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Abstract: Research on developing a smart security system is based on Artificial Intelligence with
an unmanned aerial vehicle (UAV) to detect and monitor alert situations, such as fire accidents and
theft/intruders in the building or factory, which is based on the Internet of Things (IoT) network.
The system includes a Passive Pyroelectric Infrared Detector for human detection and an analog
flame sensor to sense the appearance of the concerned objects and then transmit the signal to the
workstation via Wi-Fi based on the microcontroller Espressif32 (Esp32). The computer vision models
YOLOv8 (You Only Look Once version 8) and Cascade Classifier are trained and implemented into
the workstation, which is able to identify people, some potentially dangerous objects, and fire. The
drone is also controlled by three algorithms—distance maintenance, automatic yaw rotation, and
potentially dangerous object avoidance—with the support of a proportional–integral–derivative (PID)
controller. The Smart Drone Surveillance System has good commands for automatic tracking and
streaming of the video of these specific circumstances and then transferring the data to the involved
parties such as security or staff.

Keywords: drone; AI; YOLO; Cascade Classifier; PID; flight algorithms; IoT; sensor security

1. Introduction

Currently, unmanned aerial vehicles (UAVs) are utilized in a wide range of applica-
tions [1–5], especially in surveillance systems [6,7]. Drone surveillance involves visually
monitoring an individual, a group, items, or a situation to prevent potential threats. The
establishment of an efficient surveillance system with drone fleets necessitates the smooth
integration of dependable hardware and sophisticated automation software. In buildings
and factories, there is a high demand for smart security systems with drone applications.
Drones perform significantly faster than patrol vehicles or security personnel, enabling
them to promptly arrive at the location of an incident, thereby facilitating a swift remedial
response.

Research [8] uses a drone attached to a USB camera interfaced with Raspberry Pi,
which is capable of autonomous flight monitoring in a campus, office, and industrial areas.
However, the system does not include an object identification function and mainly focuses
on video streaming. Therefore, this system cannot track a specific intruder automatically.
Another article [9] studies the human motion tracking algorithm with a drone based on the
MediaPipe Framework [10,11]. A drone-based method for 3D human motion capture has
been developed by researchers [12], in which a drone circles a human subject, records a
video, and then reconstructs 3D full-body postures. These studies try to reconstruct the 3D
posture sequence of a subject rather than concentrating on a methodology for autonomous
human motion tracking.

Another paper discusses the deep convolutional neural network (CNN) model (EfficientNet-
B3) [13] for plant disease identification, and images were captured using a drone with a con-
volution neural network (CNN). Nevertheless, EfficientNet’s performance can be reduced on
hardware accelerator such as GPUs, which are designed for large computation models and
where data movement is a relatively small component of the overall performance. In this case,
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EfficientNet requires significantly less computation and more data movement than comparable
networks.

In this work, a Smart Drone Surveillance System (SDSS) is developed for the case
of intruders and fire accidents. Sensors are responsible for detecting the intrusion or the
accident flame and then sending the signal to the workstation via Wi-Fi. The drone is
already located in a hidden place at a proper distance inside the building. After receiving
the sensor signal, the workstation controls the drone to reach the sensor location. On its
trajectory, the drone can also track suspicious objects. The drone turns around the sensor
place to identify a person or fire. Once it captures the concerned object, the drone starts
tracking at a safe distance. The object identification is trained by YOLOv8 [14] and Cascade
Classifier [15]. The drone-controlling software is developed based on Python [16], which
sets the drone’s trajectory to the sensor locations and transfers the video camera to the
workstation. After obtaining the object video, the first 5 s or 10 s of the videos are sent to
other PCs or mobile phones of the emergency contact, such as the security or police. Then,
the drone keeps following the detected object and stores the video in the workstation. In
this way, considerable circumstances are under security monitoring, and all the evidence
is saved.

