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Abstract: When military and civil missions such as transportation increase, fault tolerant control of
unmanned aerial vehicles will be an obligation. Although onboard sensors provide information about
the status of a quadrotor, the camera is not included in the list. In this study, visual servo control of
quadrotors as a popular method for motion control is addressed. we address a visual servo control
system for quadrotors as a popular method for motion control. The feature motions in the image
plane are analyzed to reveal the relation between the actuator faults and these motions. Four AI fault
approximators, a neural network, an extreme learning machine, a linear support vector machine, and
a long short-term memory are used to approximate actuator faults of a quadrotor while using feature
inputs. The results are convincing and the approximation results are used by a fuzzy logic unit to
provide gain-scheduling based fault tolerant control. The proposed system shows sufficient results as
a visual servo system for fixed and moving feature targets while providing fault tolerance.

Keywords: visual servoing; fault tolerant control; neural network; fuzzy logic

1. Introduction

Visual servoing (VS) is a motion control method for robotic systems that utilizes visual
feedback obtained from mono or stereo cameras [1]. It is often deployed in applications
where a robot needs to move according to given visual goals, such as assembly tasks.
With the increase of cameras in robot manipulator control, VS draws more attention and
advanced approaches show up Increased cameras in robot manipulator control has drawn
more attention and resulted in advanced approaches [2]. The use of these approaches in
different fields, applications, and systems such as humanoid robots or unmanned vehicles
is also becoming widespread [3,4].

Classical VS starts with obtaining meaningful data defined as features from an image
which is obtained by using a camera, as shown in Figure 1 [5]. These k features are arranged
in vector form s according to their metrics such as coordinates in the image plane. The
main goal is to reach the desired s* and the VS control law in terms of the velocities of the
robotic system, especially the Cartesian velocities of the end effector, defined by the error
vector between s and s*. After this generalized definition of VS, the approaches can be
classified into two main types: position-based visual servoing (PBVS) and image-based
visual servoing (IBVS) [1]. On the one hand, in PBVS, the control law uses the information
about the pose of the end effector relative to the desired pose to obtain s*. On the other
hand, IBVS utilizes s obtained from the instant image without any operations. PBVS is
affected by pose estimation errors and IBVS is subject to keeping the image features in the
field of view (FOV); therefore, hybrid approaches such as partitioned and 21⁄2 D VS [6,7]
or featureless approaches such as kernel-based VS [8] have been derived to avoid these
problems. The advantage of robustness against depth estimation errors makes IBVS worthy
for practical applications and it is preferred in this study.
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Figure 1. Classical visual servo control for robot manipulators [5]. 

The main platform of this study is a quadrotor which can be defined as an unmanned 
aerial vehicle (UAV) that is propelled by four independent rotors and can be used in a 
variety of applications, including aerial photography, mapping, or surveillance. While 
applications of VS on UAVs are becoming popular, the first application of VS on 
quadrotors can be considered to be the study by Mahony and Hamel [9]. The study used 
linear features but feature noise was neglected. Ceren and Altug proposed a VS system 
for quadrotors based on spherical image projection [10]. Although spherical camera 
projection is a potential replacement for VS image projection, investigations on VS control 
of quadrotors with spherical imaging have shown that this leads to inappropriate motion 
characteristics in Cartesian space. [11,12]. De Plinval et al. utilized the homography matrix 
obtained from frontal camera motion and gyrometer measurements to propose VS 
stabilizer laws [13]. Mebarki et al. used nonlinear observers to estimate translational 
velocity and spherical image features and designed a control law by utilizing an integral 
backstepping approach [14]. Abdessameud and Janabi-Sharifi proposed a VS system 
based on similar translational velocity estimates, but the velocity signals were neglected 
[15]. Zhang et al. focused on the visibility problem of features by optimizing VS control 
inputs under visibility constraints [16], while neglecting velocity signals. Control methods 
such as model predictive control (MPC) are also adapted to VS control of quadrotors. 
Zhang et al. proposed a robust nonlinear MPC VS scheme for quadrotors under 
disturbances, but the sudden changes in control inputs which could be dangerous for 
practical applications were neglected [17]. Quadrotor team formation with IBVS was 
discussed in [18], but the velocity signals and image feature trajectories were neglected. 
Xie and Lynch presented an input saturated controller for UAVs to regulate the relative 
pose between a vehicle and a planar horizontal visual target [19]. They simplified the 
control law design by using a virtual camera to define a set of image moment features and 
proposed another input saturation law to keep features in FOV. They mentioned it was a 
generalized law for UAVs, but only features of two points were selected and different 
dynamics between fixed-wing and rotary-wing UAVs were neglected. Zhao et al. focused 
on PBVS control of quadrotors with sensor fusion [20]. They utilized an IMU, an ultrasonic 
sensor, and a vision sensor and designed a robust compensator to enhance the robustness 
against nonlinearities, couplings, and uncertainties. The position of the quadrotor was 
estimated using a visual feature and the designed controller was compared to the classical 
PID controller, but details such as feature trajectory were not given. Cao et al. proposed 
an IBVS controller for quadrotors to stabilize hovering and tracking [21]. Backstepping 
controllers were designed to stabilize the VS of the quadrotor and a trajectory observer 
based on a nonlinear tracking differentiator was integrated into the proposed system. The 

