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Abstract: Light small-sized, multi-rotor UAVs, with their notable advantages of portability, intel-
ligence, and low cost, occupy a significant share in the civilian UAV market. To further reduce
the full lifecycle cost of products, shorten development cycles, and increase market share, some
manufacturers of these UAVs have adopted a series development strategy based on the concept
of commonality in design. However, there is currently a lack of effective methods to quantify the
commonality in UAV designs, which is key to guiding commonality design. In view of this, our
study innovatively proposes a new UAV commonality evaluation model based on the basic compo-
sition of light small-sized multi-rotor UAVs and the theory of design structure matrices. Through
cross-evaluations of four models, the model has been confirmed to comprehensively quantify the
degree of commonality between models. To achieve commonality prediction in the early stages
of multi-rotor UAV design, we constructed a commonality prediction dataset centered around the
commonality evaluation model using data from typical light small-sized multi-rotor UAV models.
After training this dataset with convolutional neural networks, we successfully developed an effec-
tive predictive model for the commonality of new light small-sized multi-rotor UAV models and
verified the feasibility and effectiveness of this method through a case application in UAV design.
The commonality evaluation and prediction models established in this study not only provide strong
decision-making support for the series design and commonality design of UAV products but also
offer new perspectives and tools for strategic development in this field.

Keywords: light and small multi-rotor UAVs; commonality evaluation; design structure matrix;
convolutional neural network; commonality prediction

1. Introduction

As unmanned systems are leaping forward, UAVs have been confirmed as a vital
branch of unmanned systems. Moreover, UAVs have become one of the most rapidly devel-
oping and attention-grabbing areas of unmanned systems. UAVs have become increasingly
popular over recent years and have been extensively employed in different fields because
of their unmanned, multifunctional, intelligent, and economic characteristics [1]. Existing
research on UAVs has primarily investigated the technology, performance, and applications
of UAVs while placing stress on UAV flight control technology [2], intelligent sensing
and obstacle avoidance systems [3], sensor technology, as well as data communication [4].
However, UAVs, a type of industrial product, are capable of creating economic benefits to
contribute to social and economic development, and they have huge development potential.
It is noteworthy that in the field of civil UAVs, the industrial upgrading of the industry
and social product development can be boosted by the broad application of UAV products.
According to the latest “General Aviation Industry Development White Paper (2022)” re-
leased by the Aviation Industry Corporation of China, the global civil UAV market size has
exceeded CNY 160 billion in 2021, and this amount will surge to CNY 500 billion in 2025.
The demand for UAVs is increasingly high due to the continuously expanding downstream
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applications of UAVs, such that the global civil UAV market will achieve inevitable rapid
growth in the future.

The level of technology research and development performed by UAV companies
takes on a critical significance to the size of the market share, and continuous investment in
research and development is required to continuously optimize UAV systems, technologies,
and solutions. Otherwise, it will be challenging to gain a foothold in the market. Market-
driven multi-rotor UAV industrial product series development has served as an essential
development strategy for major UAV companies. The concept of commonality is critical
to the research on serialized products. Commonality refers to a series of asset reuse and
sharing methods developed in accordance with generalized similarity [5]. Commonality
design covers the ideas of inheritance, standardization, and modularity while considering
innovative needs; it serves as a market-driven “win-win” implementation method for
enterprises/users. The commonalty design primarily aims to reduce costs and increase
efficiency. With the use of commonality design in the development strategy of serialized
light and small multi-rotor UAV products, the development time of UAVs can be shortened,
the production efficiency of enterprises will be increased, product costs will be lowered,
product launch will be expedited, and more market share of UAVs can be captured. For
instance, DJI, the world’s most famous UAV company, has Mavic-series UAVs and Phantom-
series UAVs, in addition to others, thus markedly contributing to DJI’s domination of the
global consumer UAV market segment.

For commonality, extensive systematic studies have been conducted on commonality
design and commonality evaluation. Natarajan et al. [6] have suggested that using common
components can significantly reduce product design and manufacturing time, and the
commonality between different components should be determined, which is critical to
shortening the cycle time of novel product design. Blackenfelt [7] redesigned a range
of lifting tables to determine the right balance between commonality and diversity and
between low cost and unique product performance to maximize profits. Additionally,
noise analysis was conducted to obtain universally designed components. Fujita et al. [8]
formulated the design problem of generic components as an optimization problem and
addressed the common design problem of a car opening and closing tiller using a genetic
algorithm. Hölttä-Otto [9] investigated the design of product diversity in a modular archi-
tecture and the design of modular commonality in a computation-oriented method such
that the product variety design problem was systematically summarized as a 0–1 integer
programming problem. Kim et al. [10] proposed a step-by-step method to determine the op-
timal sustainable product series architecture design, used to balance product commonality
and the protection of intellectual property rights for sensitive components.

In the field of aviation, Nuffort [11] identified the levels of commonality in an aircraft
family of products through the complete life cycle analysis of the aircraft and analyzed the
benefits of commonality over the product life cycle from the perspectives of the manufac-
turer and the operator, respectively. Bador [12] studied the design of cockpit commonality
in civil aircraft and then divided commonality into temporal vertical commonality and
horizontal commonality. He analyzed the measurement result of the same characteristics
in the product family in accordance with standardization, modularity, and reusability
such that the design of cockpit commonality in civil aircraft can be guided. Using two
types of civil aircraft of an aviation manufacturer as an example, Xi et al. [13] classified the
design differences and commonalities in terms of the functions and architecture, working
principles, and main components of the air management system. Cai et al. [14] analyzed
and categorized the cockpit design elements of civil aircraft and built a database of cockpit
commonality design elements of civil aircraft. To be specific, the database covers nearly
1100 items of cockpit commonality design elements of five models (e.g., B737-800 and A350).
Zhang et al. [15] built the commonality system of civil aircraft operation support at two
levels (i.e., product level and business process level) in accordance with the characteristics
of Chinese civil aircraft operation support at this stage. Carlos et al. [16] mentioned that
in the design of jet aircraft series, original equipment manufacturers (OEMs) can reduce
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development and manufacturing costs through family concept design, although there is a
trade-off between member performance and commonality.

