiple access (RSMA) for offloading
multiple UEs. Under this framework, the resource allocation is jointly optimized in terms of
time, power, computing frequencies, and task load, along with the UAV’s trajectory and the
phase-shift matrix of the RIS. To the best of our knowledge, RSMA-based WP-MEC systems
that use UAVs or RISs are at their beginning stage of development, providing insights and
roadmaps for future intelligent drone communications. The detailed contributions of this
work are as follows:

• In order to effectively reduce the energy consumption of WP-MEC channels, we
consider a UAV-mounted cloudlet for obtaining the desired channel links by freely
and simultaneously moving the RIS between the UAV and the UE deployed for ob-
taining additional virtual links. In this system, the problem of minimizing the total
energy consumption is formulated over jointly optimizing the resource allocation
in terms of time, power, computing frequency, and task load, along with the UAV
trajectory and RIS phase-shift matrix. However, the coupling issues between optimiza-
tion variable designs make it challenging to find a globally optimal solution for the
formulated minimization problem. Therefore, an alternating optimization (AO)-based
algorithm is developed to converge a locally optimal solution, and its convergence
and computational complexity are analyzed.

• For wireless energy transfer (WET) and MEC, a new frame structure with four phases
is developed using the harvest-then-computing approach [4], such as the WET phase
and offloading phase—the latter comprising three phases for local computing and
uploading, computing at the UAV, and downloading the computing results.

• The superiority of the proposed WP-MEC system and algorithm is verified via simula-
tion and numerical analysis. Results reveal that the proposed algorithm can reduce
the energy consumption to approximately half of that of the benchmark schemes,
which is essential for systems with insufficient resources, such as short mission times
or a small number of RIS elements. To the best of our knowledge, the consideration
of both RISs and UAV-mounted cloudlets for WP-MEC systems is at its beginning
stage of development, and their performances are further improved by using the
RSMA technique.

The remainder of this paper is organized as follows. Section 2 describes the sys-
tem model. Section 3 presents the problem formulation and the proposed algorithm for
energy-efficient RIS-assisted WP-MEC systems using the UAV-mounted cloudlet. Section 4
discusses the numerical analysis results, and Section 5 concludes the paper.
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2. System Model

Herein, the current state-of-the-art WP-MEC systems are discussed, and the set-up of
the proposed model is discussed.

2.1. Related Works

Section 2.1.1 discusses related studies on UV-assisted WP-MEC systems that provide
computing and energy resources. Section 2.1.2 discusses the existing studies on RIS-assisted
WP-MEC systems used to improve network coverage.

2.1.1. UAV-Assisted WP-MEC Systems

A few recent research works on UAV-assisted WP-MEC systems have begun to be
conducted, where the UAV is equipped with energy and computing resources in 3D space.
A UAV-enabled WP-MEC system was proposed where the MEC server was implemented
on the UAV and the energy signals were used to charge the ground users’s batteries [14].
Resource allocation was investigated under the partial computation offloading mode to
maximize the weighted sum computation bits by jointly optimizing the transmit power,
computing frequencies, time, and UAV trajectory [14]. UAVs with an energy transmitter
and a computing server were introduced into WP-MEC systems, wherein the sensor
devices executed tasks using the UAV [15]. The problem formulation was also developed to
minimize the energy consumption of the UAV by jointly optimizing the offloading amount,
CPU frequencies, transmit power, and UAV trajectory. The WP-MEC system was previously
designed to minimize the total energy consumption of the UAV that provided the users
with energy supply and computation offloading by optimizing the UAV trajectory [16].
UAV-assisted WP-MEC systems can improve the computation capability of UE, thereby
enhancing the energy and task offloading efficiencies.

2.1.2. RIS-Assisted WP-MEC Systems

RISs can assist throughput maximization in wireless communication, and their use in
WP-MEC systems has been researched. Channel modeling and RIS reflection coefficient
designs for various WP-MEC applications have been investigated. An orthogonal frequency
division multiplexing-based WP-MEC system comprising multiple single-antenna users
and a single-antenna hybrid access point (HAP) was proposed [4], where the RIS was
used to reduce the energy consumption of the system. Using the harvest-then-computing
protocol, the HAP broadcast the energy signal in downlink for WET and received the
offloaded task in uplink for computing. An RIS/UAV-based MEC system was also proposed,
wherein one RIS was deployed near the users and the other RIS was deployed around the
power beacon [6]. The total flying time of the UAV was minimized using the proposed AO-
based method to jointly optimize the RIS phase shifts, flying path, and resource allocation
and scheduling. Inspired by these research contributions, the advantages of RIS and UAV
in WP-MEC systems are exploited herein.

2.2. Set-Up

Figure 1 shows an RIS-assisted WP-MEC system with RSMA comprising a single-
antenna UAV-mounted cloudlet, an RIS attached to a high building surface, and K single-
antenna UE. Each piece of UE has a computational task to be processed within the mission
time T. All system entities are assumed to be synchronized. This assumption is justified
by correlating preambles regularly, as in the existing cellular system, or by periodically
handshaking and computing the time offsets and the round-trip delays, as in the existing
network time protocols [17] (The robust design against the time offset or imperfect channel
state information in asynchronous environments can be easily extended, e.g., by adopting
the norm-bounded uncertainty model [18] in the proposed design). To complete task
processing, the UE computes a portion of the task locally and offloads the remaining task
to the UAV-mounted cloudlet. For these operations, the UE is assumed to be equipped
with rechargeable batteries, and the energy from radio-frequency signals broadcast by the



Drones 2023, 7, 688 4 of 19

UAV is harvested. Here, RIS with M elements is installed to support energy harvesting and
offloading by generating an additional virtual link between the UE and the UAV. Moreover,
the RSMA method is applied in the uplink for the efficient multiple access of UE to transmit
the offloaded data. For tractability, the total task completion time, T seconds (s), is divided
into N equal time slots, each of which has a duration of τ = T/N in order to be small
enough. In other words, the UAV’s location can be regarded as remaining relatively stable
for each time slot. Each time slot is denoted by n ∈ N = {1, ..., N}.