Figure 1. Classical visual servo control for robot manipulators [5].

The main platform of this study is a quadrotor which can be defined as an unmanned
aerial vehicle (UAV) that is propelled by four independent rotors and can be used in a
variety of applications, including aerial photography, mapping, or surveillance. While
applications of VS on UAVs are becoming popular, the first application of VS on quadrotors
can be considered to be the study by Mahony and Hamel [9]. The study used linear features
but feature noise was neglected. Ceren and Altug proposed a VS system for quadrotors
based on spherical image projection [10]. Although spherical camera projection is a poten-
tial replacement for VS image projection, investigations on VS control of quadrotors with
spherical imaging have shown that this leads to inappropriate motion characteristics in
Cartesian space. [11,12]. De Plinval et al. utilized the homography matrix obtained from
frontal camera motion and gyrometer measurements to propose VS stabilizer laws [13].
Mebarki et al. used nonlinear observers to estimate translational velocity and spherical im-
age features and designed a control law by utilizing an integral backstepping approach [14].
Abdessameud and Janabi-Sharifi proposed a VS system based on similar translational
velocity estimates, but the velocity signals were neglected [15]. Zhang et al. focused on
the visibility problem of features by optimizing VS control inputs under visibility con-
straints [16], while neglecting velocity signals. Control methods such as model predictive
control (MPC) are also adapted to VS control of quadrotors. Zhang et al. proposed a robust
nonlinear MPC VS scheme for quadrotors under disturbances, but the sudden changes
in control inputs which could be dangerous for practical applications were neglected [17].
Quadrotor team formation with IBVS was discussed in [18], but the velocity signals and
image feature trajectories were neglected. Xie and Lynch presented an input saturated
controller for UAVs to regulate the relative pose between a vehicle and a planar horizontal
visual target [19]. They simplified the control law design by using a virtual camera to
define a set of image moment features and proposed another input saturation law to keep
features in FOV. They mentioned it was a generalized law for UAVs, but only features
of two points were selected and different dynamics between fixed-wing and rotary-wing
UAVs were neglected. Zhao et al. focused on PBVS control of quadrotors with sensor
fusion [20]. They utilized an IMU, an ultrasonic sensor, and a vision sensor and designed
a robust compensator to enhance the robustness against nonlinearities, couplings, and
uncertainties. The position of the quadrotor was estimated using a visual feature and the
designed controller was compared to the classical PID controller, but details such as feature
trajectory were not given. Cao et al. proposed an IBVS controller for quadrotors to stabilize
hovering and tracking [21]. Backstepping controllers were designed to stabilize the VS of
the quadrotor and a trajectory observer based on a nonlinear tracking differentiator was
integrated into the proposed system. The system was verified under disturbance such as a
sudden change of goal image feature locations, but motion in 3D, rotor torques, and image
noises were neglected.

Other hot topics about motion control systems are fault detection and diagnosis (FDD)
and fault tolerant control (FTC). FDD is the process of identifying and diagnosing the
type, the altitude, and the time of a malfunction or fault in a system [22]. This process
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is followed by FTC which can be defined as the ability of a control system to continue
operating under defined operation constraints in the presence of a fault [23]. It must be
noted that temporary faults that show their presence at a time interval can be encountered.
To ensure fault tolerance, critical control systems are designed with hardware redundant
components, such as triple computer redundancy in airplanes, but the FTC design focuses
on reconfiguring the controller with or without using FDD information.