Based on different parameters (e.g., number of identical parts, connection method, and
cost), Thevenot et al. [17] summarized commonality indexes, including DCI for evaluating
commonality from the component perspective and CMC [18], which considers common-
ality in product components, size, shape, material, cost, and so forth. Zhang et al. [19]
proposed a serialized aircraft commonality index in accordance with the component de-
composition hierarchy and classified the serialized civil aircraft commonality index into
two categories (i.e., component commonality index and cockpit commonality index). The
former has a major function of macroscopically evaluating the degree of commonality
among aircraft components and the whole aircraft in the aircraft series. The latter is capable
of evaluating the degree of commonality among aircraft cockpits. Moreover, Zhang et al.
evaluated the commonality using analytic hierarchy process and the fuzzy comprehensive
evaluation method by building a commonality evaluation system for civil aircraft mainte-
nance technical publications [5]. To evaluate the commonality degree of the commonality
indexes, intelligent optimization algorithms can be combined to evaluate the commonality
of the products. Chowdhury et al. [20] developed a comprehensive product platform
planning (CP3) method that proposes a matrix-based measure of commonality, applying
the mixed discrete particle swarm optimization (MDPSO) algorithm to measure the degree
of commonality. Thevenot et al. [21] have developed a method to evaluate the degree of
commonality in a product family using genetic algorithms and commonality indexes to
weigh the commonality and uniqueness between products for the design or redesign of a
product family. Takai [22] represented the commonality design of a series of products in
matrix form and incorporated it as a factor in cost calculation, thus enabling the calculation
of the impact of commonality design on costs. Zhang et al. [23] summarized the concepts
and calculation indicators related to commonality.

From the analysis of the above studies, it is evident that although the commonality
research of civilian aircraft has attracted significant attention among industry researchers,
the study of commonality in multi-rotor UAVs is relatively scarce, especially in terms of
commonality evaluation. Existing evaluation methods are mostly based on qualitative
approaches or rely on a limited number of parameters to establish simple algorithms.
These methods, while universal for various serialized products, are limited in accurately
assessing specific product features. Therefore, inspired by a series of studies on intelligent
design optimization algorithms for UAVs, this paper proposes a new methodology. For
instance, Ganesan [24] proposed the bionic optimization leader election (BOLD) scheme for
predicting UAV lifespan, yielding more accurate results than traditional methods. Li [25]
developed a rapid evaluation method for assessing the endurance of agricultural UAVs
and verified the accuracy of the method through testing. Zhang et al. [26] developed the
LASSA-RRT algorithm to enhance the global search advantage in UAV trajectory planning.
Li [27] suggested an adaptive control scheme based on a fixed-time observer (FTOAC) for
UAV tracking control. Additionally, there are numerous UAV design optimization studies
utilizing intelligent algorithms [28,29]. Inspired by these studies, this paper introduces a
commonality quantification evaluation method based on the UAV design structure matrix
and a commonality prediction method based on convolutional neural networks. This allows
UAV manufacturers to have a quantitative understanding of the commonality between
their models and market models in the early design stages, providing data support for
product positioning and commonality design. The main work and innovations of this
study include:

(1) Establishing indicators for quantitative evaluation of commonality among existing
light small-sized, multi-rotor UAV models based on their feature variables.

(2) Calculating the contribution of each component in the UAV product design struc-
ture matrix to represent its importance in the system, serving as the basis for calculating
indicator weights, thereby constructing a commonality evaluation model for light small-
sized, multi-rotor UAVs.
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(3) Collecting characteristic data of typical light small-sized multi-rotor UAVs and
constructing a commonality dataset using the commonality evaluation model. Furthermore,
by applying a convolutional neural network algorithm and training with this dataset, a
commonality prediction model for light small-sized multi-rotor UAVs is established, aiming
to achieve the goal of predicting commonality based on a small amount of feature data.

The narrative structure of this paper is illustrated in Figure 1.
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2. Commonality Quantification Method

Multi-level commonality evaluation indexes should be built to evaluate the common-
ality of complex products. In general, a set of comparison characteristics data is available
for the commonality indexes exhibiting quantitative evaluation characteristics. If the com-
monality index exhibits only one evaluation feature, the comparison data can be a set of
individual numbers. The comparison data comprise a set of vectors if there are multiple
evaluation features of the commonality index. The similarity and the distance between
the data can be quantified to represent the commonality of the indexes. The data of the
commonality indexes of a set of comparison samples are expressed as X = (x1, x2, . . . xm)
and Y = (y1, y2 . . . , ym), where m denotes the dimension of the vector (m ≥ 1), and xi
and yi respectively represent the quantified values of the ith feature of the two samples.
Several typical distance measures and similarity calculation methods are illustrated in
the following.

(1) Minkowski distance.

dXY = p
√

∑m
i=1|xi − yi|p (1)

The Minkowski distance refers to a generalized expression of the distance metric, and
the most appropriate distance metric can be determined using the value of p. When p = 1,
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dXY denotes the Manhattan distance; when p = 2, dXY represents the Euclidean distance;
when p = ∞, dXY expresses the Chebyshev distance. The larger the distance obtained after
calculation by the distance metric, the lower the commonality of the indexes indicated will
be and vice versa.

The Minkowski distance can represent different distance measures, which are depen-
dent on the p-value but are subjected to the same drawbacks (e.g., reliance on feature units
when they face problems in high-dimensional spaces). Moreover, the flexibility of p-values
may become a drawback under complex problems that require extensive calculations to
determine the appropriate p-value. Since the number of features evaluated for the com-
monality index is small and the dimensionality of the vector is low when the commonality
evaluation of light and small multi-rotor UAVs is being performed, the p-value is taken
as 2.

(2) Cosine similarity.

sXY = cosθXY =
∑m

i=1 xiyi√
∑m

i=1 x2
i ×

√
∑m

i=1 y2
i

(2)

Cosine similarity refers to a measure of direction whose magnitude is determined by
the cosine between two vectors, whereas the magnitude of the vectors is ignored. Cosine
similarity is generally employed for high-dimensional vectors for which the numerical size
does not take on any significance. The main disadvantage of cosine distance is that it only
considers the direction of the vectors, instead considering the numerical size.

During the evaluation of the commonality with cosine similarity, since the range of val-
ues sXY is [−1,1] and there is no negative commonality, it is specified that the commonality
is 0 when sXY < 0.