In addition, three algorithms are implemented into the flight control system: distance
maintenance, automatic yaw rotation, and potentially dangerous object avoidance. Distance
maintenance is regulated by a proportional–integral–derivative (PID) controller [17] based
on the prediction box area of the Artificial Intelligence (AI) object identifier. The area box
must be at a specific threshold to guarantee a safe distance between the object and the
drone. The automatic yaw rotation is also adjusted by the PID controller, depending on
the difference between the box center x-coordinate and the frame center. The drone rotates
its yaw angle, following the right/left motion of the object to ensure that the object is at
the center of the frame. The third algorithm helps the drone avoid dangerous objects that
can be used to throw, such as knives, scissors, cups, and bottles. Once the drone detects
these objects close to it (based on the object area size in the image), the drone moves to one
side and rotates its heading to the opposite side, so the tracking process continues with
the intruder.

The devices in SDSS communicate with each other under the IoT protocol [18,19].
The IoT refers to the interconnection of things over the Internet, enabling smart devices to
engage in communication, data exchange, and interaction between electrical components,
software systems, networks, and sensors, thus facilitating effective communication pro-
cesses. Effective communication among smart devices plays a crucial role in the IoT, as it
facilitates the gathering and sharing of data. This capability significantly contributes to the
overall success of IoT products and projects.

This paper contributes the following points to scientific research:

• Both Yolov8 and Cascade Classifier are successfully implemented together into the
flight system to support each other in object detection, which accomplishes high
accuracy and speed for surveillance purposes.

• The distance maintenance and yaw rotation algorithms based on the PID controller
are described in detail, providing deep comprehension for the reader about the drone
control field with the support of AI techniques.

• An algorithm for potentially dangerous object avoidance is proposed, which utilizes a
straight strategy to dodge the approaching object based on the trained model.

• The strong point of this paper is to combine the computer vision models and the UAV
algorithms into a smart system. There is a highly effective connection between the two
sides of implementation. The drone-controlled algorithms are based on AI models.
Thus, this paper not only describes the robust flight control methods in detail but also
describes the automatic operation connected to the trained AI object identifier models.

The paper is organized as follows: the 1st part describes the utilized components, the
computer vision models, and the control algorithms for the drone. The 2nd part contains
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the experimental setup and result analysis. Finally, the conclusion and the future work
are outlined.

2. Related Work

SDSS utilizes AI models in computer vision, such as YOLOv8 and Cascade Clas-
sifier, to identify the suspected objects. A human detection method based on YOLOv5
was proposed in [20], which successfully identified the human object. When comparing
YOLOv8 against YOLOv5, YOLOv8 demonstrates faster speed and improved throughput
with a similar number of parameters due to the implementation of hardware-efficient and
architecturally reformed approaches [21]. On the other hand, Cascade Classifier, based
on the AdaBoost algorithm, is speedy, robust, and accurate. Meanwhile, deep learning
methods like convolutional neural networks (CNNs) [22] require significant data and
processing power.

A system for autonomous human-following drones used 3D pose estimation to gather
data on human direction for following a moving subject from a certain direction [23]. This
system uses PID controls with input values such as the longitudinal movement speed,
vertical movement speed, and rotational angular speed with the neck and middle hip as
the reference points. In our paper, the PID controller works based on the output bounding
box area from computer vision models, comparing it with the desired threshold. A larger
box area corresponds to a closer distance and vice versa.

The same research [23] also proposes a system that calculates human direction from the
3D joint points of the left shoulder and right shoulders. From that, the left–right movement
speed of the drone is changed to approach the target value. Unlike that control system,
our manuscript utilizes the PID controller to regulate motor speed by calculating the
difference between the prediction box center and the image center in pixels. This method
can constantly track the person’s direction change to adapt, aiming to set the human-object
box around the frame center.

Typically, to avoid obstacles or approaching objects, the drone needs to be equipped
with a light detection and ranging (LiDAR) sensor to enable the perception of obstacles
within the surrounding environment [24] or ultrasonic sensors for distance estimation [25].
To minimize the extra cost and high power consumption, our drone system has imple-
mented the algorithm to avoid the right/left by detecting the approaching object position
respecting the image frame.

Another study uses a tracking camera with a path-planning algorithm for collision
avoidance in horizontal space [26]. The tracking camera on the drone is used to track its
position. The idea is to drive the drone to the target with three possible trajectories. If
there is an obstacle, the drone moves to another planned path. However, this method
requires the external sensor system, such as the motion tracker of Optitrack, to track
obstacle positions [27]. Our developed system tracks the obstacles directly based on the
object identifier YOLOv8. Hence, the SDSS has good time responses with self-detection
and optimized cost construction for the drone.