In the last two decades, FDD and FTC methods have been adapted, modified, and
updated for quadrotors as the flight dynamics are quite different from fixed-wing UAVs.
A detailed review on FDD and FTC for UAVs can be found in [24]. This study focused
on actuator faults, AI-based FDD, active FTC for quadrotors, and the studies on these
foci are summarized. Avram et al. designed an FDD system that involved a nonlinear
fault detection estimator, a bank of nonlinear adaptive fault isolation estimators, and a
fault accommodator which used fault estimation information [25]. The study showed
sufficient results, but the partial actuator fault ratio was quite limited which could be
passively tolerated by PID controllers of the quadrotor. Song et al. proposed an indirect
neural network (NN)-based adaptive FTC scheme with virtual parameter estimating al-
gorithms [26]. The proposed system provided robustness against model uncertainties,
but sudden changes in the control signals that could be catastrophic for a real quadrotor
were neglected in the study. Ren proposed a robust H∞ observer to observe actuator fault
and state estimation of a quadrotor in the presence of external disturbances, parameter
uncertainties, and nonlinear terms [27]. The fault was defined as a failure factor in lift
and trust torques, but the faulty actuator was not diagnosed in the study. Ma et al. also
proposed an observer-based adaptive controller to estimate and compensate actuator and
sensor faults of quadrotors [28]. The faults in the actuators were defined as biases in the
form of a nonlinear function, but the physical equivalence was not defined and the results
were given for a noiseless scenario.

From a practical point of view, actuator faults in UAVs may cause catastrophic results
while performing dedicated tasks. To avoid these undesirable scenarios, UAVs should
benefit from all the hardware that are reliable after the fault to diagnose and accommodate
this situation. Quadrotors are equipped with IMUs for navigation but it is hard to diagnose
actuator faults from the signals of IMUs since the inner and outer loop controllers are
coupled according to RPY motions. Furthermore, using auxiliary signals from auxiliary
sensors such as cameras may enhance the possibility of diagnostics without the need of
hardware redundancy. Additionally, cameras can provide this assistance while implement-
ing other tasks such as visual SLAM or visual autolanding. Cameras are also more robust
than IMUs and they still can be active in the case of faulty sensors on the quadrotor. In this
study, camera images and features are deployed to diagnose quadrotor actuator faults as
the primary contribution to the literature. The proposed system, which combines detection
and diagnostics, first approximates actuator faults. The contenders for this approximation
include NN, ELM, linear SVM, and LSTM. NN had the best performance based on the
RMSE measure, although the competition was fairly intense.

Active FTC is defined as the reconfiguration of controller parameters or switching
between different controllers according to a fault diagnosis [23]. These options may cause
sudden changes and discontinuities that may cause hard maneuvers which are undesirable
for a reliable flight. As a solution, a fuzzy GS-based active FTC stage is proposed to tune
the faulty actuator gain while providing convergence after the fault diagnosis.

The system’s robustness is evaluated in the presence of feature noise. Despite the
steady-state feature errors, the system exhibits sufficient tolerance to actuator faults and
does not diverge. The proposed system is also tested for tracking moving feature targets
under feature noise. The tracking performance of the proposed system is quite convincing
while keeping the features in FOV.

The study is organized as follows: In Section 2, the visual servo approach for quadrotors,
and the proposed system with fault approximators and the fuzzy gain scheduling mechanism
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are described in detail; in Section 3, the simulation results for the proposed system under
feature noise are given; in Section 4, conclusions and future goals are summarized.

2. The Proposed Fault Tolerant Visual Servo Control System

The proposed fault tolerant visual servo control system is presented in depth in
this section. As the first step, it should be emphasized that an IBVS system with point
features and with an eye-in-hand configuration is proposed as the quadrotor is carrying a
down-looking camera. The proposed system is shown in Figure 2.
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VS begins with the projection of point features to the image plane. Assume that a
manipulator equipped with an eye-in-hand camera is seeing k feature points in 3D. These
feature points’ coordinates in the image plane of the camera are given as:

si =
[
ui vi

]T , ∀i ∈ {1 . . . k} (1)

where ui, vi are the coordinates in the u-v image plane. To characterize the behavior of the
fixed-motionless feature points, these vectors are merged into a matrix in the form:

s =
[
s1 s2 . . . sk

]T ∈ R2×k (2)

with s* having the same dimensions as the desired fixed feature points matrix. Error
convergence is the primary objective of all VS approaches:

e(t) = s(t)− s∗ (3)

Following these notations, the linear velocity υ and angular velocity Ω of a point are
determined in the world coordinates as:

.
Pi = −Ω×Pi − υ (4)

where
.