Figure 1. An RIS-assisted UAV-enabled WP-MEC system using RSMA.

To this end, each frame of the system is divided into four phases, illustrated in Figure 2,
using the harvest-then-computing technique [5]: (i) WET phase, (ii) local computing and
offloading (LO) phase, (iii) UAV’s computing phase, and (iv) the downloading phase
of the computation results. Specifically, in the WET phase, the UAVs broadcast energy
signals to all the UEs to recharge their batteries. Then, in the LO phase, the UE computes
the partial task via local computing and transmits the remaining offloaded tasks to the
UAV via the uplink RSMA. After receiving the offloaded tasks, the UAV computes them
in the computing phase and transmits the computation results via the downlink in the
downloading phase. The detailed operations and related signal models for each phase
are discussed in the following sections. As the UAV has high-performance processors and
higher transmit power than the UE, and the computation results are typically modest
in size, the time required for the computing and downloading phases of the UAV can
be negligible [5]. Thus, the durations of the WET and LO phases are µnτ and (1− µn)τ,
respectively, where 0 ≤ µn ≤ 1.

Figure 2. Time structure for the RIS-assisted UAV-enabled WP-MEC system.

The positions of all nodes of the system are modeled using a 3D coordinate system.
The UEs are located at pE

k =
(
xE

k , yE
k , 0
)

in the ground, and the UAV flies at a fixed height of
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H (m) at pU
n =

(
xU

n , yU
n , H

)
for each time slot n. The starting and final positions of the UAV

are pU
1 = pU

I and pU
N = pU

F , respectively. To ensure that the UAV has a feasible trajectory,
the maximum speed of the UAV is set to Vmax (m/s), where

vn =
1
τ

∥∥∥pU
n − pU

n−1

∥∥∥ ≤ Vmax, ∀n ∈ N − {1}. (1)

Based on a previous study [7], the flying energy consumption of the UAV is ex-
pressed as

E f
n(vn) = τ

(
ς1v3

n +
ς2

vn

)
, ∀n ∈ N , (2)

where ς1 and ς2 are the parameters related to the UAV’s weight, air density, wing area,
and wing span efficiency, among other factors [19]. The RIS at time slot n is located at
pR =

(
xR, yR, zR). Accordingly, the Euclidean distances from the RIS to UAV, from the

UAV to UE k, and from the UE k to RIS at time slot n are given by dRU
n =

∥∥pR − pU
n
∥∥,

dUE
k,n =

∥∥pU
n − pE

k

∥∥, and dER
k =

∥∥pE
k − pR

∥∥, respectively. Each element of the RIS is repre-
sented as m ∈ M = {1, ..., M}, and the RIS phase-shift matrix at time slot n is defined as

Θn = diag
(

ejθ1,n , ..., ejθM,n
)

, ∀n ∈ N , (3)

where j =
√
−1 and θm,n ∈ [0, 2π) is the phase shift for ∀m ∈ M and ∀n ∈ N .

All entities are assumed to have the known perfect channel state information (CSI).
However, the proposed design can be applied to an entity with an imperfect CSI, e.g.,
the norm-bounded error model [20]. The channels of RIS-to-UAV and UAV-to-UE links
are assumed to be dominated by the LOS paths [21] and spatially uncorrelated where the
elements in the RIS are linearly separated with a greater than half-wavelength element spac-
ing [22]. Therefore, the channel gain of the RIS-to-UAV links at time slot n is expressed as

hRU
n

(
pU

n

)
=

√
β0(

dRU
n
)2

[
1, e−j 2πd

λ φRU
n , ..., e−j 2π(M−1)d

λ φRU
n

]T
, ∀n ∈ N , (4)

where β0 is the path loss at the reference distance D0 = 1 m, d is the distance between the
reflecting elements, λ is the carrier wavelength, and φRU

n = (xR − xU
n )/dRU

n is the cosine of
the angle of departure (AoD) of the signal from the RIS to the UAV. The channel gains of
the UAV-to-UE links at time slot n are given by

hUE
k,n

(
pU

n

)
=

√√√√ β0(
dUE

k,n

)ζ
, ∀n ∈ N and ∀k ∈ K, (5)

where ζ is the path loss exponent of the UAV-to-UE link for the UE. The channels of the
UE-to-RIS links are assumed to follow spatially uncorrelated Rayleigh fading, which yields
the channel gain of the UE-to-RIS at time slot n, expressed as follows:

hER
k =

√
β0(

dER
k
)ε

[
1, e−j 2πd

λ φER
k , ..., e−j 2π(M−1)d

λ φER
k

]T
ξER

k , ∀k ∈ K, (6)

where ε is the path loss exponent of the UE-to-RIS link for the UE, φER
k = (xE

k − xR)/dER
k is

the cosine of the AoD of the signal from the RIS to UE k, and ξER
k is a circularly symmetric

complex Gaussian (CSCG) random variable with zero mean and unit variance, which
models the random scattering component. Consequently, the effective uplink channel gain
from UE k to the UAV at time slot n can be represented as

hk,n

(
pU

n , Θn

)
= hUE

k,n

(
pU

n

)
+
(

hRU
n

(
pU

n

))H
ΘnhER

k , ∀n ∈ N and ∀k ∈ K. (7)
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2.3. Phase for Wireless Energy Transfer (WET)

For WET, the battery of the UE is assumed to have sufficient storage space for saving
the harvested energy. The energy signal is transmitted from the UAV to the UE via downlink
communication. By leveraging the principle of channel reciprocity, we can denote the
downlink channels using (7). The RIS phase-shift matrix and channel gain for UE k at time

slot n are defined as ΘE
n = diag(ejθE

1,n , ..., ejθE
M,n) and hE

k,n(pU
n , ΘE

n ), respectively. With the
transmit power PE

n for energy harvesting at the UAV, the energy harvested at UE k at time
slot n can be calculated as follows:

EH
k,n

(
µn, pU

n , ΘE
n , PE

n

)
= ηµnτPE

n

∣∣∣hE
k,n

(
pU

n , ΘE
n

)∣∣∣2, ∀n ∈ N and ∀k ∈ K, (8)

where η ∈ (0, 1] is the energy conversion efficiency. Note that the energy harvested at each
UE is supposed to be higher than that needed for its operation.