As depicted in Figure 2, if the Minkowski distance metric only quantifies the com-
monality, only the distance D shown in the figure can be obtained, while the effect of
the direction is ignored. At the same time, the distance range is [0,∞], while the value
of the commonality basically ranges from 0 to 1, thus hindering the representation of the
commonality after quantification. It is assumed that the commonality is quantified using
cosine similarity such that only θ can be obtained (Figure 2), which can only represent the
difference in direction and ignore the effect of distance.
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Thus, a new vector Z = (max(x1, y1), max(x2, y2), . . . , max(xm, ym)) is formed by
taking the maximum value of the respective dimension of X and Y to map the Minkowski
distance to the [0,1]. R in Figure 2 represents the modulus of the new vector Z (R = ‖Z‖),
and the maximum possible distance between X and Y, such that R is considered the
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maximum distance, as expressed in Equation (3). Subsequently, the ratio of the actual and
maximum distances is adopted to map Minkowski distances in the range [0,1].

dmax = R =

√
∑m

i=1

(
max

{
xi, yi})2 (3)

In brief, Minkowski distance and cosine similarity are combined to propose a new
method for numerical quantification of the commonality index. The specific equations
expressed in Equations (4) and (5) are obtained by combining Equations (1)–(3).

CI =

{
w1

(
1− dXY

dmax

)
+ w2sxx sXY ≥ 0

0, sXY < 0
(4)

w1 + w2 = 1 (5)

where CI denotes the value of commonality; dXY represents the Minkowski distance; sXY
expresses the cosine similarity; w1 and w2 are the weights of Minkowski distance and cosine
similarity, respectively, and the sum of both is 1. Since the distance and direction between
the comparison data take on equal importance in evaluating commonality, w1 and w2 are
taken as 0.5.

However, a unique form exists in vectors X and Y, i.e., xi and yi take values of only
0 and 1, respectively. These values represent the existence of the evaluation features for
the commonality index, and X and Y can be represented as a 0–1-encoded data structure.
For such commonality indexes, the Hamming-distance-based metric is a simpler and more
convenient measure for quantifying the commonality of indexes, which is also consistent
with the most basic commonality theory. As depicted in Figure 3, the Hamming distance of
2 indicates the existence of two different characteristics which also do not conform to the
interval requirement of the commonality value, and the commonality cannot be quantified
using Hamming distance alone. The same idea as mapping the Minkowski distance can be
implemented, in which the ratio of the Hamming distance and the maximum distance is
adopted to complete the mapping. For instance, the OR operation in the logical operation
for the data represented by X and Y in Figure 3 yields 11,011, which means that there a total
of four features of X and Y exist. Furthermore, the possible maximum distance between X
and Y is 4. Subsequently, the commonality of X and Y is calculated as: 1− 2/4 = 0.5.

Drones 2023, 7, x FOR PEER REVIEW 7 of 27 
 

 
Figure 3. Hamming Distance. 

3. Light and Small Multi-Rotor UAV Commonality Evaluation Model 
3.1. Light and Small Multi-Rotor UAV Product Breakdown Structure 

The product breakdown structure (PBS) is effective in elucidating the physical com-
ponents of a particular product or system. The Product Breakdown Structure is similar to 
the Work Breakdown Structure, and it is adopted to simplify a complex project or product 
into manageable parts. As a result, the team can gain more insights into the product com-
position and suggest conditions that the component design should conform to. The formal 
PBS originates from a hierarchy, which essentially breaks down the product into the re-
quired components. The above-described breakdown aims at providing a visual represen-
tation of the product components and their correlations such that product planners are 
enabled to obtain a visual representation of the product composition and more insights 
into the requirements and functionality of the final product. 

In accordance with the composition of the light and small multi-rotor UAV, the three-
level decomposition structure is obtained after the product structure decomposition of the 
UAV (Figure 4). The UAV components in the third level of the UAV decomposition struc-
ture comprise the base elements for the development of the UAV design Sstructure matrix. 
The UAV design structure matrix serves as an essential tool to determine the weights of 
the commonality evaluation indexes of light and small multi-rotor UAVs. 

Figure 3. Hamming Distance.

Accordingly, the commonality indexes of 0–1 encoded data structures can be quantified
using the Hamming-distance-based method for commonality, which is written as:

CI = 1− ∑ X
⊕

Y
∑ X

∨
Y

(6)
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where⊕ denotes the IOS-OR operation, indicating how the Hamming distance is calculated;
∨ represents the OR operation; and ∑ expresses the summation of a series (e.g., the series
∑ 11011 = 4).

3. Light and Small Multi-Rotor UAV Commonality Evaluation Model
3.1. Light and Small Multi-Rotor UAV Product Breakdown Structure

The product breakdown structure (PBS) is effective in elucidating the physical compo-
nents of a particular product or system. The Product Breakdown Structure is similar to the
Work Breakdown Structure, and it is adopted to simplify a complex project or product into
manageable parts. As a result, the team can gain more insights into the product composition
and suggest conditions that the component design should conform to. The formal PBS
originates from a hierarchy, which essentially breaks down the product into the required
components. The above-described breakdown aims at providing a visual representation
of the product components and their correlations such that product planners are enabled
to obtain a visual representation of the product composition and more insights into the
requirements and functionality of the final product.

In accordance with the composition of the light and small multi-rotor UAV, the three-
level decomposition structure is obtained after the product structure decomposition of
the UAV (Figure 4). The UAV components in the third level of the UAV decomposition
structure comprise the base elements for the development of the UAV design Sstructure
matrix. The UAV design structure matrix serves as an essential tool to determine the
weights of the commonality evaluation indexes of light and small multi-rotor UAVs.
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3.2. UAV Design Structure Matrix

Design structure matrix (DSM) refers to a network modeling tool initially proposed
by Dr. Steward. This American scholar represented the elements that make up a system
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and its interactions. It is used to plan and analyze the product development process, thus
highlighting the design structure, and is widely used in engineering management [30].
The DSM is represented as an N × N square matrix that maps the interactions between
a collection of N system elements. In modeling the architecture of a product, the DSM
elements can be the components of the product. The interactions are the connections
between the components, and the matrix thus composed is termed the product design
structure matrix.

The modeling steps for building a matrix model of the product design structure are
as follows.

(1) Determine the elements of the ranks of the DSM model in the product structure.
By decomposing the product structure, the smallest unit of the product that needs to

be designed is obtained. Then the appropriate unit is selected as the element of DSM [31].
For instance, some important structural parts can be meticulously divided into the part
level, while the purchased parts in the product only should be divided into the component
or part levels. The selection of matrix elements in this step determines the complexity of
the DSM model.

(2) Determine the connection and strength between each row and column element to
obtain the DSM model of digital products.

The connection between the elements and the strength of the connection should be
determined after obtaining the row and column elements of the product design structure
matrix. The links between the elements of the ranks and columns in the product design
structure matrix can be classified into four categories (i.e., spatial links, energy links,
information links, and material links [32]), as presented in Figure 5. Spatial connection
indicates the relationship between the physical space and arrangement of two elements,
which describes the connection and positioning between two elements. Energy connection
reveals the energy exchanged and transmitted between elements. Information connection
indicates the data and signals exchanged or transmitted between two elements. Material
connection indicates the material required for the exchange between two elements (e.g., the
oil or gas required for the product).
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Figure 5. Interconnection of elements in the product Design Structure Matrix.