Pi and Pi ∈ R6 are used to denote the point location and the velocity vectors,
respectively. Subsequently, the focal length of the camera λ f , the depth of the feature Z,
and si are used to define the projection of the linear and angular velocities in Equation (4)
to the image plane.
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υ =
[
νx νy νz wx wy wz

]T ,
[ .

ui.
vi

]
=

− λ f
Z 0 ui

Z
ui ·vi
λ f

− λ f
2+ui

2

λ f
vi

0 − λ f
Z

vi
Z

λ f
2+vi

2

λ f
− ui ·vi

λ f
ui




νx
νy
νz
wx
wy
wz

 (5)

Equation (5) is shown as:
s(t) = Ls·υ (6)

where Ls ∈ R2k×6 is the interaction matrix (or named as image Jacobian). Since it is
challenging to determine a feature’s actual depth, its estimated value is presumed to
represent the depth at s∗ and this results in the estimated interaction matrix L̂s

.
Most VS systems make assumptions about camera formation and feature specs. Two

assumptions for the proposed VS system are given below:

Assumption 1. The camera is attached to the center of the quadrotor with the eye-in-hand config-
uration, and the camera frame ( Fc) and the center of the quadrotor ( Fq) intersect without any
transformations:

Fc = Te·Fe, Te = I4×4 (7)

Assumption 2. The depths of each feature are the same for each point, and all feature points are
collinear. The characteristics adhere to the collinearity criteria outlined in [29] since A, B, and C are
constants:

1
Z

= Axi + Byi + C (8)

The Moore–Penrose pseudoinverse of the estimated interaction matrix L̂+
s , the error

vector, and a fixed gain are referred by classical IBVS as a kinematic velocity controller to
exponentially reduce the error:

.
s = Ls·υ.

e + λ·e = 0

}
⇒ υ = −λ·L̂+

s ·e (9)

Here, it should be noted that L̂+
s and λ define the effectiveness of this velocity con-

troller. There are two major differences when applying the conventional IBVS that was
designed for fully actuated robot manipulators to quadrotors [5]. First, due to the underac-
tuation of quadrotor systems, the Jacobian only includes the columns that correspond to(
υx, υy, υz, ωz

)
. Secondly, the features in the image will move as a result of the quadrotor’s

inability to translate without first tilting in the desired direction, increasing the image
feature error. This may be disregarded for small amounts of roll and pitch, but it has to be
considered for aggressive maneuvers. Here, it is ignored in this study.

The VS controller directly creates the necessary velocities for the velocity loops of
these degrees of freedom in addition to performing the function of the outermost position
loops for x- and y-position, altitude, and yaw. Here, it must be noted that the velocity loops
still need rate information as an input, and quadrotors obtain this information through an
inertial measurement unit. The inner loop PD controllers define attitude torque demands
that are roll torque (τx), pitch torque

(
τy
)
, yaw torque (τz), and height control force

(T), with gravity feedforward. Then, Euler’s equation of motion provides the rotational
acceleration for the quadrotor as:

I·ω = −ω×I·ω + τ (10)
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where I is the inertia matrix, ω is the angular velocity vector, and τ is the torque vector
applied to the quadrotor. The motion of the quadrotor is defined by the relation between
torque vector and height control force using the torque applied to each propeller:

[
T
τ

]
= A


ω2

2

ω2
1

ω2
3

ω2
4

 (11)

where A is the coefficient matrix including aerodynamic drag, distances of blades from the
center of mass of the quadrotor, and lift constant defined in [5]. This closed loop is shown
with blue signal flows in Figure 2.

In this study, we focus on actuator faults with partial loss of effectiveness (LOE) that
may be a result of motor or propeller damage or component deterioration [25,26]. While
diagnosing a fault, the LOE ratio should be approximated to prepare for the stage of FTC.
The fault diagnosis stage of the proposed system starts with s*as the input of the bank of
fault approximators. Each approximator approximates the LOE of a propeller as fi.

