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Abstract: Due to the advantages of strong mobility, flexible deployment, and low cost, unmanned
aerial vehicles (UAVs) are widely used in various industries. As a flying relay, UAVs can establish
line-of-sight (LOS) links for different scenarios, effectively improving communication quality. In this
paper, considering the limited energy budget of UAVs and the existence of multiple jammers, we
introduce a simultaneous wireless information and power transfer (SWIPT) technology and study
the problems of joint-trajectory planning, time, and power allocation to increase communication
performance. Specifically, the network includes multiple UAVs, source nodes (SNs), destination
nodes (DNs), and jammers. We assume that the UAVs need to communicate with DNs, the SNs
use the SWIPT technology to transmit wireless energy and information to UAVs, and the jammers
can interfere with the channel from UAVs to DNs. In this network, our target was to maximize
the throughput of DNs by optimizing the UAV’s trajectory, time, and power allocation under the
constraints of jammers and the actual motion of UAVs (including UAV energy budget, maximum
speed, and anti-collision constraints). Since the formulated problem was non-convex and difficult to
solve directly, we first decomposed the original problem into three subproblems. We then solved the
subproblems by applying a successive convex optimization technology and a slack variables method.
Finally, an efficient joint optimization algorithm was proposed to obtain a sub-optimal solution by
using a block coordinate descent method. Simulation results indicated that the proposed algorithm
has better performance than the four baseline schemes.

Keywords: UAV network; trajectory planning; power allocation; time allocation

1. Introduction

In recent years, due to high mobility, flexible deployment, and low cost, UAVs have
been widely used in many scenarios, such as intelligent transportation systems [1–3],
disaster relief, military activities, emergency communications, and so on [4–6]. In particular,
with the development of 5G technology, non-terrestrial networks have become the next
hot spot [7]. For example, [8] studied the extreme performance of a cognitive uplink fixed
satellite service and a fixed terrestrial service in the Ka-band 27.5–29.5 GHz frequency
range. Ref. [9] studied the physical layer security problem of a satellite network.

Compared with traditional communication methods, most of the wireless communica-
tion channels in UAV networks are dominated by line-of-sight (LOS) links [10], which can
reduce the obstruction of mountains and buildings so as to obtain better data transmission
effects. For example, for natural disasters scenes and ground network communication
failures, Ref. [11] used UAVs to provide support for ground base stations and proposed an
adaptive UAV deployment scheme to solve the communication network coverage problem.
Ref. [12] proposed a task-driven routing strategy for emergency UAVs network to enhance
rescue efficiency. Aiming at the post-disaster areas where infrastructure has been destroyed,
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Ref. [13] proposed an efficient data transmission scheme based on a particle swarm algo-
rithm to ensure communication quality. Ref. [14] studied a UAV deployment strategy for
disaster-affected areas to maximize the number of communication-coverage nodes.

Despite the widespread adoption of UAV-assisted communication technologies, there
are still some challenges in UAV networks. First, due to the openness of a UAV network
interface and the broadcast nature of electromagnetic waves, a UAV network is susceptible
to radio interference. For instance, the existence of malicious jammers could reduce the
communication quality between the nodes in a UAV network. Second, the battery capacity
of the UAV is limited, which greatly shortens total mission time [15–17].

In view of the problem that a UAV network is susceptible to radio interference, the high
mobility of UAVs could be used to improve a system’s performance through the reasonable
optimization of network resources [18–21]. Whereas, in a UAV network, the resources are
limited, coupled with each other, and the established problems are usually non-convex and
difficult to solve. Therefore, it is necessary to design a feasible optimization algorithm to
obtain a solution to the original problem. Based on this, a successive convex approximation
(SCA) [22] can be used as an effective method to solve the original non-convex problem.

To address the problem that the battery capacity of the UAV is limited, traditional
energy harvesting mechanisms represented by solar and wind energy have been exten-
sively studied [23,24]. For example, Ref. [23] studied the energy efficiency problem in
solar-powered UAV systems by optimizing the speed, acceleration, heading angle, and
transmission power of a UAV. Ref. [24] proposed an energy harvesting model based on
hybrid solar and wind power for a UAV system and obtained a solution to the signal-to-
noise ratio (SNR) outage minimization problem. Unfortunately, due to the limitations of
hardware technology, the traditional energy harvesting scheme will significantly increase
the take-off weight and lead to the degradation of the system’s performance. Based on
that, radio frequency (RF)-based SWIPT technology combined with UAV network resource
allocation optimization could provide an effective solution [25].

To be specific, SWIPT is a technology that integrates wireless power transfer (WPT)
and wireless information transfer (WIT). The power and information could be transferred
at the same time, as an RF signal carries both power and information [26]. Typically, time
switching (TS) and power splitting (PS) protocols are two common methods to implement
SWIPT [27]. The former depends on time-slot allocation, where part of the time slot is used
for energy transmission, and the other is used for information transmission and processing.
The latter depends on power allocation, where part of the power is used for information
transmission and processing, and the other is used for energy harvesting (EH).

1.1. Related Work

For UAV-assisted communication networks, due to the broadcast characteristics of
electromagnetic waves, the UAV network is vulnerable to malicious interference. Generally
speaking, an attack on the jammers on a UAV communication channel usually focuses on the
physical layer and is completed by transmitting high-power interference signals. Therefore,
many optimization schemes have been proposed to improve the system’s performance.

Based on the high mobility of UAVs, Refs. [28–31] studied the UAV communication
system in jamming environments from the perspective of trajectory planning. In [28], the au-
thors studied a dual-UAV communication system with malicious interference and min-
imized the flight time by optimizing the UAV trajectory with steering angle constraints
under the premise of meeting the information transmission requirements. In the scenario
with a dynamic jammer, Ref. [29] proposed an offline algorithm based on deep rein-
forcement learning to optimize the trajectory and minimize the mission completion time.
To ensure the reliability of the communication link, Ref. [30] maximized the average SINR
by planning a trajectory for UAVs under energy constraints. In [31], the authors studied a
UAV communication network with multiple jammers and optimized the UAV’s trajectory
by using the Dinklebach method and a non-convex optimization method to maximize the
energy efficiency of the system.
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However, the research on UAV network channel optimization in the above-mentioned
interference environment mainly focused on trajectory planning in the space domain.
Considering more degrees of freedom for a UAV network, Refs. [32–34] studied the multi-
domain optimization problem based on trajectory planning. In [32], the authors mitigated
the influence of jammers by jointly optimizing the UAV trajectory and signal transmission
power and maximizing the average-secrecy rate of an uplink and a downlink. For the proba-
bilistic LOS channel system, Ref. [33] studied a single UAV-assisted dual-user anti-jamming
network and maximized the system throughput by optimizing the UAV’s three-dimensional
position and the ground nodes’ signal transmission power, wherein the UAV provides
communication services for two users. In the scenario where jammers have imperfect
locations, considering the different requirements for service quality, Ref. [34] maximized
the minimum throughput, the average throughput, and the minimum throughput with
delay constraints on all nodes by optimizing the UAV trajectory, the task scheduling, and
the ground nodes’ signal transmission power, based on a successive convex approximation
method and a block coordinate descent method. In addition, for the application scenarios
of drones in package delivery, Ref. [35] maximized delivery and sensing utility under
energy constraints by jointly optimizing the route selection, sensing time, and delivery
weight allocation.