2.4. Phase for Local Computing and Offloading (LO)

We assume that a portion of the computation task can be offloaded to the UAV, and
the remainder is processed locally at the UE. Here, the computation task that UE k has to
process is denoted as Lk,n bits at time slot n. In the LO phase, the UE can execute offloading
and local computation simultaneously. For the LO phase, we represent the RIS phase-

shift matrix and channel gain for UE k at time slot n as ΘI
n = diag(ejθ I

1,n , ..., ejθ I
M,n) and

hI
k,n(pU

n , ΘI
n), respectively.

Specifically, for multiple access of the offloaded data via the uplink, the RSMA method
is used [23,24]. The RSMA splits user messages by partially decoding interference and
treating interference as noise via optimal decoding, resulting in effective power control and
high spectral efficiency. The transmitted signal su

k,n of each UE k at time slot n is split into
two submessages for the RSMA method, which is given by

xk,n =
2

∑
s=1

√
Pl,n,jsk,n,s, ∀n ∈ N and ∀k ∈ K, (9)

where the transmit power of the subsignal sk,n,s at time slot n is represented as Pk,n,s. The
submessages of the UEs are divided based on the split proportion ak,n,s, and submessages
with higher proposition indices have a higher priority compared with other submessages,
which satisfies

Rk,n,1

(
pU

n , ΘI
n, Pk,n,1

)
: Rk,n,2

(
pU

n , ΘI
n, Pk,n,2

)
= ak,n,1 : ak,n,2, ∀n ∈ N and ∀k ∈ K. (10)

Using the predetermined proportion index for UE k, the submessages can be prioritized
based on their known proportional index information. The total received signal at time slot
n can be represented as follows:

yn = hI
k,n

(
pU

n , ΘI
n

) K

∑
k=1

2

∑
s=1

√
Pk,n,ssk,n,s + n0, ∀n ∈ N and ∀k ∈ K, (11)

where n0 is the additive white Gaussian noise at the UAV that satisfies CN (0, σ2). At the
UAV, all the subsignals are decoded using the successive interference cancellation (SIC)
technique, where the decoding order is denoted by πn =

{
π1,n,1, ..., πk,n,s, ..., πK,n,2

}
, with

πk,n,s ∈ {1, 2, ..., 2K} being the decoding order of the subsignal s of UE k at the nth time slot



Drones 2023, 7, 688 7 of 19

to be predetermined. Thus, the achievable uplink rate of the subsignal sk,n,s at time slot n is
given by

Rk,n,s

(
pU

n , ΘI
n, Pk,n,s

)
= B log2

1 +
Pk,n,s

∣∣∣hI
k,n

(
pU

n , ΘI
n

)∣∣∣2
∑πl.n.j>πk,n,s

Pl,n,j

∣∣∣hI
l,n

(
pU

n , ΘI
n

)∣∣∣2 + σ2

, (12)

for ∀n ∈ N and ∀k ∈ K, where B is the system bandwidth and πl.n.j is the decoding order
of the subsignal j of UE l. The total achievable rate of UE k is

Rk,n

(
Pk,n,s, pU

n , ΘI
n

)
=

2

∑
s=1

Rk,n,s

(
pU

n , ΘI
n

)
, ∀n ∈ N , ∀k ∈ K and s ∈ {1, 2}. (13)

The energy consumption of UE k at time slot n for transferring the offloaded data is
calculated as

Eo
k,n(Pk,n,s) = (1− µn)τ

2

∑
s=1

Pk,n,s, ∀n ∈ N and ∀k ∈ K. (14)

When the offloaded bits from UE k to the UAV is denoted as Lo
k,n, we have

Lo
k,n ≤ (1− µn)τRk,n

(
pU

n , ΘI
n, Pk,n,s

)
, ∀n ∈ N and ∀k ∈ K. (15)

After offloading Lo
k,n bits, the remaining Lk,n − Lo

k,n bits need to be processed by
local computing at UE k. The number of CPU cycles per input bit required for UE k to
compute is Ck, and the number of CPU cycles required for UE k to compute locally at
time slot n is Ck(Lk,n − Lo

k,n). We adopt dynamic voltage and frequency scaling (DVFC)
by referring ot a previous study [1]. By adjusting the CPU frequency f q

k,n for the qth CPU
cycle, UE k can control the amount of energy used for executing the tasks locally, where
q ∈ {1, ..., Ck(Lk,n − Lo

k,n)}, f q
k,n ∈ (0, f high

k ], and f high
k,n is the highest CPU frequency of UE k.

UE k has to complete local computing during (1− µn)τ, i.e.,

Ck(Lk,n−Lo
k,n)

∑
q=1

1
f q
k,n
≤ (1− µn)τ, ∀n ∈ N and ∀k ∈ K, (16)

where ∑
Ck(Lk,n−Lo

k,n)

q=1 1/ f q
k,n is the total execution time of the local computing process at UE k.

The energy consumption of UE k at time slot n for local computing is therefore calculated as

El
k,n

(
Lo

k,n, f q
k,n

)
=

Ck(Lk,n−Lo
k,n)

∑
q=1

κ
(

f q
k,n

)2
, ∀n ∈ N and ∀k ∈ K, (17)

where κ is the energy efficiency coefficient of the CPU architecture [5].