Four AI candidates, neural networks (NN), linear support vector machine (SVM), and
a deep NN, LSTM are chosen as function approximators.Four AI candidates, i.e., neural
networks (NN), linear support vector machine (SVM), extreme learning machine (ELM),
and a deep NN, i.e., LSTM are chosen as function approximators. As the first candidate, NN
is a powerful classification and regression tool that can map input–output relations without
any user interference as a black-box unit [30]. The architecture of the fault approximator
NN is given in Figure 3.
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Haykin [30] provided all detailed information about NNs. Here, the learning algo-
rithm, i.e., the Levenberg–Marquart (LM) algorithm, which is one of the essential indicators
of the learning stage of NN, is briefly reviewed. NNs seek to reduce error and update their
stated parameters with learning algorithms to provide acceptable outputs for appropriate
inputs. The gradient descent approach, which is described in Equation (12), is the most
popular learning algorithm used for this purpose:

wij(n+1)=wij(n) + ∆wij(n) (12)

∆wij(n) = −η·∂E(n)
∂wij

(13)

where E(n) is the n. step error function, wij is the weight from neuron i to neuron j, and η is
the learning rate parameter. Instead of this parameter update, LM uses the sum of square
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errors for each input sample as the first step and its first derivative is defined in partial
differential form as the Jacobian matrix in Equation (14). Then, the parameter update is
implemented with µ learning rate using Equation (15):

J(w) =



∂E1(x)
∂w(1,1)

∂E1(x)
∂w(1,2) · · · ∂E1(x)

∂w(1,j)
∂E2(x)
∂w(2,1)

∂E2(x)
∂w(2,2) · · · ∂E2(x)

∂(2,j)
...

...
. . .

...
∂EN(x)
∂w(i,1)

∂EN(x)
∂w(i,2) · · · ∂EN(x)

∂w(i,j)

 (14)

∆w =
[

JT(w)·J(w) + µ·I
]−1
·JT(w)·e(w) (15)

SVMs are a prominent and commonly used approach for machine learning classifica-
tion issues by transferring the data to another hyperplane to classify linearly. In contrast,
finding a function that roughly maps an input domain to actual numbers using a training
sample is the goal of regression analysis. Linear SVM defines a linear equation under an
error constraint:

min 1
2‖wn‖2

s.t
∣∣yn − (wn

Txn + bn)
∣∣ < ε

(16)

where yn is the output dataset, xn is the input dataset, and ε is the maximum error, as shown
in Figure 4. The line segments for the boundary linear equations are shown in red and the
defined linear equation by linear SVM is shown in blue. Using basic quadratic programming
approaches, this minimization problem may be stated in ordinary quadratic programming
form. However, using quadratic programming approaches might be computationally costly.
Therefore, approaches such as sequential minimal optimization (SMO) are referred to [31].
For input–output mapping for fault detection, four independent SVMs, each for one fault
output, should be defined.
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Figure 4. Linear regression and SVM constraints.

The most well-known regressors are NNs, SVMs, and hybrid structures such ANFIS,
however, each of them has flaws. According to input–output mapping, the hidden layer
parameters of SLFNs and the user-defined parameters of SVMs and ANFIS should be
carefully set [32,33]. ELM generalizes single-layer feedforward NNs whose hidden layer
does not require tuning as a member of the NN family. For this architecture, the output
function of ELM as one output node scenario is:

f L
ELM(x) =

L

∑
i=1

βi·hi(x) = β·h(x) (17)
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where β is the vector of the output weights between the hidden layer of L nodes and the
output node, h(x) =

[
h1(x) h2(x) · · · hL(x)

]
is the output vector of the hidden layer

with hi(.) activation function. Input–output mapping of ELM is shown in Figure 5.
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The sigmoid, sine, or hard limiter functions are the definitions of the activation func-
tions of the green hidden layer nodes in Figure 5. ELM tries to minimize the training error
as well as the norm of the output weights, whereas conventional learning algorithms only
frequently achieve the minimum training error between output and goal T:∥∥∥β̂·H(x)− T

∥∥∥ = min
β

(‖β·h(x)− T‖) (18)

where β̂ is the minimum norm least square solution of β·H = T with β̂ = H+·T where
H+ is the Moore–Penrose pseudoinverse as in Equation (9). In [33], it was stated that
the orthogonal projection technique, orthogonalization method, iterative approach, and
singular value decomposition (SVD) could all be used to obtain this pseudoinverse. Input–
output presentation is the same as NNs.