The sensors are essential in the Internet of Things (IoT) [28], which acquire and transmit
data from their surroundings to the center of wireless communication. In the proposed
system, the PIR sensor [29] for human appearance detection and the flame detection
sensor [30] are mounted in the monitoring places to transmit the alert to the workstation
based on ESP32 [31]. The smart system receives this alert and then automatically activates
the whole flight system, implementing the robust algorithm with AI models inside. In this
way, the SDSS can be seen in Figure 1.
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3. Materials and Method
3.1. Drone Components

The drone is a continuous low humming sound. As shown in Figure 2, a quadcopter
drone has four propellers and motors, a power distribution board, a frame, an electric motor
controller (ESC), a flight controller, a battery, a receiver, a camera, and sensors. Pressure
sensors measure the altitude or distance between the ground and the drone. The inertial
measurement unit (IMU) sensors [32–34] measure the accelerations and angles of the drone.
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3.2. Drone Working Principle

The drone can work in 4 degrees of freedom (DOF), which translates in 3 directions
and rotates in 1. As illustrated in Figure 3, 2 propellers rotate clockwise, and the other 2
rotate anticlockwise, generating zero angular momentum and creating the lift to fly the
drone. This characteristic keeps the drone stationary rather than rotating in one direction
while hovering.
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Figure 3. Rotation direction illustration of drone propeller.

The translations are up–down, left–right, and forward–backward. To rotate the drone
yaw following the counterclockwise movement, the speed of the counterclockwise motor
must be increased, and the speed of the anticlockwise motor must be reduced and vice versa.

The speed of drone motors is controlled in cm/s by a Python library: DJITelloPy [35].

• Left/right velocity: −100 to 100 cm/s;
• Forward/backward velocity: −100 to 100 cm/s;
• Up/down velocity: −100 to 100 cm/s;
• Yaw velocity: −100 to 100◦/s.

The position translation:

• Move to left or move to right: 20 to 500 cm;
• Move forward or move backward: 20 to 500 cm;
• Rotate clockwise or anticlockwise: 1–360◦.

3.3. Computer Vision Technologies
3.3.1. YOLOv8

YOLO is a widely adopted ensemble of object detection models utilized for real-time
object identification and classification within computer vision. The primary characteristic
of YOLO is its singular-stage detection methodology, which was specifically devised to
identify objects rapidly and accurately in real time. YOLOv8 provides the most significant
advantages in both accuracy and speed in detection among all YOLO versions [36]. As
illustrated in Figure 4, the trained models output the prediction boxes with bounding
heights and widths.
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YOLOV8 incorporates the C2f module, which effectively combines two parallel
branches of gradient flow, enhancing the resilience and effectiveness of gradient informa-
tion propagation. The integration of advanced characteristics with contextual information
enhances the precision of detection. The detection module utilizes a combination of convo-
lutional and linear layers to effectively transform the high-dimensional information into the
desired output bounding boxes and item classifications. The system’s backbone changed
with the C2f, replacing C3 (composed of 3 convolutional layers) in YOLOV5 [37]. C2f has
the outputs from the concatenated bottleneck (a combination of two 3 × 3 convolutional
layers with residual connections), while C3 only utilizes the output from the last bottleneck.
Every convolution filter is responsible for extracting a particular characteristic from the
image. Figures 5 and 6 depict the bottleneck and C2F structures, respectively.

Note: CBS = Conv + BN + SiLU

where in the convolutional layer, BN (batch normalization) normalizes the previous layers’
output using the current batch’s mean and variance and SiLU (Sigmoid Linear Units) is an
activation function for neural networks.
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Overall, the YOLOv8 structure mainly contains an input segment, a backbone, a neck,
and an output segment with a detection head.

The input segment implements mosaic data augmentation, adaptive anchor computa-
tion, and adaptive grayscale padding on the input picture.