2.5. Phases for UAV Computing and Downloading

The linear simplified model is used to evaluate the computing energy of the UAV [5].
The computing energy consumption of the UAV is then given by

Ec
n(Lo

k,n) = ϕ
K

∑
k=1

Lo
k,n, ∀n ∈ N and ∀k ∈ K. (18)

The time required for UAV computing and downloading the offloading results is
assumed to be negligible due to the UAV’s high capability and the small output data size [5].
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3. Energy Minimization in RIS-Assisted UAV-Enabled WP-MEC with RSMA
3.1. Problem Formulation

We aim at minimizing the total energy consumption by jointly optimizing the time
allocation {µn} for the WET and LO phases, power allocation {PE

n } for the WET phase,
power allocation {Pk,n,s} for the LO phase, UAV trajectory {pU

n , vn}, RIS’s phase-shift matrix
{ΘE

n , ΘI
n}, the task size at each time slot {Lk,n}, the task size of computation offloading

{Lo
k,n}, and CPU frequencies k { f q

k,n}. The total energy consumption of the system can be
expressed as

Etot(µ, P, L, v) =
N

∑
n=1

(EE
n (µn, PE

n ) + Ec
n(Lo

k,n) + E f
n(vn)) + Ec, (19)

where µ , {µn}n∈N , P , {PE
n , Pk,n,s}n∈N ,k∈K,s∈{1,2}, v , {vn}n∈N , L , {Lk,n, Lo

k,n}n∈N ,k∈K,
EE

n (µn, PE
n ) = µnτPE

n , and Ec denotes the energy consumed by the circuit and control at
the UAV and RIS, which is usually a fixed value that can be ignored. Thus, the energy
minimization problem is formulated as follows:

min
{µ,P,pU ,v,Θ, f ,L}

Etot(µ, P, L, v) (20a)

s.t. (1), (10), (15), (16), (20b)

Ltot
k ≤

N

∑
n=1

Lk,n, ∀k ∈ K, (20c)

0 ≤ Lk,n − Lo
k,n ≤

(1− µn)τ f high
k

Ck
, ∀n ∈ N and ∀k ∈ K, (20d)

n

∑
i=1

(
Eo

k,i+El
k,i

(
Lo

k,i, f q
k,i

))
≤

n

∑
i=1

EH
k,i

(
µi, pU

i , ΘE
i , PE

i

)
, ∀n ∈ N and ∀k ∈ K,

(20e)

0 ≤ µn ≤ 1, ∀n ∈ N , (20f)

0 ≤ θE
m,n ≤ 2π, 0 ≤ θ I

m,n ≤ 2π, ∀n ∈ N and ∀m ∈ M, (20g)

0 ≤ f q
k,n ≤ f high

k , ∀n ∈ N and ∀k ∈ K, (20h)

PE
n , Pk,n,s, Lk,n, Lo

k,n ≥ 0, ∀n ∈ N and ∀k ∈ K and s ∈ {1, 2}, (20i)

pU
1 = pU

I , pU
N = pU

F . (20j)

where pU , {pU
n }n∈N ,Θ , {ΘE

n , ΘI
n}n∈N , and f , { f q

k,n}n∈N ,k∈K. The constraint (20c)
is for the total bits to be calculated; (20d) bounds locally computed tasks such that they
do not exceed the maximum CPU frequency that can be processed during the LO phase;
(20e) is the energy harvesting constraint that the harvested energy has to be larger than
or equal to the total energy consumption of the UE; (20f) bounds the time allocation for
the WET and the LO phases; (20g) and (20i) are non-negative constraints of the RIS phase
shift, power allocation, and offloading task size; (20h) bounds the CPU frequency of UE k;
and (1) and (20j) guarantee the valid path of the UAV. As the objective function (20a) and
constraints (10), (15), (16) and (20e) are nonconvex, the problem (20) is nonconvex.

3.2. Proposed Algorithm

Herein, we propose an algorithm that obtains the local optimal solution for the energy
minimization problem (20). Due to the coupling of the optimization variables, the AO-
based approach is used herein. Specifically, we derive the semiclosed-form solution for
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local CPU frequencies and obtain the remaining optimization variables of (20) using the
AO algorithm.

3.2.1. Optimization of Local CPU Frequency

The following lemma (Lemma 1) is developed by referring to a previous study [5] to
determine the local CPU frequency of the UE.

Lemma 1. Given the number of bits to be computed, the ideal local CPU frequencies of the UE
required to minimize the computing energy consumption are given as

f 1
k,n = f 2

k,n = · · · = f
Ck(Lk,n−Lo

k,n)

k,n =
Ck

(
Lk,n − Lo

k,n

)
(1− µn)τ

, ∀n ∈ N and ∀k ∈ K. (21)

For energy minimization, as indicated in equation (17), the energy calculation is
directly proportional to the square of the frequency. Accordingly, the optimal results can be
achieved by assigning the same frequency to all CPU cycles. Based on Lemma 1 and using
the optimal frequencies of the UE, the problem (20) can be reformulated as

min
{µ,P,pU ,v,Θ,L}

Etot(µ, P, L, v) (22a)

s.t. (1), (10), (15), (20c), (20d), (20f), (20g), (20i), (20j) (22b)

n

∑
i=1

Eo
k,i(Pk,n,s) +

κC3
k

(
Lk,i − Lo

k,i

)3

(1− µi)
2τ2

 ≤ n

∑
i=1

EH
k,i

(
µi, pU

i , ΘI
i , PE

i

)
, (22c)

for ∀n ∈ N and ∀k ∈ K.