The four connection strengths between elements are digitized using the four-point
scale method, as listed in Table 1, to obtain the product digital DSM model. Each cell in the
digital DSM represents the integrated connection strength between the elements, which
can be calculated using the following formula.

Ti,j = αSi,j + βEi,j + γIi,j + αMi,j (7)

where: Ti,j is the comprehensive connection strength of the DSM cell (i, j); Si,j is the spatial
connection strength of the DSM cell (i, j); Ei,j is the energy connection strength of the DSM
cell (i, j); Ii,j is the information connection strength of the DSM cell (i, j); Mi,j is the material
connection strength of the DSM cell (i, j); α, β, γ, and ω indicate the relative importance of
spatial connection, energy connection, information connection, and material connection,
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respectively, and the appropriate values are selected according to the actual situation of the
product. Finally, Ti,j is filled into the DSM to obtain the digital product DSM model.

Table 1. Four-point scale method characterization and meaning.

Graduations Representation Meaning

3 High High connection strength
2 Medium Medium connection strength
1 Low Low connection strength
0 None No connection

(3) Check the DSM model elements and their connections, add missing connections, elim-
inate unnecessary connections, and complete the finalized product design structure matrix.

Because the spatial correlation matrix is symmetrical, leading to double-counting in
correlation coefficients, α is set to 0.5. Drones using electrical energy without internal
material transfer have no material contact, so ω is 0. Energy and information contact
intensities are unaffected by other factors; thus, β and γ are set to 1. The values of each cell
in the UAV design structure matrix are calculated according to Equation (7) to constitute
the final UAV design structure matrix, as shown in Figure 6. The values on the diagonal of
this UAV design structure matrix are the sum of all cell data in the corresponding row and
column, representing the connection strength of the UAV components. For example, the
connection strength of the fuselage in the frame system is 35, which is greater than that of
the arm and landing gear, indicating that the fuselage occupies a more important position
in the design process of the frame system and requires more consideration. Therefore,
the importance of the components in the system can be expressed by calculating the
contribution of each component to the system. For example, the total connection strength of
the three components of the rack system is 57, and the connection strength of the fuselage
is 35, so the contribution of the fuselage to the rack system is 35/57. Accordingly, the
commonality evaluation indexes of light and small multi-rotor UAVs can be weighted
according to the component importance defined in the UAV design structure matrix.
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3.3. UAV Commonality Evaluation Indexes

Suitable commonality evaluation indexes should be built to evaluate the commonality
of UAVs. The relevant commonality evaluation indexes in current civil aircraft commonality
studies [33] are referenced based on the insights gained into light and small multi-rotor
UAVs and the combination of the valid UAV data that can be collected. The UAV common-
ality evaluation indexes presented in Figure 7 and Tables 2 and 3 are built and are primarily
classified into two major parts (performance parameter commonality and structural system
parameter commonality). The performance parameter commonality indexes were divided
into three layers, with the second layer as the UAV performance indexes and the last layer
as the evaluation feature variables to express the previous layer indexes with actual values.
The structural system parameter commonality indexes are divided into four layers. To
be specific, the second layer is the UAV system commonality index, the third layer is the
UAV component commonality index, and the last layer is the evaluation feature variable as
well. Since the parameter information of some UAV components is difficult to obtain, the
performance characteristics regarding the components serve as the characteristic variables
for the commonality evaluation. For instance, the maximum ascent speed, maximum
descent speed, maximum horizontal flight speed, and maximum takeoff altitude serve as
the characteristic variables for the motor and ESC in the commonality of the power system.
Furthermore, several performance characteristics serve as the characteristic variables for
the commonality evaluation of the flight control system.
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Table 2. UAV performance parameters commonality index.

Level 1 Indexes Level 2
Indexes Evaluation of Characteristic Variables

The
com

m
onality

ofU
A

V
perform

ance
param

eters

Weight Body weight (g)
Maximum load weight (g)

Speed

Ascent speed
Maximum ascent speed in sports gear (m/s)
Maximum ascent speed in normal gear (m/s)
Maximum ascent speed in smooth gear (m/s)

Descent rate
Maximum descent speed in sports gear (m/s)
Maximum descent speed in normal gear (m/s)
Maximum descent speed in smooth gear (m/s)

Horizontal flight speed
Maximum horizontal flight speed in sports gear (m/s)
Maximum horizontal flight speed in normal gear (m/s)
Maximum horizontal flight speed in smooth gear (m/s)

Tilt angle
Maximum tilt angle of sports gear (◦)
Maximum tilt angle of normal gear (◦)
Maximum tilt angle of smooth gear (◦)

Flight time Maximum endurance (min)

Maximum take-off altitude Altitude (km)

Wind resistance Wind resistance class

Temperature Minimum temperature (◦C)
Maximum temperature (◦C)

Table 3. UAV structural system parameters commonality index.

Level 1
Indexes

Level 2
Indexes

Level 3
Indexes Evaluation of Characteristic Variables

T
he

com
m

onality
ofU

A
V

structuralsystem
param

eters
UAV rack system

commonality

Fuselage

Length of fuselage unfolding (mm)
Width of fuselage unfolding (mm)
Height of fuselage unfolding (mm)

Wheelbase (mm)
Length of fuselage folding (mm)
Width of fuselage folding (mm)
Height of fuselage folding (mm)

UAV arm and
landing gear

Number of arms

Arm Mounting Foldable
Non-foldable

Landing gear layout Bottom support layout
Connection arm layout

Power system
commonality

Battery

Battery Capacity (mAh)
Voltage (V)

Energy (Wh)
Weight (g)

Charging power (W)

Motors and ESCs

Maximum ascent speed (m/s)
Maximum descent speed (m/s)

Maximum horizontal flight speed (m/s)
Maximum take-off altitude (km)

Propeller

Number of propeller blades
Total number of propellers

Propeller mounting
position

Upward
Downward
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Table 3. Cont.