In the backbone network, the input picture undergoes processing by several convo-
lutional (Conv) and C2f modules in order to extract feature maps at various scales. The
feature maps produced as output undergo processing through the spatial pyramid pooling
fast (SPPF) module. This module utilizes pooling with different kernel sizes to merge the
feature maps. The combined outputs are subsequently transmitted to the neck layer. The
utilization of Sequentially Connected Three Maximum Pooling Layers (SPPFs) results in a
reduction in computing effort and a decrease in delay.

The neck layer of YOLOv8 utilizes the Feature Pyramid Network (FPN) [38] and Path
Aggregation Network (PAN) [39] architecture to augment the model’s capacity to fuse
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features. This architectural design integrates high-level and low-level feature maps by
utilizing upsampling and downsampling techniques, enabling the effective transmission
of both semantic and localization cues. By employing this methodology, the network
gains improved capability to integrate characteristics from items with diverse scales, hence
augmenting its detection efficacy on things with variable scales.

The detection component of YOLOv8 adheres to the conventional approach of segre-
gating the classification component from the detection component. The process involves
the computation of loss and target detection box filtering. The computation of loss has two
main components, namely classification and regression, with the exclusion of the object
branch. The classification branch employs the Binary Cross-Entropy (BCE) loss function,
whereas the regression branch utilizes the Distribution Focal Loss (DFL) [40] and CIoU loss
functions [41]. The formation of prediction boxes in YOLOv8 involves the utilization of
decoupled heads, which have the capability to predict categorization scores and regression
coordinates concurrently. The representation of classification scores is accomplished by a
two-dimensional matrix, which signifies the existence of an item within each individual
pixel. The regression coordinates can be denoted by a four-dimensional matrix, which rep-
resents the displacement of the object’s center with respect to each pixel. YOLOv8 utilizes a
task-aligned assigner to calculate a task alignment measure by utilizing the classification
scores and regression coordinates. The task alignment measure integrates the classification
scores with the Intersection over Union (IoU) value, facilitating the joint optimization of
classification and localization while mitigating the impact of low-quality prediction boxes.
The IoU metric is extensively utilized in the field of object identification. It plays a crucial
role in identifying positive and negative samples and estimating the distance between
predicted boxes and ground truth. An item is commonly categorized as detected when the
IoU surpasses a threshold of 0.5.

Although YOLOv8 is a robust model, it still has a limit in small object detection or
objects with low contrast. Thus, another OpenCV [42] model is implemented for fire
detection since it is essential to discover the flame from the ignition state when it just starts
in a small shape.

3.3.2. Cascade Classifier

The Cascade Classifier technique works based on the Haar feature-based Cascade
Classifier, which is an effective object detection method proposed in the article [43]. In this
case, there are about 600 positive and 400 negative image samples to train classifiers for
fire detection. Positive images contain fire, and negative images do not contain fire. As
illustrated in Figure 7, the Haar Cascade Classifier consists of 4 main steps:
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• Step 1: Gathering the Haar Features. In a detection window, a Haar feature is ef-
fectively the result of computations on neighboring rectangular sections. The pixel
intensities in each location must be summed together to determine the difference
between the sums. Figure 8 shows the Haar feature types.
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• Step 2: Creating Integral Images. In essence, the calculation of these Haar charac-
teristics is sped up using integral pictures. It constructs sub-rectangles and array
references for each of them rather than computing each pixel. The Haar features are
then computed using them.

• Step 3: Adaboost Training. Adaboost selects the top features and trains the classifiers
to utilize them. It combines weak classifiers to produce a robust classifier for the
algorithm to find items. Weak learners are produced by sliding a window across the
input image and calculating Haar characteristics for each area of the image. This
distinction contrasts with a learned threshold distinguishing between non-objects and
objects. These are weak classifiers, whereas a strong classifier requires a lot of Haar
features to be accurate. The last phase merges these weak learners into strong ones
using cascading classifiers.

• Step 4: Implementing Cascading Classifiers. The Cascade Classifier comprises several
stages, each containing a group of weak learners. Boosting trains weak learners,
resulting in a highly accurate classifier from the average prediction of all weak learners.
Based on this prediction, the classifier decides to go on to the next region (negative)
or report that an object was identified (positive). Due to the majority of the windows
not containing anything of interest, stages are created to discard negative samples as
quickly as possible.