3.2.2. Optimization of Transmit Power and Bit Allocation

Given the time ratio µ, the UAV trajectory pU , and the RIS phase shift Θ, the subprob-
lem for optimizing the uplink and downlink transmit powers P and offloaded bit L can be
represented as

min
{P,L}

N

∑
n=1

(
EE

n (µn, PE
n ) + Ec

n(Lo
k,n)
)

(23a)

s.t. (10), (15), (20c), (20d), (20i), (22c). (23b)

This problem is nonconvex due to the constraints (10) and (15). Using the constraint (10),
the constraint (15) is equivalently written as

ak,n,sLo
k,n

(1− µn)τ
≤ Rk,n

(
pU

n , ΘI
n, Pk,n,s

)
, ∀n ∈ N and ∀k ∈ K. (24)

Successive convex approximation (SCA) is used to handle this constraint [9,25], which
can approximately solve a nonconvex problem by converting it into a sequence of convex
subproblems. In this technique, the nonconvex objective function and constraints are re-
placed with suitable convex approximations, enabling iterative problem solution iterations.
Then, the right side of (24) can be written as
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Rk,n,s

(
pU

n , ΘI
n, Pk,n,s

)
= B log2

1 +
Pk,n,s

∣∣∣hI
k,n

(
pU

n , ΘI
n

)∣∣∣2
∑πl.n.j>πk,n,s

Pl,n,j

∣∣∣hI
l,n

(
pU

n , ΘI
n

)∣∣∣2 + σ2


= B log2

 ∑
πl.n.j≥πk,n,s

Pl,n,j|hI
l,n(pU

n , ΘI
n)|2+σ2

− B log2

 ∑
πl.n.j>πk,n,s

Pl,n,j|hI
l,n(pU

n , ΘI
n)|2+σ2


≥ B log2

 ∑
πl.n.j≥πk,n,s

Pl,n,j|hI
l,n(pU

n , ΘI
n)|2+σ2

− B log2

 ∑
πl.n.j>πk,n,s

P
(z)

l,n,j|h
I
l,n(pU

n , ΘI
n)|2+σ2


−

∑πl.n.j>πk,n,s
|hI

l,n(pU
n , ΘI

n)|2(Pl,n,j − P
(z)

l,n,j)(
∑πl.n.j>πk,n,s

P(z)

l,n,j|h
I
l,n(pU

n , ΘI
n)|2 + σ2

)
log(2)

, R̂P
k,n,s, (25)

where P
(z)

k,n,s is the local point at iteration z. Accordingly, the problem (22) can be trans-
formed as

min
{P,L}

N

∑
n=1

(EE
n (µn, PE

n ) + Ec
n(Lo

k,n)) (26a)

s.t. (20c), (20d), (20i).(22c) (26b)
ak,n,sLo

k,n

(1− µn)τ
≤ R̃P

k,n,s, ∀n ∈ N and ∀k ∈ K. (26c)

(26) is a convex problem that can be easily solved using the standard mathematical convex
optimization method or a toolbox such as CVX [25,26].

3.2.3. Optimization of the UAV’s Trajectory and RIS’s Phase Shift

The RIS phase shift Θ and UAV trajectory {pU , v} are optimized for the given remain-
ing variables µ, P, and L using the AO approach. The same phase-shift design for the RIS in
uplink and downlink can guarantee satisfactory performance [27,28], i.e., ΘI

n = ΘE
n = Θn .

By channel modeling (4), (6) and (7), the reflective channel gain (hRU
n (pU

n ))
HΘnhER

k can be
rewritten as

hk,n

(
pU

n , Θn

)
=
(

hRU
n

(
pU

n

))H
ΘnhER

k =
β0

dRU
n
(
dER

k
)ε/2

M

∑
m=1

ejψUE
m,k , (27)

where ψUE
m,k = θm,n + 2π

λ

(
d(m− 1)(φER

k − φRU
n )

)
+ arg (ξER

k ). When the signals from dif-
ferent paths are combined coherently at the UE and UAV, the received signal power is
maximized. As hUE

k,n is a real value (7), if ψUE
m,k = arg (hUE

k,n ) = 0, the achievable uplink rate
Ru

k,n and the harvested energy EH
k,n can be maximized. Accordingly, the optimal phase shift

of the RIS at time slot n can be expressed as follows:

θm,n =
2π

λ

(
d(m− 1)(φRU

n − φER
k )
)

, ∀n ∈ N and ∀m ∈ M. (28)

Based on the phase design of the RIS in (28), the trajectory of the UAV needs to
be designed.
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Thus, the effective channel gain for UE k at time slot n can be rewritten as

hk,n

(
pU

n

)
=

√√√√ β0(
dUE

k,n

)ζ
+

β0M

dRU
n
(
dER

k
)ε/2 , ∀n ∈ N and ∀k ∈ K. (29)

Using the proposed phase design Θ in (28), the subproblem for the UAV’s trajectory
design is expressed as

min
pU ,v

N

∑
n=1

(
E f

n(vn)
)

(30a)

s.t. (1), (24), (20j), (22c). (30b)

As the objective function (30) and the constraints (22c), and (24) are nonconvex, the
SCA method is applied by introducing the slack variables ṽ = {ṽn}∀n, u = {uk,n}∀k,n,
w = {wn}∀n, and t = {tk,n}∀k,n, which yield the following convex problem:

min
{pU ,v,ṽ,u,w,t}

N

∑
n=1

(
Ẽ f

n(vn, ṽn)
)

(31a)

s.t. (1), (20j), (A3) (31b)

tk,n ≤ ĥk,n, ∀n ∈ N and ∀k ∈ K (31c)
ak,n,sLo

k,n

(1− µn)τ
≤ R̂U

k,n,s, ∀n ∈ N and ∀k ∈ K and s ∈ {1, 2} (31d)

n

∑
i=1

(
Eo

k,i(Pk,n,s)+
κC3

k (Lk,i−Lo
k,i)

3

(1− µi)
2τ2

)
≤ηµnτPE

n ĥk,n, ∀n ∈ N and ∀k ∈ K.

(31e)

The derivations of (31) are detailed in Appendix A. Algorithm 1 is used to obtain the
solution of the problem (31), which can be readily solved using CVX (version 2.2) [25,26].