Moreover, on account of the fact that an RF signal carries both power and information,
many resource allocation schemes were proposed to make the best of finite energy based
on RF energy harvesting technology.

Aiming at the vulnerability of the UAV network, some existing works optimized UAV
channel quality in terms of security [25,36–38]. In [36], the authors proposed a scheme
based on power division and time switching to improve the security rate in a single UAV
relay system with eavesdroppers. To analyze the security of the physical layer, Ref. [37]
considered three attack scenarios: (1) a free-space optical eavesdropping attack, (2) a radio
frequency attack, and (3) both a free-space optical and a radio frequency attack. The authors
further studied the effects of SWIPT parameters and power amplifier efficiency on the
security of the system. In [25], the authors investigated two cooperative UAV-assisted
SWIPT networks. Specifically, they aimed to maximize the average-secrecy rate by jointly
optimizing the trajectory and power of the UAVs, as well as the PS ratio. In the scenario
where multiple eavesdroppers have imperfect locations, Ref. [38] improved the security of
the network by jointly optimizing the UAV’s position, noise power, PS, and TS ratios.

In addition, outage probability (OP) describes the probability of link failure and is often
used to evaluate the performance of SWIPT communication systems. In [39], the authors
obtained the closed-form expressions of outage probability and the bit-error rate in a UAV-
relay-assisted decode and forward (DF) network based on TS and PS protocols and analyzed
the transmission rate and delay limitation state. Moreover, a fast convergence algorithm
based on bandwidth and time allocation was proposed by [40] to optimize the outage
probability. In [41], the authors derived closed expressions of OP and throughput over
Nakagami-m fading channels in a DF two-way relay system. They also analyzed the effects
of the PS factor, threshold, fading severity, and parameters on the network’s performance,
wherein the two source nodes could communicate with each other with the help of a
relay. Also exploiting SWIPT, Ref. [42] proposed a novel UAV-relay-assisted amplifiers and
forwards (AF) network and derived connection- and secrecy-outage probabilities based on
a PS scheme.

Furthermore, considering the energy-constrained system, some existing works studied
the energy efficiency (EE) of networks. In [43], the energy efficiency was maximized
by optimizing the UAV position. However, the authors did not use the detailed energy
consumption expression of the rotary-wing UAV, but simply adopted the constant power.
Ref. [44] investigated a UAV-assisted non-orthogonal multiple access (NOMA) networks,
where the Dinkelbach method and successive convex optimization techniques were used
to maximize the energy efficiency of the system by designing a UAV’s location, beam
pattern, power, and time schedule. For a multi-user distributed antenna system, Ref. [45]
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maximized the energy efficiency by jointly-optimizing energy allocation and a PS ratio
based on the Lagrangian method. Ref. [46] explored SWIPT techniques for device-to-device
(D2D) communications based on a nonlinear energy system, optimized power, and the PS
ratio maximizing energy efficiency.

Meanwhile, as a promising technology, intelligent reflecting surface (IRS)-aided SWIPT
in UAV networks has drawn much attention recently [47,48]. In [47], the authors studied
a UAV network supported by IRS and SWIPT and proposed an alternating optimization
(AO) algorithm to minimize all users’ energy consumption. Moreover, the authors in [48]
investigated a UAV network equipped with IRS-aided SWIPT and developed an efficient
iterative algorithm based on successive convex approximation, block coordinate descent,
and time division multiple access (TDMA) protocols, to maximize the average-transmission
rate. Aiming at the security problem in an aerial intelligent reflecting surface (AIRS) net-
work, Ref. [49] proposed an AO algorithm based on the Riemannian manifold optimization
method, the SCA technique, and the element-wise BCD method to jointly design the AIRS’s
deployment and phase shift, so as to maximize the system’s secrecy rate.

In addition to the joint UAV trajectory planning and resource allocation optimization
methods mentioned above, some existing works proposed new optimization methods to
support a UAV communication network [50–52]. For example, considering the trajectory
planning problem of multi-UAV assisted networks in a post-disaster scenario, Ref. [50]
studied two heuristic algorithms to effectively utilize the UAVs’ energy, to improve the
communication coverage performance. In the RIS-based UAV-assisted IoT communication
scenario, Ref. [51] proposed a multi-UAV path planning/transmission scheduling algorithm
based on model predictive control (MPC) to improve system performance and reduce the
total energy consumption of UAVs. For the UAV-assisted mobile edge computing (MEC)
network communication scenario, Ref. [52] proposed a multi-agent deep reinforcement
learning-based UAV trajectory control algorithm to jointly optimize the geographical
fairness among all the user equipment, the fairness of every user-equipment load and the
users’ energy.

1.2. Motivation

In spite of the fact that the related works above have made great progress, there are
still several problems needing to be resolved. To be specific, most existing studies did not
consider the existence of multiple jammers, even though jammers have a significant impact
on the legitimate communication of the system. In addition, most of the existing works
considered a single UAV or a single ground node. That is because a multi-UAV system
needs to meet a series of requirements, such as an anti-collision constraint and mission
planning. These will increase the design difficulty and further increase the complexity
of the algorithm. Furthermore, most existing works based on a SWIPT network focused
on optimizing power or trajectory instead of multi-domains, including time, power, and
trajectory. Most importantly, due to the development of onboard batteries, the flight time
of UAVs is limited. The energy constraint problem greatly restricts further applications
of UAVs. Therefore, how to improve the communication quality of a UAV network has
always been a difficult and hot issue.

Inspired by the discussion above, we study a multi-UAV-assisted multi-user network
system. Specifically, where the SN can send information and energy to the power-limited
UAV, and the UAV uses the collected energy to communicate with the DN. It should be
noted that there are multiple jammers in the network blocking legitimate communication.
Different from the existing network, we introduce multiple UAVs based on SWIPT tech-
nology and fully consider the existence of jammers and the energy consumption of UAVs.
In addition, due to the complexity of the network, solving this joint optimization problem
was a considerable challenge. Thus, we introduced multiple slack variables and used the
SCA method to make the original problem satisfy the disciplined convex program (DCP)
rules so that the reformulated problem could be solved based on the solver CVX.
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1.3. Contributions

For the sake of solving the problems given above, a multi-domain optimization al-
gorithm based on the PS protocol that combines trajectory planning, time allocation, and
power splitting is proposed by us. We aim to maximize the throughput by considering all
constraints. The main contributions of this paper are as follows:

• We investigate a multi-UAV-assisted multi-user relay network in which the SNs use
SWIPT technology to transmit wireless energy and information to UAVs. The UAVs
use the collected energy to transmit information to the DNs, with the jammers inter-
fering with legitimate channel communications.