3.3.3. Evaluation Metrics

Precision (P), recall (R), and average precision (AP) are the evaluation metrics to
validate the object detection models. The AP is the average accuracy of the model [44].

The formula to calculate P and R is as follows:

P =
TP

TP + FP
(1)

R =
TP

TP + FN
(2)

AP =
∫ 1

0
p(r)dr (3)

where TP is true positive; FP is false positive; and FN is false negative.

3.4. Human-Tracking Algorithms
3.4.1. Distance Maintenance

To track a person or fire, a drone needs to identify these objects using AI in computer
vision. A rectangular boundary will cover the detected object, as shown in Figure 4.

Then, the safety distance must be adjusted in real time, which is carried out based on
the area threshold in pixels. This area of the prediction box must be maintained in a specific
range [A, B] following the below algorithm:
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• If the box area < A→ Drone is too far away→ 2 front motor speed is increased→
Drone moves forward.

• If the box area > B→ Drone is too close→ 2 back motor speed is increased→ Drone
moves backward.

• If the box area ∈ [A, B]→ Drone is at the proper distance from the object→ Drone
maintains motor speed.

For instance, the image width and length are 640 and 480, respectively.
The threshold can be about [33,200, 33,800] for person detection, and the threshold for

fire detection can be about [600, 1800].
PID controls the speed variation to maintain the proper distance between the drone

and the target, as shown in Figure 9.
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• The P-controller is an essential element in the control systems. The system offers a
direct control action proportional to the error between the target setpoint and the
measured process variable. The drone’s controller continuously modifies the motor
speed depending on the difference between the desired and predicted box areas to
ensure the drone maintains the appropriate distance from the item. The back motors
are slowed to gently return the drone back if it is too near than intended and vice
versa. The difference between the required and measured rectangle areas determines
how much correction is made; higher differences yield more vital adjustments.

• The D-controller aids in system control by monitoring the rate of change. The focus
is placed on the rate of change between the target value and the measured value.
When the drone reaches the proper distance, the D-controller helps keep the drone
steady by looking at how quickly the drone’s speed is changing. If the drone is going
backward or downward too fast, the D-controller will adjust to slow it down. This
feature helps the drone stay at the desired distance smoothly, ensuring stability and
precise speed control.

• The I-controller operates by continuously summing the error signal over a period of
time and utilizing the resultant integrated value to provide suitable modifications to
control inputs. If the drone deviates from its setpoint, the integral controller calculates
the duration and magnitude of the accumulative error and applies corrective actions
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proportionally. The P and D controllers can make quick adjustments but struggle to
remove minor, persistent errors that occur over time, leading to steady-state errors.

As shown in Figure 10, the overall control function:

u(t) = Kpe(t) + Ki

∫ t

0
e (τ)dτ+ Kd

de(t)
dt

(4)

where

• u(t): PID control variable.
• Kp, Ki, and Kd are the proportional, integral, and derivative coefficients, respectively.
• e(t) is the error between the desired and current values.
• Kp should be great enough if the error is significant; the control output will be propor-

tionately high. Kd should be set higher if the change is rapid. Ki should be suitable to
eliminate the residual error due to the historic cumulative value of the error.
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3.4.2. Yaw Rotation for Object Position Adaption

When the object starts moving to the side, the drone has to rotate the yaw to capture
the object in the image center and follow the target to the left or right motion. If the person
moves to the left side, the drone has to rotate to the left to bring the object back to the frame
center. Thus, the speed of the left motors should be adjusted to be higher than the right
motors and vice versa, as demonstrated in Figure 11.

The PID is also applied to this case to avoid overshooting issues. When the drone
rotates closely to the object, its speed must be decreased gradually. The PID will adjust the
motor speed depending on how far the drone’s yaw is from the object’s actual point.

• If the x-coordinate of the rectangle center < x-coordinate of the image center→ Target
moves to the left→ PID adjusts the drone yaw to increase the left motor speed.