Algorithm 1 UAV’s Trajectory Optimization

Input: Initialize z(0) = {zn(0)}n∈N ∈ X with {zn(0)}n∈N , (pU(z)
n , {u(z)

k,n}k∈K, w(z)
n ),

{ṽn}n∈N , {vn}n∈N fixed µ, P, Θ, L. Set l = 0
Repeat: Until the convergence criterion is satisfied.

Obtain Θ∗ using (28) for given pU(z).
Find (z∗(z(z)), v∗) using the solution of the problem (31).
Set z(l + 1) = z(z) + α(z)(z∗(z(z))− z(z)) for some α(z) ∈ (0, 1].
Update z← z + 1

Output: pU∗, v∗

3.2.4. Optimization of Time Ratio

Given the uplink and downlink power P, the UAV’s trajectory {pU , v}, the RIS’s phase
shift Θ, and the offloaded bit L, the subproblem for the time ratio µ can be formulated
as follows:

min
µ

N

∑
n=1

(EE
n (µn, PE

n )) (32a)

s.t. (20f), (20d), (22c), (24). (32b)

Due to its convexity, the solution to problem (32) can be readily obtained using CVX [25,26].
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3.3. Overall Algorithm

Algorithm 2 is used for energy minimization in the RIS-assisted UAV-enabled WP-
MEC system to achieve a high-quality local optimal solution of problem (20). Specifically, in
each iteration k of the proposed Algorithm 2, we consider three subproblems of the original
problem (20): (1) optimization of P(k + 1) and L(k + 1) with fixed µ(k), Θ(k), pU(k), and
v(k) using (26); (2) optimization of Θ(k + 1), pU(k + 1), and v(k + 1) with fixed µ(k),
P(k + 1), and L(k + 1) using Algorithm 1 for problem (31); and (3) optimization of µ(k + 1)
with fixed Θ(k + 1), pU(k + 1), v(k + 1), P(k + 1), and L(k + 1) using problem (32).

The subproblems (26) and (31) introduced in Sections 3.2.2 and 3.2.3 adopt the bounds for
substituting the nonconvex objective function or constraints with their convex approximations,
such as (26c), (31a), (31d), and (31e). By solving each subproblem and updating the variables
to be optimized, the optimal variables are iteratively obtained in Algorithm 2 based on the
AO approach [29]. In Algorithm 1, to optimize the UAV’s trajectory (Section 3.2.2), the lth
solution of the optimization variables, i.e., z(l), is bounded, and z(∞) has a stationary solution
for problem (31) if the step size α(z) is under α(z) ∈ (0, 1], α(z) → 0, and ∑z α(z) = ∞ [30].
Accordingly, the convergence of Algorithm 2 is guaranteed by obtaining the feasible solution
in the convex problem based on the bounds with the initial values in the feasible set of each
subproblem [30,31]. In addition, the convergence of the proposed Algorithm 2 is numerically
verified in terms of the total energy consumption of the UAV (Figure 3).

2 4 6 8 10 12 14 16 18 20

0

20
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Figure 3. Total energy consumption of the UAV obtained using the proposed Algorithm 2 versus the
number of iterations (M = 16).

The computational complexity of the proposed algorithm can be analyzed by the
complexity of three subproblems in each iteration. In subproblem (26), 3KN + N variables
are optimized using the convex solver in terms of transmit power P(k+ 1) and bit allocation
L(k + 1) with the computational complexity O((3KN + N)3.5). Moreover, as subproblem
(31) has an inner iteration loop in Algorithm 1 for obtaining the optimal UAV’s trajectory,
the computational complexity is calculated asO(N1(KN + 4N)3.5) with N1 inner iterations.
In addition, the computational complexity for subproblem (32) is represented as O(N3.5).
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Therefore, the total complexity of the proposed algorithm is calculated asO(N2N1(KN)3.5),
where N2 is the number of iterations in Algorithm 2.

Algorithm 2 Algorithm for energy minimization in the RIS-assisted UAV-enabled WP-
MEC system

Input: Initialize µ(0), P(0), pU(0), v(0), Θ(0), L(0). Set k = 0
Repeat: Until the convergence criterion is satisfied.

Obtain P(k + 1) and L(k + 1) using the solution of the problem (26) for given µ(k), Θ(k),
pU(k), and v(k).
Obtain Θ(k + 1), pU(k + 1), and v(k + 1) from Algorithm 1 for given µ(k), P(k + 1), and
L(k + 1).
Obtain µ(k + 1) using the solution of the problem (32) for given Θ(k + 1), pU(k + 1),
v(k + 1), P(k + 1), and L(k + 1).
Update k← k + 1

Output: µ∗, P∗, pU∗, v∗, Θ∗, L∗

4. Numerical Results

The performance of Algorithm 2 to jointly optimize the local CPU frequency f , the
uplink and downlink power P, the bit allocation L, the UAV’s trajectory {pU , v}, the RIS’s
phase shift Θ, and the time ratio µ is investigated via numerical results. Throughout the
numerical results, we consider K = 2 UEs located at pE

1 = (−5, 5, 0) and pE
2 = (5, 5, 0)

and the RIS with M elements located at pR = (0, 1, 2). The UAV is supposed to fly from
pU

I = (−10, 0, 5) to pU
F = (10, 0, 5). For simplicity, all UE is considered to have the same

amount of data to process. Unless otherwise specified, the remaining parameters for the
simulations are given in Table 1 by following [9,10].

Table 1. Configuration of simulation parameters.