• Our goal was to jointly optimize UAV trajectories, time allocation, and power-splitting
factors, to mitigate interference and maximize the system throughput. Given that the
original problem is non-convex and difficult to solve directly, we decomposed the
original problem into three subproblems based on successive convex approximation,
block coordinate descent, and a slack variables method presenting an efficient joint
optimization algorithm to obtain a suboptimal solution.

• Simulation results indicate that the proposed scheme had better performance than
the four benchmark schemes. In addition, we discuss the impact of the number of
jammers and energy budgets on system performance and illustrate the effectiveness
of joint trajectory planning, time, and power allocation to mitigate interference.

The rest part of the paper is organized as follows. In Section 2, the system model is
introduced. In Section 3, we propose a joint optimization algorithm to solve the original
problem. In Section 4, we provide simulation results and some necessary discussions.
Finally, Section 5 concludes this paper.

2. System Model

Considering a multi-UAV enabled wireless communication network as shown in
Figure 1, which includes K1 quadcopter UAVs, K2 source nodes (SNs) and destination
nodes (DNs), and multiple jammers. Since each pair of ground nodes (SN and DN) is
equipped with a fixed UAV to provide communication services for them, then K1 = K2 = K.
In this system, we assume that the UAVs need to communicate with DNs, and the SNs use
SWIPT technology to transmit wireless energy and information to UAVs. Specifically, K
SNs stored information and energy. First, all SNs simultaneously send information and
energy to the UAV relays, and then, the UAV relays use the collected energy to forward the
information to the DNs in DF mode. It is assumed that the SNs, the UAVs, and the DNs are
each equipped with a single antenna, the jammers are equipped with K antennas, and the
jammers’ antennas are aimed at the signal transmission direction of the UAVs [53]. Thus,
The jammers which are far away from SNs and closer to UAVs interfere with the channel
from UAVs to DNs.

In order to describe the model in mathematical terms, we introduce a 3D Cartesian
coordinate system. Suppose the locations of SN k and DN k are wSk = (xSk , ySk , 0) and
wDk = (xDk , yDk , 0) respectively, k ∈ K = {1, 2, ..., K}. The system contains multiple jam-
mers, denoted as j ∈ J = {1, 2, ..., J}, and the location of the j-th jammer is wj = (xj, yj, 0).
At the same time, we discretize the UAVs mission period T into N time slots with equal
length δ, i.e., δ = T

N . Therefore, the position of UAV k flying at a height Z in any time slot
n ∈ N = {1, 2, ..., N} is denoted as qk[n] = (xk[n], yk[n]). Moreover, we assume that the
maximum flight speed of the UAV k is Vmax. Thus, we have the following:

‖qk[n]− qk[n− 1]‖ ≤ Vmaxδ, ∀k, n = 2, ..., N. (1)

which means that the UAV’s speed between two adjacent time slots cannot exceed the
maximum speed, where ‖•‖ represents the Euclidean norm. In addition, the distance
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between any two UAVs needs to be greater than a minimum safe distance of Dmin to avoid
collision and ensure safety. Thus,

‖qk[n]− ql [n]‖2 ≥ D2
min, ∀k, l, k 6= l. (2)

Source node 1
Destination node 1

Jammer 1

UAV 1

x

y

z

Jammer j

Jammer-UAV channel

UAV-Destination channel

UAV trajectory

Source-UAV channel

Source node k

Destination node k

UAV k

Figure 1. UAV communication network.

Generally speaking, most of the wireless communication channels in UAV networks
are dominated by line-of-sight (LOS) links. Thus, following the free-space path loss model,
we can get the channel-power gain between SN k and UAV k as follows:

h2
SkUk

= βsu
∥∥qk[n]−wSk

∥∥−2
κ[n], ∀n. (3)

where βsu represents SN to UAV channel gain at the reference distance 1 m; κ[n] is a
small-scale fading with unit mean that is modeled by Rayleigh fading, i.e., E[|κ[n]|2] = 1.
Similarly, following the free-space path loss model, the channel-power gains from the
jammer j to UAV k, and from UAV k to DN k are:

h2
jUk

= β Ju
∥∥qk[n]−wj

∥∥−2, ∀n. (4)

h2
Uk Dk

= βud
∥∥qk[n]−wDk

∥∥−2, ∀n. (5)

where β Ju and βud represent jammer j to UAV k and UAV k to DN k channel gain at the
reference distance of 1 m, respectively.

2.1. Energy and Information Transmission Model

Inspired by [39], we use the PS protocol to describe the transmission process between
the nodes of the network. Specifically, the PS protocol is divided into two steps, as shown
in Figure 2, where τ is the time-allocation factor, α is the power-splitting factor, and Pk is
the transmit power from SN k to UAV. We first divide each time slot into τδ and (1− τ)δ.
During the first τδ process, the SN sends a signal to the UAV. According to the PS protocol,
the 1− α portion of the signal power is used by the UAV to receive and decode a specific
signal from the SN, and the remaining portion is used for energy harvesting. Note that
the energy collected by UAV from the SN is temporarily stored in the supercapacitor [54].
During the second (1− τ)δ process, the UAV uses the energy collected in the previous
stage to transmit the decoded data to the DN. It should be noted that due to the limitation
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of energy harvesting efficiency and signal fading, we consider the harvested energy to be
only used for signal processing and transmission. The energy consumed by the motor is
determined by its own battery capacity, which we will discuss later.

SN UAV: Energy harvesting

S
αP

UAV DN: Establish 

communication

δ

(1- )τ δτδ

SN UAV: Signal reception   

and processing

(1- )
S

α P

Figure 2. PS protocol.

Based on the above analysis, the UAV-received signal used for information processing
during a time slot can be expressed as follows:

yIN
k = (1− α)

√
PkhSkUk x + nsu. (6)

where x denotes a signal sent by SN, and nsu is additive white Gaussian noise (AWGN)
with mean 0 and variance σ2

su, i.e., nsu ∼ CN(0, σ2
su). Therefore, the signal-to-noise ratio

(SNR) of the received signal is as follows:

SNRkIN =
(1− α)Pkh2

SkUk

σ2
su

. (7)

Thus, the achievable rate from SN to UAV is as follows:

RSUk = τlog2
(
1 + SNRINk

)
, ∀k. (8)

It should be noted that in the actual network, the SNR needs to be greater than a
threshold γth1; otherwise, the information transmission will be interrupted. Thus, we have
the following:

SNRINk ≥ γth1, ∀k, ∀n. (9)

According to the PS protocol, the energy harvesting time during each time slot is τδ.
Therefore, the energy collected by the UAV in a slot can be expressed as follows:

EEH
k = ηαPkh2

SkUk
τδ. (10)

where η is energy collection efficiency. It should be noted that the collected energy cannot
exceed the maximum capacity of the supercapacitor. Thus, we have the following:

EEH
k ≤ Ecap

k (11)

where Ecap
k is the maximum capacity of the supercapacitor. Thus, the UAV’s transmission

power during the (1− τ)δ can be expressed as follows:

PUk =
EEH

k
(1− τ)δ

=
ηαPkh2

SkUk
τ

(1− τ)
. (12)

Due to the existence of the jammers, the received signal-to-interference-plus-noise-
ratio (SINR) at the DN needs to be greater than a threshold γth2 to ensure that the signal
transmission will not be interrupted. Thus, we have the following:

SINRDk =
PUk [n]h

2
Uk Dk

[n]

∑J
j=1 Pjh2

jUk
[n] + σ2

ud

≥ γth2, ∀n, ∀k. (13)
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where σ2
ud is the noise power, and Pj is the interference power. Thus, the achievable rate

from the UAV to the DN is as follows:

RUDk = (1− τ)log2(1 + SINRD), ∀k. (14)

In addition, the information-causality constraints of the system can be written as

n

∑
t=1

(τ)log2(1 + SNRINk ) ≥
n

∑
t=1

(1− τ)log2(1 + SINRD), n = 1, ..., N, ∀k. (15)

2.2. Energy Consumption Model

Compared to energy consumption related to information transmission and signal
decoding, UAVs need to consume more energy to maintain level flight. According to
existing achievements in [17], the propulsion power of a rotary-wing UAV in 2D horizontal
flight could be modeled as

Puav(v) = PB

(
1 +

3v2

v2
tip

)
︸ ︷︷ ︸

blade pro f ile

+ PI

(√
1 +

v4

4v4
0
− v2

2v4
0

) 1
2

︸ ︷︷ ︸
induced

+
1
2

d0ρsA0v3︸ ︷︷ ︸
parasite

(16)

where v means the UAV’s speed, PB and PI are the blade profile and induced powers,
respectively, when the UAV is hovering. vtip represents the tip speed of the rotor blade,
and v0 is the mean rotor-induced velocity. In addition, d0 is the fuselage drag ratio, ρ is the
air density, s is rotor solidity, and A0 is the rotor disc area. Therefore, we can get the sum of
the energy consumption of the UAV in a mission period T by

EUAV(v) =
∫ T

0
PI

(√
1 +

v4

4v4
0
− v2

2v4
0

) 1
2

dt +
∫ T

0
PB

(
1 +

3v2

v2
tip

)
+

1
2

d0ρsA0v3dt (17)

From the definition of time slot δ, we define the UAV’s speed as v = ‖qk[n]− qk[n− 1]‖
/

δ.
Thus, we can rewrite EUAV as

EUAV(∆q) =
N

∑
n=2

PI

(√
δ4 +

∆q4

4v4
0
− ∆q2

2v4
0

) 1
2

+
N

∑
n=2

PB

(
δ +

3∆q2

δv2
tip

)
+

1
2

d0ρsA0
∆q3

δ2 (18)

where ∆q = ‖qk[n]− qk[n− 1]‖. In summary, we get the energy consumption expression
of the rotary-wing UAV.

2.3. Problem Formulation

In this paper, our purpose is to maximize the throughput of UAV to the DN by
optimizing the trajectory q[n], time-allocation factor τ, and power-splitting factor α. Thus,
the throughput of the DN k over N time slots can be expressed as follows:

RDk =
N

∑
n=1

(1− τ)log2(1 + SINRD). (19)

Let µ denote the the minimum throughput of DNs, i.e., µ = min
k∈K

RDk , and define

Q = {qk[n], ∀k, ∀n}, τ = {τk[n], ∀k, ∀n}, α = {αk[n], ∀k, ∀n}, Eth as the UAV’s energy
budget, and qstart and qend as the start and endpoints of the UAV. The joint trajectory
planning, time, and power allocation optimization problem can be formulated as
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P1 : max
{Q,τ,α,µ}

µ (20a)

s.t. (1), (2), (9), (11), (13), (15) (20b)

EUAV(∆q) ≤ Eth, ∀k (20c)

µ ≤ RDk , ∀k (20d)

0 ≤ τ ≤ 1 (20e)

0 ≤ α ≤ 1 (20f)

qk[1] = qstart (20g)

qk[N] = qend (20h)

Note that problem P1 is difficult to solve directly since (2), (11), (13), (15), (20c), and
(20d) are non-convex. In the next section, we propose an efficient iterative algorithm to
obtain a feasible solution to original problem.

3. Joint Optimization

Since P1 is a non-convex problem, it is difficult to solve directly. In this section, we
divide P1 into three subproblems and obtain suboptimal solutions by applying a successive
convex approximation and a slack variables method. Then, we develop an overall iterative
algorithm based on the block coordinate descent technique to get a locally optimal solution.
The specific flow chart is shown in Figure 3.

Start

Initialize parameters and set initial feasible point 

Q
i, αi and τ i.

Decompose the original problem P1 into three 
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Figure 3. The flow chart of solution to problem P1.
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3.1. Optimization of Trajectory

For any fixed power-splitting and time-allocation factors {α, τ}, the trajectory opti-
mization problem can be expressed as follows:

P2 : max
{Q,µ}

µ (21a)

s.t. (1), (2), (9), (11), (13), (15), (20c), (20d), (20g), (20h) (21b)

Note that the problem P2 is intractable due to the non-convexity of (2), (11), (13), (15),
(20c), and (20d). To tackle this issue, we first introduce slack variables {A[n], B[n], C[n]}.

Theorem 1. By introducing slack variables, problem P3 could be equivalently written as

P3 : max
{q[n],µ,A[n],··· ,D[n]}

µ (22a)

s.t. (1), (2), (9), (11), (15), (20c), (20g), (20h) (22b)

µ ≤
N

∑
n=2

(1− τk[n])log2

(
1 +

1
Ak[n]Bk[n]Ck[n]

)
(22c)

Ak[n] ≥
(

ηαPkβsuτk[n]
1− τk[n]

)−1∥∥qk[n]−wSk

∥∥2, ∀k, ∀n (22d)

Bk[n] ≥ β−1
ud

∥∥qk[n]−wDk

∥∥2, ∀k, ∀n (22e)

Ck[n] ≥
J

∑
j=1

Pjβ Ju
∥∥qk[n]−wj

∥∥−2
+ σ2

ud, ∀k, ∀n (22f)

1
Ak[n]Bk[n]Ck[n]

≥ γth2, ∀k, ∀n (22g)

Proof. The theorem can be proved by the method of contradiction. Specifically, if (22d)–(22f)
are strict equality constraints, problem P3 is equal to P2. Otherwise, by adjusting the slack
variables, the value of the objective can always be further optimized.