Level 1
Indexes

Level 2
Indexes

Level 3
Indexes Evaluation of Characteristic Variables

Flight control system
commonality

Flight control, IUM,
perception system

Perception system
arrangement

Front-end Perception

The
com

m
onality

ofU
A

V
structuralsystem

param
eters

Rear Perception
Lower Perception
Upper Perception
Lateral Perception

Hovering accuracy Vertical direction (m)
Horizontal direction (m)

Maximum tilt angle (◦)
Maximum wind resistance class

Navigation and remote
control systems

commonality
GNSS

GPS
GLONASS

Galileo
BeiDou

Navigation and remote
control systems

commonality

Graphical/Digital
transmission/Receiver

Operating frequency 2.4 GHz
5 GHz

Data interface type

Lightning
Micro USB

Type-C
HDMI

Signal effective
distance (km)

FCC Distance
CE Distance

MIC Distance
SRRC distance

Maximum bit rate (Mbps)
Delay (ms)

Remote control
Battery capacity (mAh)
Operating current (mA)
Operating voltage (V)

Mission load system
commonality

Cloud terrace

Stabilization system (number of axes)
Maximum control speed (◦/s)

Amount of angular jitter (◦)

Head structure design
range (◦)

Pitch angle
Rolling angle

Yaw angle

Controllable rotation
range (◦)

Pitch angle
Rolling angle

Yaw angle

Camera

Pixel size (million)
Maximum video bit rate (Mb/s)

Lens angle of view (◦)
Lens focal length (mm)

Lens aperture (f/X)

Maximum photo size Long (PX)
Width (PX)

Video resolution

HD
FHD
2.7 K
4 K

Larger than 4 K

Mounting device Presence of mountings
No mountings
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3.4. UAV Commonality Calculation

After the data are acquired in accordance with the UAV commonality evaluation
index, the evaluation of characteristic variables data at the lowest level of the common-
ality evaluation index is converted into a vector and then quantified using Equation (4).
Equation (6) is employed for quantification if the feature variables corresponding to this
level of the index have 0–1-encoded data types. The two quantified data are averaged to
determine the commonality value of the index’s lowest level. With the camera under the
UAV mission load system as an example, the feature data are used, as listed in Table 4, and
the commonality of the camera is obtained as 0.874 after calculation.

Table 4. UAV Camera Commonality Evaluation Parameter Table.

Evaluation of Characteristic
Variables Model 1 Model 2 Formula 4

Calculation
Formula 6

Calculation Commonality

Pixel size (million) 2000 2000

0.998 \

0.874

Maximum video bit rate (Mb/s) 120 100
Lens angle of view (◦) 82 77

Lens focal length (mm) 28.6 28
Lens aperture (f/X) 11 11

Long 5472 5472
wide 3648 3648

HD 0 0

\ 0.750
FHD 1 1
2.7 K 1 1
4 K 1 1

Larger than 4 K 1 0

The commonality of the lowest level indicator is obtained based on the calculated
commonality for the characteristic variable data, and the final commonality value of
the UAV is quantified through weighted summation layer by layer. Subsequently, the
weights of the respective indicator in the UAV commonality evaluation index should be
determined. The performance—component correlation matrix is adopted to determine
the UAV performance parameter commonality index weights, as listed in Table 5. To be
specific, the value 3 suggests that the component significantly affects the performance,
the value 2 indicates that the component exerts an average influence on the performance,
the value 1 indicates that the component slightly affects the performance, and the space
reveals that the component does not affect the performance. For the UAV structural system
parameter commonality index weights, the UAV design structure matrix is employed
to determine the weights of the third level index and the second level index using the
contribution of different components to the system which they belong to and that of the
respective system to the overall UAV, respectively. The final obtained indicator weights
at the respective level are listed in Table 6, with the first-level indicator weights derived
from the values in reference [33]. This reference, focusing on the commonality evaluation
of civil aircraft, assigns a weight of 0.4 to the performance parameter commonality index
and 0.6 to the structural parameter commonality index based on the relationship between
performance and structure in civil aircraft. Believing that UAVs have a similar relationship,
we adopted identical weights for both performance and structural parameters. Furthermore,
the commonality indexes of the respective level are weighted and summed one by one to
evaluate the commonality of the light and small multi-rotor UAVs. Consequently, the final
degree of commonality between two models can be expressed as a percentage between
0 and 1, with a value closer to 1 indicating a higher degree of commonality between the
two models.
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Table 5. UAV performance–component correlation matrix and performance index weights.

Weight Speed Tilt
Angle

Endurance
Time

Take-Off
Altitude

Wind
Resistance

Operating
Temperature

Fuselage 3 1 1
Arm 2 1 1

Landing gear 2
Battery 3 1 3 2 3
Motor 2 3 2
ESC 1 2 1

Propeller 1 3 2 2
Flight Control 1 2 3 3

IMU 1 3 2
Perception System 1

GNSS 1
Graphical/Digital transmission 1

Receiver 1
Remote Control
Cloud Terrace 1 1

Camera 1 1

Σ 23 11 9 7 6 7 4
Weights 0.343 0.164 0.134 0.105 0.09 0.104 0.06

Table 6. Table of the weighting of indexes at the respective level in the UAV commonality evaluation system.

Performance Commonality (0.4) Structural System Commonality (0.6)

Weight (0.343)
Speed (0.164)

Tilt angle (0.134)
Endurance time (0.105)
Take-off altitude (0.09)
Wind resistance (0.104)

Operating temperature (0.06)

UAV rack
system
(0.186)

Power
system
(0.245)

Flight control
system (0.212)

Navigation and
remote control
system (0.268)

Mission load
system (0.088)

Fuselage
(0.614)

Arm and
landing

gear (0.386)

Battery
(0.400)

Motor and
ESC (0.520)
Propeller

(0.080)

Flight control,
IUM, Perception

system (1)

GNSS (0.146)
Graphical/Digital

transmis-
sion/Receiver

(0.561)
Remote control

(0.293)

Cloud terrace
(0.370)

Camera (0.519)
Mounted devices

(0.013)

3.5. Case Calculation

DJI and Autel refer to two large Chinese manufacturers of light and small multi-
rotor UAVs, both of which have developed UAV product series; their products show high
similarity. Thus, in this study, three models of DJI’s UAVs (Mavic 2, Mavic 3, and Phantom
4 Pro) and one model of Autel’s UAV (Autel EVO ll Pro) serve as the computational case of
UAV commonality evaluation, and the four models are illustrated in Figure 8.

The evaluation characteristics data of all four types of models are collected based on
the UAV commonality evaluation index. Six groups of samples of the four types of models
are set in two groups as the commonality evaluation calculation cases. The commonality
values of UAV, UAV performance parameters, UAV structural system parameters, and five
subsystems of UAV are obtained after calculation using the UAV commonality evaluation
model. The specific data are illustrated in Figure 9.