• If the x-coordinate of the rectangle center > the x-coordinate of the image center→
Target moves to the left→ PID adjusts the drone yaw to increase the right motor speed.
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3.4.3. Potentially Dangerous Object Avoidance

Some other objects are learned in model YOLOv8 to support drone safety, such as
knife, bottle, cup, cell phone, and scissor. If the intruder throws these objects, the drone
detects them at a specific range; it is programmed to move to one side, and the yaw rotates
to the opposite side to keep tracking the person. For instance, if a knife is thrown at the
drone, and the drone moves to the left and then rotates the yaw to the right. Another area
threshold (pixel) is set to detect whether the objects approach close to the drone. When
the drone identifies those objects, the area is greater than this area threshold on camera,
and the drone will avoid them. Figure 12 describes the object at the frame center; Figure 13
shows the cases when the approaching object is at the left and right.
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If approaching object > area threshold:

• If (x + w)/2, ∈ [0, IW/2] and (y + h)/2, ∈ [0, IH]:

Object at the left→ Drone moves to the right 20 cm and then turns yaw to the left 30◦.

• If (x + w)/2, ∈ [IW/2, IW] and (y + h)/2, ∈ [0, IH]:

Object at the right→ Drone moves to the left 20 cm and then turns yaw to the right 30◦.

• If (x + w)/2 = IW/2 and (y + h)/2 = IH/2:

Object at the center → Drone moves to the right 25 cm and then turns yaw to the
left 32◦.

3.5. Sensor Utilization

As shown in Figure 14, the “Passive Pyroelectric Infrared Detector” (PIR HAT) is an
M5StickC compatible human body induction sensor that detects infrared radiation from
the body. The sensor will output HIGH when infrared is detected, which will continue for
two seconds until the next detection cycle.

Drones 2023, 7, x FOR PEER REVIEW 13 of 21 
 

 
Figure 12. Object in the frame. 

 
Figure 13. Approaching object at the left (1st case) and right (2nd case). 

If approaching object > area threshold: 
• If (x + w)/2, ∈ [0, IW/2] and (y + h)/2, ∈ [0, IH]: 

Object at the left → Drone moves to the right 20 cm and then turns yaw to the left 30°. 
• If (x + w)/2, ∈ [IW/2, IW] and (y + h)/2, ∈ [0, IH]: 

Object at the right → Drone moves to the left 20 cm and then turns yaw to the right 
30°. 
• If (x + w)/2 = IW/2 and (y + h)/2 = IH/2: 

Object at the center → Drone moves to the right 25 cm and then turns yaw to the left 
32°. 

3.5. Sensor Utilization 
As shown in Figure 14, the “Passive Pyroelectric Infrared Detector” (PIR HAT) is an 

M5StickC compatible human body induction sensor that detects infrared radiation from 
the body. The sensor will output HIGH when infrared is detected, which will continue for 
two seconds until the next detection cycle. 

 

Figure 14. PIR sensor.

The sensor detects infrared radiation from objects in its field of vision. It is referred to
as “passive” since it does not produce any energy of its own and instead monitors changes
in the quantities of infrared radiation around it. A pyroelectric substance, which produces
an electric charge when subjected to temperature variations, is the main component of
a PIR sensor. This substance typically has a crystalline structure and persistent electric
polarization. When a person moves within the sensor’s range, it causes a rapid change in
the infrared radiation levels falling on the pyroelectric material. The pyroelectric material
produces an electric signal in response to this radiation change.

As shown in Figure 15, flame sensor DFR0076 [8] is an analog flame sensor consisting
of an amplifier circuit, a lens, and a photodiode/phototransistor. When a flame is present,
it emits light throughout a broad band of wavelengths, including ultraviolet and infrared.
The sensor lens directs this light onto the photodiode/phototransistor, which generates
an electrical current according to the light’s brightness. The amplifier circuit amplifies this
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signal, and the resulting analog voltage output shows the flame’s presence and intensity.
The flame sensor can be used to sense the fire or other wavelengths at 760~1100 nm light.
The flame sensor probe is positioned at an angle of 60 degrees, which allows for enhanced
sensitivity to the unique spectral characteristics of flames. The operational temperature
range of the flame sensor is from −25 to 85 ◦C.
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4. Experiments and Results
4.1. Experimental Setup

In this research, the Tello drone [45], as shown in Figure 16, is used in the experiment.
It can shoot up to 720p video at 30 frames per second.
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Figure 16. Tello drone in air.