However, P3 is still difficult to solve because (15), (20c), and (22f) are non-convex
constraints, and the left-hand-side (LHS) of (2) and (22g), the right-hand-side (RHS) of (22c)
is convex. Consider that any convex function is globally lower-bounded by its first-order
Taylor expansion at any point [55]. Therefore, taking Taylor expansion approximately as
lower bound, we can obtain the following:

log2

(
1 +

1
A[n]B[n]C[n]

)
≥ log2

(
1 +

1
AiBiCi

)
− A[n]−Ai

Ai
(
1 + AiBiC

)
ln 2

− B[n]− Bi

Bi
(
1 + AiBiCi

)
ln 2
− C[n]−Ci

Ci
(
1 + AiBiCi

)
ln 2

(23)

where (Ai, Bi, Ci) is a given local point in the i-th iteration.
Ignoring the terms that are independent of the slack variables (A[n], B[n], C[n]), we

replace the RHS of (22c) with S[n]:

S[n] = −A[n]/Ai + B[n]/Bi + C[n]/Ci

(1 + AiBiCi) ln 2
(24)

µ ≤
N

∑
n=2

(1− τk[n])S[n] (25)
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Similar to Theorem 1, by introducing slack variables D[n], (22f) could be equivalently
written as follows:

Ck[n] ≥
J

∑
j=1

Pjβ JuDk,j(n)−1 + σ2
ud, ∀k, ∀n (26a)

0 ≤ Dk,j(n) ≤
∥∥qk[n]−wj

∥∥2, ∀k, ∀n, ∀j (26b)

However, we notice that the RHS of (26b) is convex with respect to trajectory Q, thus,
(26b) is still a non-convex constraint. Relying on the first-order Taylor expansion, we have
the lower bound as

∥∥qk[n]−wj
∥∥2 ≥

∥∥∥qi
k[n]−wj

∥∥∥2
+ 2(qi

k[n]−wj)
T × (qk[n]− qi

k[n]) = Ek,j[n], ∀k, ∀n, ∀j (27)

Thus, we reformulate (26b) as

0 ≤ Dk,j(n) ≤ Ek,j(n), ∀k, ∀n, ∀j (28)

For the non-convex constraint (22g). Since the LHS of (22g) is convex, we apply the
first-order Taylor expansion to get the lower bound at the i-th iteration point

1
A[n]B[n]C[n]

≥ 1
AiBiCi −

(A[n]−Ai)

(Ai)
2BiCi

− (B[n]− Bi)

Ai(Bi)
2Ci
− (C[n]−Ci)

AiBi(Ci)
2 ≥ γth2 (29)

For the LHS of (2), we can obtain the lower bound according to the first-order Taylor
expansion as

‖qk[n]− ql [n]‖2 ≥ −
∥∥∥qi

k[n]− qi
l [n]
∥∥∥2

+ 2(qi
k[n]− qi

l [n])
T × (qk[n]− ql [n]) (30)

Therefore, the non-convex constraint (2) can be rewritten as a convex constraint:∥∥∥qi
k[n]− qi

l [n]
∥∥∥2

+ 2(qi
k[n]− qi

l [n])
T × (qk[n]− ql [n]) ≥ D2

min, ∀k, l, k 6= l. (31)

For the information-causality constraint (15), by introducing slack variables {F, G, H, I},
we have the following:

n

∑
t=1

(τ)log2

(
1 +

ηαPkτ

(1− τ)Fk[t]Gk[t]Hk[t]

)
≤

n

∑
t=1

(1− τ)log2

(
1 +

(1− α)Pk
σ2 Ik[t]

)
, n = 1, ..., N, ∀k. (32a)

Fk[n] ≤
J

∑
j=1

Pjh2
jUk

[n] + σ2
ud, n = 1, ..., N. (32b)

Gk[n] ≤ β−1
su
∥∥qk[n]−wSk

∥∥2, n = 1, ..., N. (32c)

Hk[n] ≤ β−1
ud

∥∥qk[n]−wDk

∥∥2, n = 1, ..., N. (32d)

Ik[n] ≥ β−1
su
∥∥qk[n]−wSk

∥∥2, n = 1, ..., N. (32e)

Since the RHS of (32a) is convex with respect to I, relying on the first-order Taylor
expansion, we have the following:

log2

(
1 +

(1− α)Pk
σ2 Ik

)
≥ log2

(
1 +

(1− α)Pk

σ2 Ii
k

)
−

(1− α)Pk(Ik − Ii
k)(

σ2(Ii
k)

2
+ (1− α)Pk Ii

k

)
ln 2

= L (33)
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Thus, (32a) can be written as

n

∑
t=1

(τ)log2

(
1 +

ηαPkτ

(1− τ)Fk[t]Gk[t]Hk[t]

)
≤

n

∑
t=1

(1− τ)Lk[t], n = 1, ..., N, ∀k. (34)

For the non-convex constraint (32b), by introducing slack variables M, we have:

Fk[n] ≤
J

∑
j=1

Pj Mk,j[n] + σ2
ud, ∀k, ∀n. (35a)

1
Mk,j[n]

≥ β−1
Ju

∥∥qk[n]−wj
∥∥2, ∀k, ∀n, ∀j. (35b)

Since the LHS of (35b) is convex, we have the following:

1
Mk,j[n]

≥ 1
Mi

k,j[n]
−

Mk,j[n]−Mk,j[n]

Mi
k,j[n]

2 ≥ β−1
Ju

∥∥qk[n]−wj
∥∥2 (36)

Similar to (27), for the non-convex constraints (32c) and (32d), we have:

β−1
su

∥∥∥qi
k[n]−wSk

∥∥∥2
+ 2β−1

su (qi
k[n]−wSk )

T × (qk[n]− qi
k[n]) ≥ Gk[n], ∀k, ∀n. (37a)

β−1
ud

∥∥∥qi
k[n]−wDk

∥∥∥2
+ 2β−1

ud (q
i
k[n]−wDk )

T × (qk[n]− qi
k[n]) ≥ Hk[n], ∀k, ∀n. (37b)

Similarly, for the non-convex constraint (11), we have the following:

ηαPkβsuτδ

Ecap
k

≤
∥∥∥qi

k[n]−wSk

∥∥∥2
+ 2(qi

k[n]−wSk )
T × (qk[n]− qi

k[n]), ∀k, ∀n. (38)

Since the energy constraint expression (20c) is very complex and difficult to solve
directly, in order to facilitate the analysis, we introduce a slack variable O as follows:

Ok[n] ≥
(√

δ4 +
∆q4

k
4v4

0
−

∆q2
k

2v4
0

) 1
2

(39)

We can further obtain:

O2
k [n] +

∆q2
k

v2
0
≥ δ4

O2
k [n]

, n = 2, ..., N, ∀k. (40)

Therefore, the energy consumption of the UAV k can be equivalently expressed as follows:

Eth ≥ Ek(∆qk, Ok[n]) =
N

∑
n=2

PB(δ +
3∆q2

δv2
tip

) +
1
2

d0ρsA0
∆q3

δ2 +
N

∑
n=2

PIOk[n] ≥ EUAV(∆qk), ∀k (41)

Finally, for non-convex constraint (40), we have the following:

O2
k [n] +

∆q2
k

v2
0
≥ Oi

k[n]
2 +

∆qi
k

2

v2
0

+ 2Oi
k[n](Ok[n]−Oi

k[n]) +
2∆qi

k
v2

0
(∆qk − ∆qi

k) ≥
δ4

O2
k [n]

, ∀k. (42)
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As a result, the lower bound problem of P3 can be approximated as

P4 : max
{Q,A,...,O,µ}

µ (43a)

s.t. (1), (9), (20g), (20h), (22d), (22e), (25), (26a), (28), (29),

(31), (32e), (34), (35a), (36), (37a), (37b), (38), (41), (42) (43b)

Obviously, P4 is a convex optimization problem that could be solved efficiently by
some classical optimization techniques, such as the interior point method. In addition, it is
worth noting that the optimal objective value obtained from P4 usually serves as a lower
bound of P3.