As depicted in Figure 9, the two models of the DJI Mavic series exhibit the highest
commonality value of 0.873, notably higher than the other five groups. Since Mavic 3 refers
to the latest product currently developed by DJI based on Mavic 2, enhancing the flight
performance of the UAV, the overall architecture of the airframe remains unchanged and
focuses on performance upgrades of the gimbal, camera, and other components of the UAV
mission payload system. On that basis, the frame system exhibits a high commonality in
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the commonality evaluation results of Mavic 2 and Mavic 3, whereas the lowest mission
payload commonality is achieved, consistent with the actual situation of the model.
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Comparing the Autel EVO ll Pro UAV with DJI’s Mavic series UAVs in Figure 8, we
can see that they have high similarity in appearance. If subjective commonality evaluation
is used, people usually judge that they have a high degree of commonality with each other.
The commonality evaluation model of the light and small multi-rotor UAVs has calculated
the commonality values of 0.815 and 0.823 between the Autel EVO ll Pro and the Mavic 2
and Mavic 3, respectively, which are indeed high commonality. Because both Autel EVO ll
Pro and Mavic 3 are novel products in the current market, the product development time
is similar and the UAV performance is more similar, so it causes their commonality to be
slightly higher.

Comparing the appearance of the Phantom 4 Pro UAV with the other three models
in Figure 8, it is found that the overall shape and general layout of the Phantom 4 Pro
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UAV differs significantly compared to the other three models. The commonality evaluation
model calculates that the Phantom 4 Pro UAV has a low commonality value with the
rack systems of the other models. Meanwhile, the lowest commonality value between the
Phantom 4 Pro and the Autel EVO ll Pro was calculated using the model, which is due to
the fact that the two above-mentioned models are not only different in overall layout but
also developed by different manufacturers, resulting in the weakest commonality, which is
in line with the basic theory of commonality and basic public perception.

In summary, the commonality calculated using the light and small multi-rotor UAV
commonality evaluation model is consistent with UAVs’ actual comparison results, indicat-
ing that the built light and small multi-rotor UAV commonality evaluation model can be
better applied to the commonality evaluation of light and small multi-rotor UAVs.

4. The Prediction Model Based on Convolutional Neural Networks for the
Commonality of Light and Small Multi-Rotor UAVs
4.1. Data Collection and Cleaning

To obtain the parameters of the light and small multi-rotor UAVs listed in Tables 2
and 3, this study collects model characteristics data from the official websites or official
online stores of domestic and foreign UAV manufacturers based on the commonality
evaluation index of light and small multi-rotor UAVs. A total of 46 models of UAVs were
identified through web search, including UAV models of DJI, Parrot, and other companies.
Because a large amount of feature data could not be obtained for some models, 24 typical
light and small multi-rotor UAV models were finally selected from the 46 models. The
distribution of the specific sources is listed in Table 7.

Table 7. Source distribution of models.

UAV Brands DJI Autel Hubsan Parrot

Number of models 16 3 3 2

According to the commonality evaluation index of light and small multi-rotor UAVs,
the characteristic data of the above 24 models are relatively large, but not all characteristic
data of each model can be obtained completely. Since the data are all collected manually,
the directly obtained data are accurate and reliable. Thus, no noise data are generated and
no operations such as data rejection are required, but there will be a large amount of vacant
data. Accordingly, completing the missing data becomes the top priority of data cleaning,
and the following is the lost-data-completing method adopted in this study.

(1) Reasoned deduction method: When certain data cannot be directly obtained, we
will reasonably infer based on the information provided in the UAV’s user manual and
images. For example, when filling in data for a UAV’s ascent speed, descent speed, and
cruising speed, if a model does not distinguish between flight modes, the corresponding
speed data will be filled under the primary flight mode, and data for other modes will be
supplemented as zero. If a UAV model lacks sensor location parameters in its perception
system, this data can be deduced by analyzing the position of sensors in UAV images.

(2) Analogy supplement method: When certain parameters cannot be derived from
the user manual or images of the UAV model, we can refer to the corresponding parameters
of the same series from the same manufacturer. For example, in cases where remote control
feature data of a UAV are missing, data from the remote controls of other UAVs of the same
series by the same company can be used for supplementation.

(3) Mode and mean imputation method: When neither of the above methods is
applicable, mode imputation is used, and mean imputation is employed when the mode
is not a unique value. For instance, in cases in which data on a UAV’s maximum takeoff
altitude or wind resistance level are missing, the mode is commonly used as a substitute
value, such as supplementing the maximum takeoff altitude as 5 km and the wind resistance
level as level five.
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4.2. Constructing the Dataset

After processing, the 24 types of model characteristics data are compared two by two
to form a set of samples, and a total of 276 samples are obtained. Subsequently, the sample
data are substituted into the commonality evaluation model of light and small multi-rotor
UAVs to obtain the commonality value of the respective group of samples. The number of
commonality interval distributions of 276 groups of samples is presented in Figure 10, and
the distribution conforms to the normal distribution curve corresponding to Equation (8)
(orange curve in Figure 10).

f (x) =
1√

2π ×
√

0.061
exp

(
−
(
x− 0.779)2

2× 0.061

)
(8)
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Figure 10. Distribution of commonality values for the sample of light and small multi-rotor UAV
commonality prediction.

According to the UAS analysis process shown in Figure 11, when developing a novel
model UAV, it is necessary first to conduct a requirement analysis, which is generally
divided into two sources as follows. One is the customer’s customized requirements, and
the other is to determine the requirements through the market demand analysis; then,
the UAV product performance analysis is conducted in accordance with the requirements,
and the user’s requirements are converted into the performance indexes of the UAV. Then,
through the architecture analysis, the UAV system is determined. Next, the organizational
structure of the UAV system and the logical relationships between the systems are de-
termined through architecture analysis. Lastly, the UAV’s hardware is determined and
the UAV’s physical architecture model is built. The above-described process requires
repeated iterations of verification and eventually forms a UAV product that conforms to
the requirements.

To achieve the purpose of predicting the commonality through a small amount of
feature data at the early stage of UAV design, suitable features from the commonality
evaluation index should be selected as feature variables for the commonality prediction
dataset of the light and small multi-rotor UAV. From the above system analysis process
analysis, it can be seen that the UAV design is based on requirements and performance as
indexes; combined with the UAV life cycle, it can be seen that the general design parameters
and performance parameters of the UAV can be determined when the UAV completes the
program design. Thus, this study selects the feature variables as listed in Table 8, which are
mainly divided into two categories: one for the general design features of the UAV and the
other for the performance features of the UAV, where the three features of battery capacity,
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longest data transmission distance, and camera pixels in the second category are selected
based on user requirements.
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Table 8. Characteristics variables of the light and small multi-rotor UAV commonality prediction dataset.