Parameters Values Parameters Values

K 2 N T/τ
τ 0.2 σ2 −100.98 (dBm)
d λ/2 ς1 0.00614
ς2 15.976 vmax 10 (m/s)
η 0.8 f high

k
1 (GHz)

Ltot
k 105 (bits) κ 10−28

ϕ 10−5 Ck 105

ε 2.2 ζ 2.2
β0 0 (dB) B 20 (MHz)

For reference, the proposed method is compared with five benchmark schemes:
(i) no optimization of transmit power and bit allocation (No_pow&bit_alloc_opt), where
the trajectory pU of the UAV and the time ratio µ are obtained using the proposed algo-
rithm, and the equal allocation of transmit power and bit is considered for offloading per
interval; (ii) no optimization of the UAV’s trajectory (No_tra_opt) [4], where the time ratio
µ, transmit power P, and bit allocation L are optimized using the proposed algorithm,
and the UAV flies in a straight line from initial to final positions at a constant velocity;
(iii) no optimization of time ratio (No_time_ratio_opt), where the time ratio µk = 0.5 for
all k ∈ K is constant, and the UAV’s trajectory pU , transmit power P, and bit allocation L
are optimized using the proposed algorithm; (iv) the proposed algorithm without the RIS
(Proposed algorithm w/o RIS), where Algorithm 2 is applied to the case without the RIS
that has the only direct path of the UAV-to-UE communication link, and therefore, it does
not require the RIS’s phase-shift design; and (v) the proposed algorithm with orthogonal
multiple access (OMA) (Proposed algorithm w/ OMA), where the proposed Algorithm 2
is applied for the OMA case. Note that, in the OMA approach, only one message has to
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be communicated for each user; therefore, each user is assigned to 1/K time or frequency
resource to avoid any interference.

First, the convergence of the proposed algorithms is numerically investigated. Figure 3
shows the total energy consumption of the UAV versus the number of iterations obtained
by Algorithm 2 with different mission time T, where the number of RIS elements is M = 16.
Here, the iterations of the proposed algorithm are the outer iterations of Algorithm 2. The
proposed algorithm converges quickly in terms of the total energy consumption of the
UAV at about 10–14 steps. Moreover, it is observed that the number of iterations required
to converge increases with the number of optimized variables, e.g., by considering a large
number of slots with a large T.

Figure 4 shows the optimal trajectories of a UAV designed using the proposed algo-
rithm. In Figure 4, the UAV gets closer to the location between the UE and RIS to mitigate
the path loss between the UAV and UE, as well as that between the UAV and the RIS.
This is because the performances in terms of the harvested energy at the UE in the WET
phase and the achievable rate of the UE are inversely and exponentially proportional to
the interdistances from the UAV to the UE and to the RIS. However, in the case of a large
number of RIS elements, i.e., M = 1024, as the path loss of the UE–RIS–UAV link can be
sufficiently compensated by the optimized RIS phase shift Θ, the optimal UAV’s trajectory
can be identical to the benchmark scheme with no optimization of the UAV’s trajectory
(No_tra_opt).
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0.5

1
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3

3.5

4

4.5

5

Figure 4. Optimal trajectory of the UAV obtained using the proposed Algorithm 2 (T = 40).

The impact of the mission time T on the total energy consumption of the UAV is
shown in Figure 5, with the number of RIS elements M = 16. It is noticed that the proposed
algorithm always outperforms the other benchmark schemes. In addition, the performance
of either No_tra_opt or No_time_ratio_opt is similar to that of the proposed algorithm
at a low mission time T. This is because the improvement in performance obtained by
optimizing either the UAV’s trajectory or time ratio becomes small due to stringent con-
straints at a low mission time T. In contrast, the energy consumption of the UAV for
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the benchmark scheme without the optimization of transmit power and bit allocation
(No_pow&bit_alloc_opt) approaches that of the proposed algorithm as the mission time T
increases. Thus, the significance of the optimal resource allocation is emphasized when the
resource for communication and computing, i.e., mission time T, is insufficient. Moreover,
as a less-achievable rate for transferring the offloaded data per time slot is required for
ensuring sufficient mission time, the performance gain of RSMA decreases compared with
that of OMA as the mission time T increases. Oppositely, the performance gap between the
cases with and without the RIS exists despite the joint optimization of the energy consump-
tion of the UAV. This can be explained by the reduction in the channel gain resulting from
the no-virtual-RIS link in the case without the RIS, which drastically reduced the achievable
rate and amount of energy harvested at the UE.
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Figure 5. Total energy consumption of the UAV versus the mission time T (M = 16).

In Figure 6, the total energy consumption of the UAV is plotted versus the number of
RIS elements M at the mission time T = 25. Figure 6 shows that the energy consumption of
the UAV decreases with an increasing number of RIS elements, M, owing to the improved
channel gains that enable better performance of WET and an achievable rate. In particular,
the amount of energy harvested at the UE increases with the channel gain at a fixed transmit
power PE

n at the UAV, as shown in (8). The desired channel links can also be elevated by
increasing the number of RIS elements M and by designing the flying path of the UAV to
move toward the UE or the RIS, as observed in Figure 4. It is also noticeable that, for a
small number of RIS elements M, the performance superiority of the proposed algorithm is
pronounced compared with other reference schemes. As mentioned above, it is observed
that the advantage of RSMA is pronounced for a small number of RIS elements, whereas
the advantage of RIS becomes prominent for a large number of RIS elements.
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Figure 6. Total energy consumption of the UAV versus the number of RIS elements, M (T = 25).

