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Abstract: Drones can be very helpful in precision agriculture. Currently, most drone-based solutions
for plant disease detection incorporate multispectral, hyperspectral, or thermal cameras, which are
expensive. In addition, there is a trend nowadays to apply machine learning techniques to precision
agriculture, which are computationally complex and intensive. In this work, we explore the feasibility
of detecting ochre spot disease in almond plantations based on conventional techniques of computer
vision and images from a very low-cost RGB camera that is placed on board a drone. Such an
approach will allow the detection system to be simple and inexpensive. First, we made a study
of color on the ochre spot disease. Second, we developed a specific algorithm that was capable of
processing and analyzing limited-quality images from a very low-cost camera. In addition, it can
estimate the percentage of healthy and unhealthy parts of the plant. Thanks to the GPS on board
the drone, the system can provide the location of every sick almond tree. Third, we checked the
operation of the algorithm with a variety of photographs of ochre spot disease in almonds. The
study demonstrates that the efficiency of the algorithm depends to a great extent on environmental
conditions, but, despite the limitations, the results obtained with the analyzed photographs show a
maximum discrepancy of 10% between the estimated percentage and the ground truth percentage
of the unhealthy area. This approach shows great potential for extension to other crops by making
previous studies of color and adaptations.

Keywords: almond disease; computer vision; drone; ochre spot; precision agriculture; RGB camera

1. Introduction

In the last decade, commercial and civilian use of unmanned aerial vehicles (UAVs)
has increased rapidly. In particular, the Federal Aviation Administration estimates that the
recreational UAV sector in the United States will have around 1.48 million units by 2024,
and the commercial UAV sector will have around 828,000 aircraft [1].

One of the most valuable industries for the application of drone technologies is
precision agriculture (PA), after infrastructure [2]. Agricultural production has increased
drastically in recent years. Studies [3] predict that agricultural consumption will increase
by 69% between 2010 and 2050, and this increase will be mainly stimulated by population
growth from 7 billion to 9 billion by 2050. PA is a concept of agriculture management
that uses technology to monitor and optimize agricultural production processes. These
technologies allow farmers to maximize yields while reducing the environmental impact
by controlling every variable of crop farming, such as moisture levels, pest stress, soil
conditions, and microclimates.

In this paper, the issue of the detection and quantification of plant diseases caused by
pathogens or insects that affect agricultural production is addressed; in particular, some can
manifest in crops due to their visually detectable symptoms and their abundant presence
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in Spanish fields. In addition, an inexpensive and small tool is needed to assist farmers
in their work. Traditional techniques to detect diseases and pests in many crops rely on
human scouting, which is time-consuming, expensive, and sometimes impractical or prone
to human error. Modern PA techniques are based on the use of remote sensing platforms
that can obtain images such as satellites [4-7], manned aircraft [8-11], UAVs [12-15], or
combinations of them [16-20]. In this work, the use of satellite imagery has been ruled
out due to the high costs and low availability of high-resolution imagery. In addition,
satellites may suffer from cloud cover and constraints due to fixed-time acquisitions. The
use of aircraft imagery has also been ruled out because although aircraft surveys can be
planned more flexibly, they pose a difficult and costly organizational effort. We have chosen
a drone-based solution because UAVs present some main advantages over satellites and
general airplanes. First, collecting images from UAVs is easier and much more inexpensive.
Second, UAVs can fly at a lower altitude and collect high-resolution imagery. Third, they
can fly and capture images on short notice or during a small window of opportunity, which
can be crucial in some PA applications.

Several reviews [12-15,21-24] provide more detailed information on the use of UAVs
in agriculture and the different types of sensors that can be carried on board a UAV for
agricultural applications. There are a variety of remote sensors, but this paper is focused on
the most common imaging sensors: multispectral, hyperspectral, thermal, and RGB (visible
spectrum) cameras. Other sensors such as spectrometers [25,26], stereo cameras [27,28],
light detection and range (LiDAR) [29,30], and sonar [31,32] move beyond the scope of this
article and will not be discussed.

Multispectral and hyperspectral cameras have been widely used in PA [33-39]. Multi-
spectral cameras can be built by RGB cameras in which the near-infrared filter has been
removed and replaced with a red filter or with a set of sensors with different lenses, and
each sensor is sensitive in one spectral region. The main difference between these two
types of cameras is the number of bands in the electromagnetic spectrum that they cap-
ture and the narrowness of the bands. Multispectral imagery generally refers to between
3 and 10 bands (e.g., visible bands, red-edge bands, and near-infrared bands), whereas
hyperspectral imagery could have hundreds of narrower bands (5-10 nm each).