3.2. Optimization of Power Splitting Factor

For any fixed UAV trajectory and time-allocation factor {Q, τ}, the power-splitting
factor optimization problem can be expressed as follows:

P5 : max
{α,µ}

µ (44a)

s.t. (9), (11), (13), (15), (20d), (20f) (44b)

It should be noted that problem P5 is not a standard convex optimization problem
because the LHS and the RHS of (15) are concave. Thus, consider that any concave function
is globally upper-bounded by its first-order Taylor expansion. Therefore, we can obtain
the following:

log2(1 + αP) ≤ log2

(
1 + αiP

)
+

(α− αi)P(
1 + αiP

)
ln 2

(45)

where

P =
ηPkh2

SkUk
τh2

Uk Dk

(1− τ)

(
J

∑
j=1

Pjh2
jUk

+ σ2
ud

) (46)

Thus, the lower bound problem of P5 can be approximated as

P6 : max
{α,µ}

µ (47a)

s.t. (9), (11), (13), (20d), (20f) (47b)
n

∑
t=1

(1− τ)

(
log2

(
1 + αi

k[t]P[t]
)
+

(αk[t]− αi
k[t])P[t](

1 + αi
k[t]P[t]

)
ln 2

)

≤
n

∑
t=1

(τ)log2(1 + SNRINk ), n = 1, ..., N, ∀k. (47c)

P6 is also a convex optimization problem that can be solved like P4. Additionally,
the optimal objective value obtained from P6 usually serves as a lower bound of P5.

3.3. Optimization of Time-Allocation Factor

For any given power-splitting factor and trajectory {α, Q}, we consider the subproblem
of optimizing the time-allocation factor as follows:

P7 : max
{τ,µ}

µ (48a)

s.t. (11), (13), (15), (20d), (20e) (48b)
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Further, we can transform the problem P7 into P8:

P8 : max
{τ,µ}

µ (49a)

s.t. (11), (13), (15), (20e) (49b)

µ ≤
N

∑
n=1

(1− τk[n])log2

(
1 +

τk[n]
1− τk[n]

Rk[n]
)

, ∀k (49c)

where

Rk[n] =
αk[n]ηPkh2

SkUk
[n]h2

Uk Dk
[n]

J
∑

J=1
Pjh2

jUk
[n] + σ2

ud

(50)

Since (15) and (49c) are non-convex, P8 is difficult to solve directly. To this end, we
introduce slack variables to solve this problem.

Theorem 2. By introducing slack variables {U, V, W, X}, problem P8 could be equivalently
written as follows:

P9 : max
{τ,µ,U,...,X}

µ (51a)

s.t. (11), (13), (20e) (51b)

µ ≤
N

∑
n=1

Uk[n]Vk[n], ∀k (51c)

0 ≤ Uk[n] ≤ 1− τk[n], ∀k, ∀n (51d)

0 ≤ Vk[n] ≤ log2

(
1 +

τk[n]
1− τk[n]

Rk[n]
)

, ∀k, ∀n (51e)

Wk[n] ≥ 1− τk[n], ∀k, ∀n (51f)

Xk[n] ≥ log2

(
1 +

τk[n]
1− τk[n]

Rk[n]
)

, ∀k, ∀n (51g)

n

∑
t=1

Wk[t]Xk[t] ≤
n

∑
t=1

(τ)log2(1 + SNRINk ), n = 1, ..., N, ∀k. (51h)

Proof. According to (51d) and (51e), we have the following:

N

∑
n=1

Uk[n]Vk[n] ≤
N

∑
n=1

(1− τk[n])log2

(
1 +

τk[n]
1− τk[n]

Rk[n]
)

(52)

According to (51f) and (51g), we have the following:

n

∑
t=1

(1− τk[t])log2

(
1 +

τk[t]
1− τk[t]

Rk[t]
)
≤

n

∑
t=1

Wk[t]Xk[t] (53)

Therefore, we prove the theorem by the method of contradiction. Specifically, if (52)
and (53) are strict equality constraints, combined with (51c) and (51h), we can know that
P9 is equal to P8. Otherwise, by adjusting the slack variables, the value of the objective
function can always be further optimized.

However, P9 is still a non-convex optimization problem that is difficult to solve directly.
Considering that (51c) has a product of functions (PF) structure, we can rewrite (51c) as a
function with the difference of convex (DC) structure, that is,

UV =
1
2
(U + V)2 − 1

2
(U2 + V2) (54)
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Since the first term in the RHS of (54) is convex, we can obtain a lower bound for (54)
by using first-order Taylor expansion, that is

1
2
(U + V)2 − 1

2
(U2 + V2) ≥ (Ui + Vi)(U + V)− 1

2
(Ui + Vi)2 − 1

2
(U2 + V2) = Y (55)

Thus, (51c) can be rewritten as

µ ≤
N

∑
n=2

Y (56)

For the non-convex constraint (51e), by introducing slack variables Z, we have:

0 ≤ Vk[n] ≤ log2(1 + Zk[n]Rk[n]) (57a)

0 ≤ Zk[n] ≤
τk[n]

1− τk[n]
(57b)

Furthermore, the RHS of the (57b) is convex on the domain (τ ∈ [0, 1]). Thus, we have
the following:

τk[n]
1− τk[n]

≥
(

1
1− τi

k[n]
− 1

)
+

τk[n]− τi
k[n]

(1− τi
k[n])

2 = Γ (58)

Thus, (57b) can be rewritten as

0 ≤ Z ≤ Γ (59)

Similar to the procedure of handling (51e), for the non-convex constraint (51g), by in-
troducing the slack variable Λ, we have

Xk[n] ≥ log2

(
1 +

Rk[n]
Λk[n]

)
(60a)

0 ≤ Λk[n] ≤
1− τk[n]

τk[n]
(60b)

For the (60b), we have

1− τk[n]
τk[n]

≥ 1
τi

k[n]
−
(
τk[n]− τi

k[n]
)(

τi
k[n]

)2 − 1 ≥ Λk[n] ≥ 0 (61)

According to (55), for the (51h), we have

n

∑
t=1

WX ≤
n

∑
t=1

1
2
(W + X)2 ≤

n

∑
t=1

(τ)log2(1 + SNRINk ), n = 1, ..., N, ∀k. (62)

As a result, the lower bound problem of P9 can be rewritten as

P10 : max
{τ,µ,U,...,Λ}

µ (63a)

s.t. (11), (13), (20e), (51d), (51f), (56), (57a), (59), (60a), (61), (62) (63b)

P10 is also a convex optimization problem that can be solved like P6. In addition,
the optimal objective value obtained from P10 usually serves as a lower bound of P9.