General Design Features of UAV UAV Performance Characteristics

Body weight
Number of arms

Fuselage spread length
Width of fuselage spread
Fuselage unfolded high

Wheelbase

Maximum ascent speed
Maximum descent speed

Maximum horizontal flight speed
Maximum tilt angle

Maximum flight time
Maximum takeoff altitude

Wind resistance class
Battery capacity

Longest data transmission distance
Camera pixels

Lastly, the feature amount of the selected light and small multi-rotor UAV commonality
prediction dataset in Table 8 takes up 17% of the total feature amount of the light and small
multi-rotor UAV commonality evaluation index, completing the selection of a small number
of features for light and small multi-rotor UAVs. Subsequently, the feature variable data
of the selected 24 models are formed into a group of two, and the evaluated commonality
values of the respective group are added to collectively create a commonality prediction
dataset of light and small multi-rotor UAVs with 276 samples. To be specific, the feature
data of the two compared models serve as the independent variables, and the commonality
values serve as the dependent variables. The webpage to download the dataset is https:
//github.com/Amos111/Commonality-Prediction-Dataset (accessed on 18 February 2023).

4.3. Convolutional Neural Network Model Building

In the process of CNN model construction, if the built model is highly complex, the
phenomenon of overfitting will occur. For instance, the overfitting is shown in Figure 12,
where the training error of the model is minimal, whereas the generalization error is high,
suggesting poor application of the model. If the built model is too simple, the phenomenon
of underfitting will occur. For instance, the underfitting is illustrated in Figure 12, in
which the training error and generalization error of the model are both high, revealing
the poor application of the model poor overall quality [34]. Accordingly, a model of
suitable complexity with both low generalization error and appropriate training error
should be built.

For convolutional neural networks, the main objective of adjusting model complexity
is fulfilled by adjusting the number of model layers and convolutional kernels [35]. After
continuous experiments, the CNN structural model listed in Table 9 is finally built; the
model structure includes 13 layers of networks, and the detailed parameters of each layer
are given in the table. After the CNN structural model is built, the model parameters should

https://github.com/Amos111/Commonality-Prediction-Dataset
https://github.com/Amos111/Commonality-Prediction-Dataset
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be set to train the data. Adjusting the model parameters is critical to increasing the model
learning effect. The adopted model training parameters are determined after continuously
adjusting the model parameters, as listed in Table 10. The optimization algorithm used is
the Adam algorithm; the batch size for small batch training is 100 samples, the maximum
instances of training times is 800, and the initial learning rate is set to 0.001.
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Table 9. CNN structure for light and small multi-rotor UAV commonality prediction.

Layer Type Parameters Neurons Output

1 Input layer 16 × 2 × 1
2 Convolutional layer 2 × 2 convolution kernel 256 15 × 1 × 256
3 Batch normalization layer 15 × 1 × 256
4 Relu layer 15 × 1 × 256
5 Convolutional layer 3 × 1 convolution kernel 128 13 × 1 × 128
6 Batch normalization layer 13 × 1 × 128
7 Relu layer 13 × 1 × 128
8 Convolutional layer 3 × 1 convolution kernel 128 11 × 1 × 128
9 Batch normalization layer 11 × 1 × 128

10 Relu layer 11 × 1 × 128
11 Dropout layer 0.2 11 × 1 × 128
12 Fully connected layer 1 × 1 × 1
13 Regression output layer 1 × 1 × 1

Table 10. Model training parameters settings.

Optimization Algorithm Adam

MiniBatchSize 100
MaxEpochs 800

InitialLearnRate 0.001
LearnRateDropFactor 0.1

Shuffle Yes

4.4. Experimental Results and Analysis

The dataset is divided into a training set and a test set, with 80% of the total samples
in the training set and the rest in the test set. The CNN model was built and programmed
in Matlab language, and after training the model several times, the model with the best-
combined training effect and model generalization effect was saved; the comparison of
the actual and predicted values of the training and test sets of the model is shown in
Figures 13 and 14.
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Choosing appropriate evaluation metrics is crucial in assessing model performance.
Although individual evaluation metrics often have inherent limitations, they can provide
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a more comprehensive perspective on performance when used together. In light of this,
our study employs three different dimensional evaluation metrics to comprehensively
measure the model’s performance. These metrics include mean relative error (MRE),
root mean square error (RMSE), and the coefficient of determination (R2), which evalu-
ate the model from the perspectives of relative error, absolute error, and model fitting
effectiveness, respectively.

Mean relative error (MRE) assesses the model’s prediction accuracy by calculating
the proportional difference between predicted and actual values. A key advantage of this
metric is its scale independence, meaning that MRE can provide consistent evaluation
results regardless of the magnitude of the data. The formula to calculate MRE is:

MRE =
1
n∑i=n

i=1

∣∣∣∣yi − ŷi
yi

∣∣∣∣ (9)

Root mean square error (RMSE) fundamentally measures the accuracy of predictions
by calculating the square root of the average squared prediction errors. The advantage of
this method is that it amplifies and emphasizes larger errors, as squaring the error values
increases the weight of larger errors. RMSE is an absolute error metric, and the closer
its value is to zero, the better the performance of the predictive model. The formula for
calculating RMSE is:

RMSE =
√

MSE =

√
1
n∑i=n

i=11(yi − ŷi)
2 (10)

The coefficient of determination, R2, is a metric that reflects the degree of fit of the
model to the data, measuring the proportion of variation explained by the model in relation
to the total variation. The value of R2 ranges from 0 to 1, with a value close to 1 indicating
that the model can well explain the variation in the data, while a value close to 0 suggests
weak explanatory power of the model. The calculation method for R2 is:

R2 = 1− ∑(y− ŷ)2

∑(y− y)2 (11)

The evaluation metrics of the optimal model obtained after multiple trainings are
shown in Table 11. From the MRE results, the model’s predicted values have a relative
error of about 1.93% in the test set, slightly increasing to 3.22%, which is a relatively low
error rate, indicating high prediction accuracy during training. The RMSE results show
small absolute differences between predicted and actual values in both training and test
sets, around 0.25, further indicating good prediction precision of the model. In terms of the
coefficient of determination, the model explains about 85.35% of the data variance in the
training set, which is a relatively high fit, demonstrating good performance on the training
set. In the test set, the R2 value is 79.81%, slightly lower than in the training set, indicating
a slight decrease in the model’s ability to fit new data but still showing good performance.

Table 11. Quantitative evaluation of model training effects.