5. Concluding Remarks

A novel RIS-assisted WP-MEC design framework with the aid of a UAV-mounted
cloudlet is proposed herein to minimize the total energy consumption of the UAV. By
adopting the UAV-mounted cloudlet in order to move freely, the desired channel links can
be established for improving the energy efficiency. Simultaneously, as the RIS between the
UAV and the UE is deployed, the channel gain can be enhanced thanks to the additional
virtual links. The uplink RSMA method is used for improving the spectral efficiency in the
offloading procedure of multiple UEs. For realizing WET and MEC, a new frame structure
comprising four phases is proposed, such as the (i) WET phase, (ii) local computing
and offloading (LO) phase, (iii) UAV’s computing phase, and (iv) downloading phase
of the computing results. For each phase, we provided detailed operations and related
signal models, based on which the energy minimization problem is formulated to jointly
optimize resource allocation along with UAV trajectory and the RIS phase-shift matrix.
Due to coupling issues between the designs of the optimization variables, an AO-based
algorithm is developed to converge to a locally optimal solution, and its convergence
and computational complexity are analyzed. Via simulation results, the superiority of the
proposed WP-MEC systems and algorithm are verified, and it is revealed that the proposed
algorithm reduces the energy consumption to about half of that of the benchmark schemes.
This performance gain of the proposed algorithm becomes prominent in the system with
insufficient resources, such as a short mission time or a small number of RIS elements.
To the best our knowledge, the consideration of both an RIS and UAV-mounted cloudlet
for the WP-MEC system has been at the beginning stage of development, and the system
performance can be further improved using the RSMA method. The proposed system and
algorithm can provide insights into the performances of various 6G system configurations
and applications with high computational complexity and low latency, such as extended
reality (XR) and remote diagnosis. As future works, the proposed WP-MEC systems can
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be extended to a robust design against time offset or imperfect channel state information in
asynchronous environments.
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Appendix A. Derivation for (31)

In this appendix, we derive the convex optimization problem (31) for the UAV’s
trajectory design. To handle the nonconvexity of (30), we employ the upper bound of
E f

n(pU
n ), given as

Ẽ f
n(vn, ṽn) = τ

(
ς1v3

n +
ς2

ṽn

)
, ∀n ∈ N , (A1)

where a slack variable ṽn is defined to satisfy the condition vn ≤ ṽn, which is equivalent to∥∥∥pU
n − pU

n−1

∥∥∥2
≥ τ2ṽ2

n, ∀n ∈ N . (A2)

For applying the SCA technique [9,25], we adopt the first-order Taylor expansion at a
local point pU(z)

n , where z = 1, 2, ... is the iteration number of the SCA method. Accordingly,
the left-hand side of (A2) can be approximated as its linear lower bound, and an additional
constraint can be obtained as follows:

τ2ṽ2
n − 2

(
pU(z)

n − pU(z)
n−1

)T(
pU

n − pU
n−1

)
≤
∥∥∥pU(z)

n − pU(z)
n−1

∥∥∥2
, ∀n ∈ N . (A3)

To handle the nonconvexity of the constraints (22c) and (24), the slack variables uk,n
and wn are introduced for all k, n, which allows us to rewrite (30) as

min
{pU ,v,ṽ,u,w}

Ẽ f
n(vn, ṽn) (A4a)

s.t. (1), (24), (20j), (22c), (A3) (A4b)

dEU
k,n ≤ uk,n, ∀n ∈ N and ∀k ∈ K (A4c)

dRU
n ≤ wn, ∀n ∈ N , (A4d)

where we define u = {uk,n}∀k,n and w = {wn}∀n.
In addition, as the Rk,n,s(pU

n , ΘI
n, Pk,n,s) in (24) can be defined as a difference in convex

(DC) functions, Rk,n,s can be bounded with the slack variables u and w as follows:

Rk,n,s

(
pU

n , ΘI
n, Pk,n,s

)
≥ B log2

 ∑
πl.n.j≥πk,n,s

Pl,n,j
∣∣h̃l,n

∣∣2 + σ2

− B log2

 ∑
πl.n.j>πk,n,s

Pl,n,j
∣∣h̃l,n

∣∣2 + σ2

, (A5)



Drones 2023, 7, 688 18 of 19

where we have

h̃k,n =

√
β0

(uk,n)
ζ
+

β0M

wn
(
dER

k
)ε/2 , (A6)

which is lower-bounded as

∣∣h̃k,n
∣∣2 =

(
A2

(uk,n)
ζ
+

B2

(wn)
2 +

2AB

(uk,n)
ζ/2wn

)
≥ M(z)

1 −M(z)
2

(
uk,n − u(z)

k,n

)
−M(z)

3

(
wn − w(z)

n

)
,

∣∣∣ĥk,n

∣∣∣2, (A7)

with u(z)
k,n and w(z)

n being the zth iterate of uk,n and wn in the SCA algorithm, respectively,

A =
√

β0, B = β0 M

(dER
k )

ε/2 ,

M(z)
1 =

 A2(
u(z)

k,n

)ζ
+

B2(
w(z)

n

)2 +
2AB(

u(z)
k,n

)ζ/2
w(z)

n

, (A8)

M(z)
2 =

 ζ A2(
u(z)

k,n

)ζ+1 +
ζ AB(

u(z)
k,n

)ζ/2+1
w(z)

n

 (A9)

and M(z)
3 =

 2B2(
w(z)

n

)3 +
2AB(

u(z)
k,n

)ζ/2(
w(z)

n

)2

. (A10)

However, (A5) is neither convex nor concave with respect to uk,n and wn. To address

this issue, we introduce the slack variable t = {tk,n}∀k,n to satisfy tk,n ≤
∣∣∣ĥk,n

∣∣∣2 and

R̃U
k,n,s ≥ B log2

 ∑
πl.n.j≥πk,n,s

Pl,n,jtl,n + σ2

− B log2

 ∑
πl.n.j>πk,n,s

Pl,n,jtl,n + σ2


≥ B log2

 ∑
πl.n.j≥πk,n,s

Pl,n,jtl,n + σ2

− B log2

 ∑
πl.n.j>πk,n,s

Pl,n,jt
(z)
l,n + σ2


−

∑πl.n.j>πk,n,s
Pl,n,j(tl,n − t(z)l,n )(

∑πl.n.j>πk,n,s
Pl,n,jt

(z)
l,n + σ2

)
log(2)

, R̂U
k,n,s. (A11)

Thus, we can finally have the convex optimization problem (31) for the UAV’s trajec-
tory design.
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