3.4. Algorithmic Architecture

According to the above analysis, we obtain the suboptimal solution of the original
problem P1 based on the block coordinate descent (BCD) method. As shown in Algorithm 1,
the algorithm alternately optimizes Q , α, and τ until convergence. Note that the initial
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point is the Taylor expansion point within the feasible region. Then, the convergence is
proved as follows:

Algorithm 1 Overall algorithm

1: Initialize i = 1. Set initial feasible point {Qi, αi, τi} and other slack variables.
2: Do
3: Solve problem P4 with given {Qi, αi, Ai, ..., Oi} to obtain the optimal solution
{Qi+1, Ai+1, ..., Oi+1},

4: Solve problem P6 with given {αi, Qi+1, τi} to obtain the optimal solution {αi+1},
5: Solve problem P10 with given {αi+1, Qi+1, ..., Λi} to obtain the optimal solution
{τi+1, ..., Λi+1}.

6: Update i = i + 1.
7: Until the objective value converges.
8: Output α∗ ← αi, Q∗ ← Qi, τ∗ ← τi.

We define µ(Qi, αi, τi), µ1(Qi, αi, τi), µ2(Qi, αi, τi), and µ3(Qi, αi, τi) as the objective
values of problem P1, P4, P6 and P10 based on Qi, αi, and τi over i-th iteration. Thus,
we have

µ(Qi, αi, τi)
(a)
≤ µ1(Qi+1, αi, τi)

(b)
≤ µ2(Qi+1, αi+1, τi)

(c)
≤ µ3(Qi+1, αi+1, τi+1)

(d)
≤ µ(Qi+1, αi+1, τi+1) (64)

where (a) holds because in Algorithm 1, problem P4 is solved to obtain the optimal solution
Qi+1 with given αi and τi at step 3; (b) holds because problem P6 is solved to obtain the
optimal solution αi+1 with given Qi+1 and τi at step 4; (c) holds because problem P10 is
solved to obtain the optimal solution τi+1 with given Qi+1 and αi+1 at step 5; (d) holds
because the optimal objective values of P4, P6 and P10 are upper bounded by original
problem P1, then the convergence can be guaranteed.

Finally, we briefly analyze the overall complexity of the algorithm. According to
Algorithm 1, the complexity of the algorithm is mainly dominated by steps 3, 4, and 5,
and the number of optimization variables increases with the multiples of K, J, and N.
Hence, the total computational complexity is O((KJN)3.5 log 1

ε ), where K is the number of
UAVs, J is the number of jammers, N is the number of time slots, and ε is the convergence
accuracy. In addition, it should be noted that the proposed scheme is an offline algorithm,
which requires path planning and resource allocation through a specific ground station
(such as QGroundControl in LINUX) before the mission is executed and does not need to
run on UAVs.

4. Simulation Results

In this section, simulation results and some detailed discussions are provided. We
first present the simulation settings and then analyze the effect of different energy budgets
and the number of jammers on the experimental results. Finally, we compare the proposed
algorithm with four baseline schemes to further illustrate the superiority of the joint
trajectory planning, time, and power allocation scheme.

4.1. Simulation Settings

In the simulation, we considered a communication system with four UAV nodes,
i.e., k = 4. In addition, it was assumed that the initial and end positions of the UAV
1–4 were (200, 50), (200, 70), (200, 90), (200, 110), and (50, 50), (50, 70), (50, 90), (50, 110),
respectively. The rest of the parameter settings are shown in Table 1.
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Table 1. Simulation Parameters Setting.

Parameter Notation Value

time slots N 50
minimum safe distance Dmin 10 m
Bandwidth B 10 MHz
SN to UAV channel gain βsu −30 dB
Jammer to UAV channel gain β Ju −60 dB
transmit power of SN Pk 30 W
transmit power of jammer Pj 5 W
energy collection efficiency η 0.8
additive white Gaussian noise σ2 −169 dBm
UAV maximum speed Vmax 10 m/s
the blade profile power PB 79.86 W
the induced power PI 88.63 W
the tip speed of the rotor blade vtip 120 m/s
the mean rotor induced velocity v0 4.03 m/s
the fuselage drag ratio d0 0.6
the air density ρ 1.225 kg/m3

the rotor solidity s 0.05

4.2. Effect of Energy Budgets

Figure 4 shows the 2D trajectories of four UAVs with different energy budgets. We
plotted the trajectories for Eth = 10,000 J, Eth = 15,000 J, and Eth = 20,000 J. It can be seen from
Figure 4 that from four initial points, UAVs 1− 4 needed to approach the SNs according
to the arc trajectory away from the jammers to ensure that more energy was collected to
maximize the throughput of the DNs, and then fly back to the endpoints we set. For a
different since the initial point was far from the source node, and in order to satisfy the
minimum distance constraint between UAVs, it needed to fly a greater distance. Since UAV
4 was closest to the jammers, in order to ensure the communication quality, UAV 4 needed to
be far away from the jammers under the constraint of the minimum safe distance and closer
to the corresponding source node so as to collect more energy to communicate with the
DN. Note that the UAVs cannot be infinitely close to the SNs, because while being closer to
the SNs could guarantee enough energy to be collected, it would make the UAVs far away
from the DNs, which would lead to the deterioration of the throughput. In addition, we
noticed that the flying distance of the UAV increased with the energy budget, because a
sufficient energy budget would ensure that the UAV was farther away from the jammers
when planning a more reasonable path to maximize the throughput of the DN.

Figure 5 demonstrates the speed of four UAVs with different energy budgets. We
observed that the UAVs’ speed could be divided into two stages. In the first stage, the UAVs
moved at high speed, and the speed decreased with time, but in the second stage, the UAVs
accelerated to the endpoints. This is because in the first stage, the jammers were closer to
the UAVs, and the UAVs needed to move away from the jammers at high speed to ensure
communication quality. As the UAVs kept getting closer to the optimal positions, the speed
needed to be reduced to collect more energy. However, due to the limited time, and energy
budgets, the UAVs could not fly at low speed for a long time; thus, the UAVs needed to
accelerate to the endpoints in the second stage. In addition, we can see that UAV 1 flew
the fastest, while UAV 3 was the slowest. This is because UAV 1 was the farthest from its
corresponding SN, and it needed to fly farther to collect more energy, while UAV 3 was
the closest to its corresponding SN, so the budget was sufficient to allow it to collect the
required energy with a lower speed. Finally, we observed that for the first 30 time slots and
the last 10 time slots of the total mission, the UAVs’ speed increased with energy budgets.
That was because larger energy budgets could keep the UAVs away from the jammers and
back to the endpoints at higher speed. These were as expected.
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Figure 5. UAV’s speed for different energy budgets.