The fourth regressor for fault function approximation is a deep NN architecture, i.e.,
long short-term memory (LSTM). An LSTM network is a kind of recurrent neural network
(RNN) that can discover long-term relationships between sequence data’s time steps [34].
Practically speaking, basic RNNs have a limited ability to learn longer term dependencies.
RNNs are frequently trained via backpropagation, which can cause "vanishing gradient"
or "exploding gradient" issues. These issues result in either extremely tiny or very high
network weights, which limit the efficacy of applications that call on the network to learn
long-term relationships. To solve this problem, LSTM networks employ extra gates to
regulate which data from the hidden cell are transmitted as output and to the following
hidden state, as shown in the LSTM cell in Figure 6. Here, f is the forgetting gate that
decides what information is to be carried forward, g is the memory cell, i is the input
gate that decides which values will be updated, o is the output gate, ci is the cell state
that is the memory of LSTM, hi is the hidden state, and xt is the input. The network can
more successfully learn long-term associations in the data thanks to the extra gates. LSTM
networks are superior to simple RNNs for evaluating sequential data because they are less
sensitive to the time gap.
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A sequence input layer and an LSTM layer are the two main parts of an LSTM network.
Data from time series or sequences are fed into the network using a sequence input layer.
Sequence data’s long-term relationships between time steps are learned by an LSTM layer.
A regression output layer is also defined for regression purposes. It is not shown in Figure 6.

These AI regressor candidates are selected as fault approximators of the fault diagnosis
system in Figure 1. The output of the approximator gives information about the LOE of the
faulty rotor, and the quadrotor controllers should be updated according to this information
which is defined as active FTC. The inner and outer loop controllers are coupled according
to RPY motions, and changing the PD values of these controllers will not compensate
the LOE of the faulty rotor directly. Therefore, torque and force signals in (11) should
be scheduled by λa , the fault gain factor that is defined by fault approximators as gain
scheduling (GS). However, this GS approach may cause a sudden change in the gain,
resulting in sudden velocity changes in the motion, and concluding in divergence during
the VS tasks. To avoid catastrophic results, an adaptive gain should be defined to provide
a soft transition. Instead of an analytical definition, a fuzzy logic (FL) unit is deployed to
obtain a soft transition and to also include user experience. The impact of error magnitude
on IBVS features is taken into consideration while defining the linguistic rules of FL.

An FL unit’s output depends on its type, input membership function (MF) types, MF
aggregation, rulebase, and defuzzification type. A Mamdani-type FL unit is employed in
this study, and therefore, the output functions are fuzzy MFs. As the most common fuzzy
implication type, minimum is chosen and it must be noted that new implication types such
as IFESI can be found in the literature [35]. Maximum is the aggregation type, and the
centroid of area (COA), which is the weighted average of the centroids of output MFs with
weighting factors (αi) of input MFs (µi(λa)), and ith rule is the defuzzification type [32]:

αi = max
(
µj(‖e‖)

)
, ∀j ∈ {1 . . . z}

λa =

n
∑

i=1
αi
∫

µi(λa)·λa ·dλa

n
∑

i=1
αi
∫

µi(λa)·dλa

(19)

After this FTC stage, the quadrotor receives the appropriate velocities for each rotor.
Then, the quadrotor kinematics and dynamics provide the motion in 3D, completing the
closed loop of the system presented in Figure 2.

3. Simulation Results

To show the performance of the proposed system, the proposed fault approximators
and FTC system are implemented using MATLAB Simulink, Robotics Toolbox, Machine
Vision Toolbox [5], Deep Learning Toolbox, Fuzzy Logic Toolbox, and ELM codes from [33].
In this study, an X-4 flyer model is chosen as the quadrotor platform and the details of
this platform can be found in [36]. Table 1 provides an overview of the quadrotor model’s
parameters.
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Table 1. X-4 quadrotor platform parameters.

Parameter Value

m (mass) 4.34 kg
Ixx (Diagonal inertial element) 0.0820 kg m2

Iyy (Diagonal inertial element) 0.0845 kg m2

Izz (Diagonal inertial element) 0.1377 kg m2

r (Rotor radius) 0.165 m
A (Rotor disc area) 0.0855 m2

It is assumed that a camera is fixed to the quadrotor’s center without being trans-
formed, as mentioned in the assumptions in Section 2. The camera’s resolution is 1024 ×
1024 pixels, and the principal point’s coordinates are (512,512). The system’s control loop
and video stream both run at a rate of 20 Hz. The four fixed collinear points of a square
with a side length of 0.5 m are used to define the features as P∗ in Cartesian coordinates.
As the goal of the IBVS system, s∗ ∈ R2×4, these points’ centers should collide with the
principal point. P∗ and s∗ are defined as:

P∗ =

 0.25 0.25 −0.25 −0.25
−0.25 0.25 0.25 −0.25

0 0 0 0


s∗ =

[
612 412 412 612
412 412 612 612

] (20)

In Equation (9), the estimated value of the depth is needed for L̂+
s and it is assumed to

be 2 m. The performance of the system may be affected by this estimation, as in [1].
As the first step of fault diagnosis, a dataset for fault approximators is created. As

mentioned in [30], regressors need a dataset that covers all the workspace for the best
approximation. Therefore, a healthy IBVS system is simulated with initial linear and
angular values as (X0, Y0, Z0) =

[
−0.35 0.7 2

]T m. and (φ0, θ0, ψ0) =
[
0 0 −π/4

]T

rad., respectively. Here, it must be noted that IBVS drags the features in the image plane
through a sliding surface mode which is reached in the sliding phase in sliding mode
control. Five LOE percentages, i.e., 10%, 20%, 30%, 40%, and 50%, are defined for each
rotor and the actuator faults are injected to the healthy system at six different time instants
which may change the behavior of the system. Here, it must be noted that the healthy IBVS
diverges after a fault bigger than 10% LOE. The fixed gain value in Equation (9), λ, for the
healthy system is 0.3. The dimensions of the dataset for inputs and outputs are 8 × 27,613
and 4 × 27,613, respectively. The data are divided into two parts, 85% data for training
and 15% data for testing. Furthermore, the inputs and outputs are normalized for better
approximation performance.

The first candidate is NN with three hidden layers with 10 neurons in each layer. The
activation functions of each layer, including the output layer, are logarithmic sigmoid and
the learning algorithm is LM. The goal is 0 RMSE and 1000 epochs are performed. As the
second candidate, the proposed system uses four different ELMs, each for a rotor fault,
with sigmoid-type activation functions with 10 hidden neurons. The third candidate is
linear SVM with five-fold cross validation without any dimensionality reduction methods.
Here, it must be noted that other SVM types with different kernel functions such as cubic
SVM are tested, but linear SVM gives the best result. The last candidate is LSTM with
200 hidden units with Adam optimizer [37]. Again, the goal is 0 RMSE and 250 epochs are
performed. The RMSE results for each approximator and each rotor are given in Table 2.
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Table 2. RMSE performances for fault approximators.

Fault Approximator RMSE

NN 0.0120
ELM 0.0770

Linear SVM 0.2833
LSTM 0.0454

Table 2 shows that NN is the best approximator according to the RMSE results. While
other approximators, as more recent AI architectures, are expected to show better perfor-
mance, NN surpasses them with nonlinear regression capability. As an example, the first
NN output of Rotor 1 fault approximator with 30% LOE for 6 time instants are shown in
Figure 7 with blue as the real LOE and red as the approximation.
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As the GS stage of the proposed system, a gain factor for torque and force signals
in Equation (11), λa is defined using an FL unit as feature error norm, ‖e‖ as input, and
λa as output. The generalized bell MFs of this FL unit were selected to provide a smooth
nonlinear surface, free of discontinuities. There are three MFs for each input and output.
The rule base is modified in accordance with lessons learned through experiments that λa
should be small, while the error norm is high to avoid discontinuities. The MFs and the
surface between input and output are given in Figure 8.

As stated in the section on practical disturbances for real-time VS systems, all systems
can be exposed to feature noise and poor camera calibration [29,38]. When the system
approaches convergence, which can be defined as very small feature errors, noise in the
features may result in oscillations in the motion of the quadrotor. Two cases are discussed
in the following subsections.
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3.1. Case 1: Fixed Target Features under Noise