Training Set Test Set

MRE 0.0193 0.0322
RMSE 0.0239 0.0271

R2 0.8535 0.7981

Overall, these metrics indicate that the model performs well on the training set and
also demonstrates considerable generalization ability on the test set. Although there is
a slight decline in metrics on the test set, which is common in model training as mod-
els always try to adapt to training data, the test set provides a measure of its general-
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ization capability. Overall, the model exhibits high accuracy and good fitting ability,
making it suitable for predicting the commonality evaluation values of light small-sized,
multi-rotor UAVs.

4.5. Test Cases

Suppose a UAV company plans to develop a new light and small multi-rotor UAV.
After the design team’s discussion and preliminary research on the market, it makes the
expected targets for UAV-related characteristics, as listed in Table 12. The 24 models used to
build the commonality prediction dataset for light and small multi-rotor UAVs in this study
are all mainstream models in the UAV market and have achieved commercial success. Thus,
one of the 24 models selected as the reference object or competitive target for developing
a new UAV can reduce the difficulty of entering the market for the product and make it
easier to achieve market access.

Table 12. Data for novel model features variables.

General Design Features Value UAV Performance Features Value

Maximum take-off weight (g) 1000 Maximum ascent speed (m/s) 9
Number of arms 4 Maximum descent speed (m/s) 7

Length of fuselage unfolding (mm) 380 Maximum horizontal flight speed (m/s) 25
Width of fuselage unfolding (mm) 300 Maximum tilt angle (◦) 40
Height of fuselage unfolding (mm) 120 Maximum flight time (min) 40

Wheelbase (mm) 400 Maximum take-off altitude (km) 6
Wind resistance class 6
Battery capacity (Ah) 4.5

Maximum transmission distance (km) 7
Camera Pixels (millions) 4.8

With the built prediction model for the commonality of light and small multi-rotor
UAVs, the novel model’s characteristic data and the characteristic data of 24 models were
composed as the model’s input, and the commonality evaluation results were obtained, as
listed in Table 13.

Table 13. Commonality prediction results.

Target Model Benchmark
Models

Commonality
(%) Target Model Benchmark Models Commonality

(%)

Novel model

DJI Mini SE 77.7

Novel model

DJI Inspire 1 75.9
DJI Mavic air 76.9 DJI M30 80.2
DJI Mavic 2 87.0 DJI M300 75.7

DJI Mini 3 Pro 79.8 DJI M200 76.0
DJI Mavic 3 89.9 Autel EVO ll Pro 82.4
DJI Air 2S 84.5 Autel EVO ll Lite+ 87.7

DJI Mavic Air 2 84.9 Autel EVO NANO 79.4
DJI Mini 2 79.4 Habsen ACE pro 80.9
DJI Avata 71.1 Habsen zinomini SE 78.5
DJI FPV 79.0 Habsen zinomini pro 78.0

DJI Phantom 4 Pro 83.2 parrot ANAFI Ai 80.1
DJI Inspire 2 76.9 parrot ANAFI-USA 78.0

From the data in the table, we observed that the new UAV model has an average
commonality evaluation value of 80.1% with the existing 24 models, placing it in the
middle-to-latter part of the multi-rotor UAV commonality distribution. This indicates that
the model maintains a certain level of universality in the overall UAV market. This result
suggests that the design objectives of the model are relatively universal and not as likely to
encounter significant technical design challenges as anticipated. Additionally, within the
light multi-rotor UAV field, there are various models available for design reference.
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Particularly noteworthy is that the new model has a high commonality evaluation
value with the DJI Mavic and DJI Air series, which may indicate that the new model will
compete with these two series in the market. Therefore, in the product design process, to
highlight the uniqueness of the new model and secure a market position, it should seek
to surpass the existing series not only in meeting the predetermined technical parameters
but also in aspects like appearance and reliability. This innovation and optimization in
design will be key to the new model’s success, enabling it to stand out in the fiercely
competitive market.

The application and analysis of this case demonstrate that the method proposed in this
study provides UAV design teams with a quantitative tool to assess the correlation between
design concepts and existing products and also offers data support for market analysis and
product positioning. By comparing UAVs of different brands and models, manufacturers
can more accurately position new products, designing UAVs that meet market needs while
being competitive. Therefore, the commonality evaluation method proposed in this study
is not only innovative in theory but also significantly strategic in practical application.

5. Summary and Outlook

This study focuses on the quantitative evaluation and prediction methods of com-
monality in light small-sized, multi-rotor UAVs, aiming to provide UAV manufacturers
with a scientific and reliable set of evaluation tools. This will assist manufacturers in
achieving the optimal balance between commonality design and innovative performance,
thus enhancing product design and market competitiveness. From this research, we have
drawn the following conclusions:

(1) The commonality quantification method developed in this study, based on distance
measurement and similarity, demonstrates high flexibility and accuracy in applications
involving different types of feature data, offering an innovative solution for quantifying
UAV commonality.

(2) The multi-level evaluation indicators constructed, combined with the UAV product
design structure matrix, effectively achieve a comprehensive evaluation of the commonality
of light small-sized, multi-rotor UAVs. The practicality and effectiveness of this method
have been confirmed through empirical analysis of mainstream UAV models in the market.

(3) By establishing and training a convolutional neural network model, this study
has successfully predicted the commonality of light small-sized, multi-rotor UAVs based
on limited feature data, marking a significant step forward in the field of commonality
prediction at the early stages of UAV design.

While the commonality evaluation and prediction models for light small-sized, multi-
rotor UAVs established in this paper show notable applicability, there is still room for
further research in the future. For instance, integrating non-structural features such as
design concepts and processes into the evaluation system can enhance the precision of
evaluation results; increasing the amount of sample data and applying deep learning
techniques can improve the accuracy of prediction models; further exploring the economic
benefits brought by commonality design in UAVs. We believe that these future research
directions will provide more comprehensive and in-depth insights into the commonality
design of light small-sized multi-rotor UAVs and offer practical and efficient solutions and
decision support for the industry.
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Nomenclature

X, Y data of a set of comparison samples
dXY Minkowski distance
dmax maximum possible Minkowski distance between X and Y
sXY Cosine similarity
CI value of commonality evaluation
DSM design structure matrix
Ti,j comprehensive connection strength of the DSM cell (i, j)
Si,j spatial connection strength of the DSM cell (i, j)
Ei,j energy connection strength of the DSM cell (i, j)
Ii,j information connection strength of the DSM cell (i, j)
Mi,j material connection strength of the DSM cell (i, j)
CNN convolutional neural network
MRE mean relative error
RMSE root mean square error
R2 goodness of fit
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