Figure 6 and Figure 7 illustrate the variation of the power-splitting factor α and the
time-allocation factor τ. It can be seen that α increased with time, and τ first increased
and then decreased with time. This is because the UAVs moved away from the jammers
and approached optimal points over time, at which point the SNs needed to consume less
energy to ensure the SNR threshold constraint. As for τ, in the process of approaching
the optimal points, τ first increased to ensure that enough energy was collected. When
returning to the endpoints, in order to ensure the communication quality of the DNs, τ
decreased to improve the throughput of the DNs.

Figure 8 presents the achievable throughput over every time slot. It is shown that the
throughput increased first and then decreased. This was because the UAVs were initially far
away from the jammers and closer to the optimal points, thereby collecting enough energy
to increase the throughput. When returning to the endpoints, the throughput dropped as
the UAVs moved away from the optimal points and closer to the jammers. Moreover, we
noticed that the larger the UAV’s energy budget, the greater the achievable throughput,
which was in line with expectations.
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Furthermore, we increased the number of UAVs from 4 to 6, then 8 to further illustrate
the performance of the proposed scheme. We set the initial and end positions of UAV 5–8
as (200, 240), (200, 260), (200, 280), and (200, 300); and (50, 240), (50, 260), (50, 280), and (50,
300), respectively. The achievable system throughput versus time is shown in Figure 9. It
can be seen from Figure 9 that the throughput of the system increased with the number
of UAVs. Given the energy budget, when K = 8, the throughput of the system was at the
maximum; when K = 2, the throughput of the system was at the minimum. Moreover, it
can be seen that given the number of UAVs, the throughput of the system increased with
the energy budget. This was as expected.
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Figure 9. Achievable throughput over every time slot.

4.3. Effect of Jammers

Figure 10 shows the 2D trajectories of four UAVs with differing numbers of jammers.
We plotted the trajectories for J = 2, J = 3, and J = 4. The basic trajectories of the four
UAVs were consistent with those from Figure 4, and we will not repeat them here. It is
worth noting that the flight distance of the UAVs increased with the number of jammers.
Specifically, the more the number of jammers, the more obvious the interference effect, so
the UAVs needed to be farther away from the jammers to ensure the channel throughput.
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Figure 10. Optimal trajectories with different number of jammers.
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Figure 11 displays the achievable throughput with different numbers of jammers.
As can be seen from the figure, UAV 2 had the highest throughput. This is because UAV 2
was closer to the corresponding SN than UAV 1 and farther away from the jammers than
UAV 3 and UAV 4. Finally, we observed that the throughput of all four UAVs decreased
with the number of jammers. This was in line with our expectations and showed the
significance of our study.
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Figure 11. Achievable throughput with differing numbers of jammers.

Further, we increased the number of UAVs from 4 to 6, then 8 to further illustrate
the impact of jammers on system performance. The achievable system throughput versus
jammers is shown in Figure 12. As can be seen from Figure 12, the system throughput
increased with the number of UAVs. Given the same number of jammers, when K = 8,
the system throughput was at the maximum; when K = 2, the system throughput was at the
minimum. Additionally, it can be seen that given the same number of UAVs, the throughput
of the system decreased with the jammers. This was as expected.
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Figure 12. Achievable throughput with differing numbers of jammers.

4.4. Performance Comparison

In order to further illustrate the superiority of the proposed algorithm, in this subsec-
tion, we will compare our scheme with four baseline schemes:
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• Scheme 1: Our proposed joint trajectory planning, time, and power allocation scheme.
• Scheme 2: Optimizing the power-splitting factor α and UAV’s trajectory Q under the

fixed time-allocation factor τ.
• Scheme 3: Optimizing the time-allocation factor τ and UAV’s trajectory Q under the

fixed power-splitting factor α.
• Scheme 4: Optimizing the UAV’s trajectory Q under the fixed time-allocation factor τ

and power-splitting factor α.
• Scheme 5: Optimizing the power-splitting factor α and time-allocation factor τ under

circular trajectory.

We evaluated the average throughput of the two UAVs, as shown in Figure 13. For dy-
namic schemes 1–5, the throughput of the system first increased over time and then de-
creased as the UAVs moved away from the optimal positions and returned to the endpoints.
Also, we noticed that scheme 5 had the worst performance since the circular trajectory
had been set in advance. Moreover, at the best time slot, the average throughput of the
proposed scheme 1 was two times higher than schemes 2 and 3.
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Figure 13. Average throughput in different schemes.

Figure 14 shows the average throughput with different energy budgets. It can be
seen from Figure 14 that the average throughput of schemes 1–4 increased with the energy
budget. For scheme 5, since the flight trajectory had been set in advance, increasing the
energy budget did not bring about an improvement in average throughput. In addition, we
observed that the proposed scheme 1 had the best performance, and the average throughput
was increased by 40%, 50%, 150%, and 550% compared with schemes 2–5, respectively.

Figure 15 shows the average throughput of the system with differing number of jam-
mers. Consistent with our expectations, the average throughput of all schemes decreased
as the number of jammers increased. However, in comparison, the proposed scheme 1 had
the best performance. Even in the extreme case with 6 jammers, the throughput of scheme
1 was still improved by 26%, 33%, 160%, and 500% compared with schemes 2–5.
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Figure 14. Average throughput with different energy budgets.
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Figure 15. Average throughput with differing numbers of jammers.

5. Conclusions

This paper investigated joint trajectory planning, time, and power resource allocation
to maximize the throughput in UAV networks. Considering the limited energy budget
of UAVs and the existence of multiple jammers, we introduced SWIPT technology to
improve channel quality. Our goal was to maximize the throughput of the DNs. Since
the original problem is non-convex, taking into account the actual flight constraints of the
UAVs, we proposed an efficient joint optimization algorithm based on successive convex
approximations, a block coordinate descent, and the slack variables method to obtain
a suboptimal solution. Simulation results corroborated that the proposed scheme can
significantly improve the channel throughput and illustrated the effectiveness of joint
trajectory planning, time, and power allocation in mitigating interference. Finally, we
compared the proposed scheme with four benchmark schemes to highlight the superiority
of our study. In future work, we will consider the UAVs scenario with mobile nodes, more
complex channel models, and/or scheduling schemes such as multi-UAV coordination and
multi-point access.
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Notations
The following notations are used in this manuscript:

Notation Definition
wSk Location of the SN
wDk Location of the DN
wj Locations of the jammer
Z Height of the UAV
qk Locations of the UAV
T Total task time
N Number of time slots
δ Duration of each time slot
Vmax The maximum speed of the UAV
Dmin The minimum safe distance
hSkUk The channel-power gain between the SN and the UAV
hjUk

The channel-power gain between a jammer and a UAV
hUk Dk The channel-power gain between a UAV and the DN
Pk The transmit power of the SN
nsu Additive white Gaussian noise
α Power-splitting factor
τ Time-allocation factor
η Energy collection efficiency
PB The blade profile power
PI The induced power
vtip The tip speed of the rotor blade
v0 The mean rotor induced velocity
d0 The fuselage drag ratio
ρ The air density
s The rotor solidity
A0 The rotor disc area
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