To show the performance and the robustness of the system, a fault at Rotor 1 with 30%
LOE at t = 8 s and uniformly distributed random noise with five magnitude disturbing all
feature points are considered. The results for this scenario are shown in Figure 9.
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In Figure 9a, the blue circles, the red circles, and the black circles show the starting, the
finishing, and the target point features, respectively. The feature trajectories, also shown in
Figure 9a, and the errors under feature noise, shown in Figure 9b, demonstrate the proposed
IBVS system’s convergence and resilience in the face of defined real-world problems. The
fault approximator NN catches the fault at time instant 8.02 with an approximation of
36.28% LOE and fuzzy GS reconfigures the system in a small time interval, but a delay
of 0.02 s in the fault diagnosis causes an abrupt change in Rotor 1 speed, as shown in
Figure 9d. Furthermore, the fault causes steady-state errors in the features, as shown in
Figure 9b, but the system converges under an actuator fault and the features are kept in
FOV as an important practical positive. This is a tradeoff of the proposed FTC system but
convergence is the main goal of an FTC system. The trajectory with the blue circle as the
starting location and the red circle as the finishing location in Figure 9c and the RPY signals
of the quadrotor in Figure 9e do not contain any abrupt changes which are good positives,
especially for a reliable flight system.
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3.2. Case 2: Moving Target Features under Noise

As a challenging scenario, it is assumed that the target features are moving in the u-v
image plane with a sine shape. The starting feature points and feature noise characteristics
are the same as in the first case and the goal features are defined as:

s∗T =

[
612 + 50· sin

( t
4
)

412 + 50· sin
( t

4
)

412 + 50· sin
( t

4
)

612 + 50· sin
( t

4
)

412 + 10·t 412 + 10·t 612 + 10·t 612 + 10·t

]
(21)

The results for this scenario are shown in Figure 10. The feature colors in Figure 10a
are the same as in Figure 9a. Additionally, cyan circles show the starting of goal features.
The fault approximator shows its ability again and diagnoses the fault at 8.021 s with an
approximation of 36.05% LOE.
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It is clear that the proposed FTC system can track the moving features in Figure 10a,
but the errors increase in an admissible amount, as shown in Figure 10b. Furthermore, the
effect of rotor fault at Rotor 1 is obvious after the time instant at t = 8 s. After this time
instant, it must be noted that the feature trajectories are kept in FOV while tracking moving
targets, as in the first case, which is an important superiority. The trajectory followed by
the quadrotor still does not contain any sudden maneuvers and this provides a reliable
flight in realization. RPY motion and rotor angular speed characteristics are quite similar
to fixed target results. It is a consequence of very low roll and pitch maneuvers with fixed
yaw characteristics while tracking the moving targets.

4. Conclusions

Studies on fault detection and fault diagnosis issues often concentrate on quadrotor
actuator faults by only using IMU or on-board sensor signals due to the fact that the inner
and outer loop controllers are coupled according to RPY movements. As the main contribu-
tion to the literature, in this study, we utilize camera images and visual features to diagnose
actuator faults of a quadrotor. Utilizing auxiliary signals from auxiliary sensors, such as
cameras, may increase the likelihood of diagnosis without the requirement for hardware
redundancy. Additionally, cameras can perform additional tasks such as visual SLAM or
visual autolanding while also offering this support. The proposed system has two stages
as an FTC system. First, the system approximates actuator faults that combine detection
and diagnosis. NN, ELM, linear SVM, and LSTM are the candidates for this approximation.
Although the competitors are quite strong, NN showed the best RMSE metric performance
of 0.0120, which was four times smaller than the closest competitor. Then, an active FTC
stage using fuzzy GS is designed and implemented to provide convergence. From the point
of real-time field missions, a trained NN can be effective since embedded systems have
superior instruction implementing speeds.

The system is tested for fixed and moving feature targets under feature noise to show
robustness. Although steady-state feature errors arise, the system does not diverge and it
shows sufficiency against actuator faults. Furthermore, the motion characteristics of the
proposed FTC system under actuator faults are quite convincing, as high maneuvers do not
occur and the features are kept in FOV (see Supplemental Files drones_fixed_targe.mat for
fixed and drones_moving_target.mat for moving target scenarios). These two superiorities
are required qualifications for an FTC-based VS system in practice.

In future studies, we plan to realize the proposed FTC system on a real quadrotor
that is controlled by visual servoing. Furthermore, the study would utilize point features.
Using shape features, maybe features of an AR code will be more attractive as a popular
marker in the field of VS. In addition to actuator faults, component faults such as car-
ried mass variation and sensor faults such as IMU biases will be addressed, and newly
trained AI structures such as the adaptive neuro-fuzzy inference system (ANFIS) which
combines black box and white box [39] will be tested to deal with all these types of faults in
one structure.

Supplementary Materials: The following supporting information can be downloaded at:
https://www.mdpi.com/article/10.3390/drones7020100/s1.
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