The system with the AI models were trained in the host machine with an NVIDIA
Quadro P620 (combining a 512 CUDA core Pascal GPU), 2 GB GDDR5, Intel Core i7
vPro-10850H Processor (2.70 GHz), and RAM of 32 GB. The image annotation was carried
out by using OpenCV [46]. YOLOv8 was trained based on Ultralytics [47], and Cascade
Classifier was trained by OpenCV [48,49]. Python was used as an integrated development
environment for the project. The image width and length for the AI model are 640 and 480,
respectively.
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The flame sensor is connected with the ESP32, as shown in Figure 17, and the PIR
sensor with M5StickC is set up, as shown in Figure 18.
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Figure 18. PIR sensor with M5StickC setup for person detection.

4.2. Results and Analysis
4.2.1. Computer Vision Test Performance

About 1000 images are utilized for each model, where 70% are used for testing and
30% are used for testing.

Table 1 reports the performance of two computer vision models from YOLOv8 and
Cascade Classifier for person and flame detection, respectively. Although the flame detec-
tion model has slightly superior metrics, both models achieve high accuracy, guaranteeing
good efficiency in object tracking.

Table 1. Performance result on test-set image.

Model Precision (%) Recall (%) AP (%)

Person, knife, bottle, cup, cell phone,
scissors detection YOLOv8 88.4 86.5 88.9

YOLOv7 85.1 84.8 85.3
YOLOv5 72.5 71.2 72.7

Flame detection (Cascade Classifier) 89.1 88.3 90.1
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On the other hand, two other popular YOLO models, YOLOv5 [50] and YOLOv7 [51],
are also trained to compare with YOLOv8 performance. The metric evaluation shows that
YOLOv8 obtains the best execution in precision, recall, and AP.

4.2.2. Person Detection

The PIR sensor detects a human appearance; it sends the signal to the workstation via
Wi-Fi thanks to the ESP32 microcontroller embedded inside M5StickC. The workstation
controls the drone to fly to the sensor place to detect that person and keep following, as
illustrated in Figure 19.
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4.2.3. Evaluation on the Distance Maintenance

The distance and direction evaluation techniques were carried out. The prediction box
area is implemented to maintain a specific range [33,200, 33,500]. In order to evaluate the
effectiveness of the proposed system in terms of distance, we conducted an experiment
where the drone was tasked with tracking a participant who walked and periodically
stopped along a linear path. The person stood for about 10 s, then walked fast for 1 step and
stopped for another 10 s, then walked again and stopped. In this case, when the distance
between the drone and the person is maintained, the bounding box area of person detection
is supposed to be approximately the same.

The result in Figure 20 shows the drone’s success in following the person. Since the
person moves very fast, the distance between the drone and the object is extended at high
speed, corresponding to the sudden drop of the bounding box area. However, the drone
recovers the distance by moving forward immediately. Here, the person moves away only
one short step, so the drone covers the distance quickly, and then the AI system continues
to detect the person with a bounding box.

4.2.4. Evaluation of Direction Rotation

To evaluate the drone’s rotation ability, the person moves to the left and then moves
to the right side of the drone at the same distance with normal speed. The purpose is to
observe whether the drone yaw can rotate according to the motion. Figure 21 demonstrates
that the drone has good capability of adapting its yaw rotation, following the direction of
the tracked object.



Drones 2023, 7, 694 16 of 20

Drones 2023, 7, x FOR PEER REVIEW 17 of 21 
 

distance between the drone and the person is maintained, the bounding box area of person 
detection is supposed to be approximately the same. 

The result in Figure 20 shows the drone’s success in following the person. Since the 
person moves very fast, the distance between the drone and the object is extended at high 
speed, corresponding to the sudden drop of the bounding box area. However, the drone 
recovers the distance by moving forward immediately. Here, the person moves away only 
one short step, so the drone covers the distance quickly, and then the AI system continues 
to detect the person with a bounding box. 

 
Figure 20. Distance maintenance evaluation. 

4.2.4. Evaluation of Direction Rotation 
To evaluate the drone’s rotation ability, the person moves to the left and then moves 

to the right side of the drone at the same distance with normal speed. The purpose is to 
observe whether the drone yaw can rotate according to the motion. Figure 21 demon-
strates that the drone has good capability of adapting its yaw rotation, following the di-
rection of the tracked object. 

 
Figure 21. Direction tracking evaluation. 

  

Figure 20. Distance maintenance evaluation.

Drones 2023, 7, x FOR PEER REVIEW 17 of 21 
 

distance between the drone and the person is maintained, the bounding box area of person 
detection is supposed to be approximately the same. 

The result in Figure 20 shows the drone’s success in following the person. Since the 
person moves very fast, the distance between the drone and the object is extended at high 
speed, corresponding to the sudden drop of the bounding box area. However, the drone 
recovers the distance by moving forward immediately. Here, the person moves away only 
one short step, so the drone covers the distance quickly, and then the AI system continues 
to detect the person with a bounding box. 

 
Figure 20. Distance maintenance evaluation. 

4.2.4. Evaluation of Direction Rotation 
To evaluate the drone’s rotation ability, the person moves to the left and then moves 

to the right side of the drone at the same distance with normal speed. The purpose is to 
observe whether the drone yaw can rotate according to the motion. Figure 21 demon-
strates that the drone has good capability of adapting its yaw rotation, following the di-
rection of the tracked object. 

 
Figure 21. Direction tracking evaluation. 

  

Figure 21. Direction tracking evaluation.

4.2.5. Potentially Dangerous Object Detection

The drone is able to detect the potentially dangerous object detection, as shown in
Figure 22. Once these identified objects are thrown at the drone, it can avoid them by
moving to one side and adjusting the yaw orientation to keep tracking the person due to
algorithm of automatic yaw rotation. The maximum moving speed is about 100 cm/s. For
other weapon types, the system needs further training to gain the ability to detect diverse
weapons such as a gun.
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4.2.6. Fire Detection

Similarly, when the flame sensor collects the firelight, it sends the signal to the work-
station via Wi-Fi. Then, the drone begins its action and tracks the fire, as shown in Figure 23.
After 5 or 10 s of recording, the video is delivered to the security, building administrator, or
the house owner via mail or other telecommunication tools.
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The Cascade Classifier is quick, since each classifier in the cascade only requires
processing a small portion of the data. This feature enables quicker object recognition by
reducing data that have to be processed. In addition, objects may still be detected by the
chain of classifiers despite noise and other distortions. Due to each classifier in the cascade
being trained on a fraction of the data, the Cascade Classifier technique can provide high
accuracy in object detection. In future work, more fire scenarios will be tested in diverse
circumstances.

4.3. System Overview

Table 2 reports the main pros and cons of the developed system.
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Table 2. Advantages and limits of SSDS.

Advantages Limits

• Drone is automatically controlled to
arrive and track the concerned object with
wireless communication from sensors.

• Drone is implemented the practical
algorithms to enhance its security with
the capability of maintaining a safe
distance, following the object’s direction,
and realizing the dangerous object.

• System has fast object tracking thanks to
robust computer vision models.

• The drone should stay at the proper
distance from other sensor positions for
easy activation.

• SSDS is robust but complex, requiring a
good working station to operate.

5. Conclusions

An SSDS was successfully developed to detect and track the objects concerned in case
of intrusion and fire accidents with the support of AI models and IoT communication. Both
of the computer vision models we used, YOLOv8 and Cascade Classifier, were trained and
implemented in the workstation for object classification. Furthermore, three algorithms for
drone control were implemented for the automation optimization of drone functions like
target following and dangerous object avoidance. The entire system is capable of collecting
the alerts from IoT sensors and manipulating the drone for acquiring the data, monitoring
the stream to store the data, and transmitting the data to other responsible electronic devices
via Wi-Fi. In the future, the developed system will be applied to more circumstances, such as
particular factories, for further experiments to collect more information about the system’s
pros and cons. From this stage, more drone control algorithms and AI models can be
employed in the smart flight system.
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