Thermal cameras use information about the radiation emitted in the thermal infrared
range (TIR) of the electromagnetic spectrum (0.7-100 um) and convert it into tempera-
ture [40,41]. Generally, elements such as vegetation, soil, water, and people emit TIR
radiation in the long-wave region (3-14 um). In recent years, all of these types of cameras
have gained popularity due to improvements in sensor technology and a reduction in costs.
Nevertheless, RGB cameras are the least expensive of all the cameras. The comparison
of price ranges according to the technical characteristics of different types of sensors pre-
sented in [24] establishes these ranges: $900-$35,000 for digital cameras, $5000-$16,000 for
multispectral cameras, $70,000-$150,000 for hyperspectral cameras, and $10,000-$15,000
for thermal cameras. RGB cameras capture only visible light (red, green, and blue), but
they have also been used in PA [42-44].

In order to choose a type of camera for a particular PA application, it must be taken
into account that all cameras have advantages and drawbacks. RGB sensors are affordable
and easy to handle, and they can have a high spatial resolution (10-100 MP, depending
on their price) alongside a poor spectral resolution. Spectral cameras provide very useful
spectral information per pixel, but the required image processing is more complex and
involves calibration and data correction to consider aspects such as atmospheric weather
and noise. Hyperspectral cameras are the ones that provide the most spectral information,
but currently, they are also the most voluminous of all. Thermal cameras typically have a
low spatial resolution (0.33 MP), with only one band sensitively measured in the long-wave
infrared region (7-12 pm). Some thermal cameras require a cooling system, which makes
them larger and more expensive. Depending on the particular application of PA, one
or another type of camera may be more suitable [45]. In yield prediction, the optimum
option would be multispectral cameras. In insect or pathogen detection in the early stages,
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hyperspectral and thermal cameras appear to be more suitable, although in the detection of
disease severity, RGB, multispectral, and hyperspectral cameras are all suitable.

In this work, we addressed the ochre spot disease in almonds. According to the Food
and Agriculture Organization (FAO) of the United Nations, the total area dedicated to
almond cultivation in 2019 was 2,139,115 ha, with Spain being the country with the highest
cultivation area of 687,230 ha, followed by the United States with 477,530 ha. In Spain, the
region or autonomous community with the highest almond production is Andalusia. This
expansion has encouraged an improvement in production techniques and varieties, as well
as the study and research of the main diseases that affect this type of cultivation, affecting
the productivity, profitability of the plantation, and quality of the product. The ocher spot
is just one of the main diseases of the almond tree and is widespread in the Mediterranean
basin. The symptoms of this disease are characterized by spots on almond leaves that can
be recognized by visual tracking. These spots have different sizes and shades depending
on the stage of the disease. For our work, the cost has been the main reason why an RGB
sensor has been chosen to be onboarded on our drone. In addition, we have also chosen a
camera whose price is very low, under $100, which affects its resolution directly. Therefore,
in this case, with a camera containing such low cost and resolution, it is a challenge to
carry out disease detection in plants: research efforts must be made in algorithms that are
capable of processing and analyzing these limited-quality data in an effective way. In the
case of ochre spot disease in almond plantations, it is a challenge due to the structure of
the almond tree: its leafiness can be scarce, and new divergent branches are born radially
around the trunk. Hence, it is difficult for an algorithm to delimitate the contours, and
it can recognize this as real pixels of the tree and those of the environment between the
branches and leaves. Furthermore, in our case, almond plantations in Andalusia (South of
Spain), it is an even greater challenge because the almond trees are usually planted on very
dry vacant land, and it is difficult to distinguish the ocher tones of almond disease from the
soil around the tree.

In addition, although there is a trend nowadays to apply machine learning (ML)
or deep learning (DL) techniques to PA [46-50], we have chosen to apply conventional
computer vision (CV) techniques in our application. CV techniques require manual feature
extraction from images by an expert and have lower accuracy rates than DL techniques.
Otherwise, they have three advantages over DL that make them very suitable for obtaining
an easy and inexpensive approach to detecting plant diseases in farms. First, they do not
need heavy computational resources (graphic processing units and different machines,
which increase costs to the users). Second, they do not need huge, labeled datasets to
guarantee the results and overcome the current lack of a suitable database to train a neural
network. Third, they usually generate a small model of just a few megabytes to be shipped
inside a microprocessor (DL models can occupy from a few hundred megabytes to one or
two gigabytes).

To address these challenges and investigate the feasibility of this approach, the ob-
jectives of this study are: (1) to perform a study on the color of ochre spot disease; (2) to
develop a specific algorithm that is capable of processing and analyzing limited quality
images from a very low-cost camera, detecting the disease and quantifying the percentage
of healthy and unhealthy areas; (3) to test the operation of the algorithm with a variety of
photographs of ochre spot disease in almonds.

2. Materials and Method
2.1. System Overview and Materials

Figure 1 shows the proposed scheme for our UAV-based detection system.
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Figure 1. System architecture for the detection of plant diseases.

In order to perform the flight and assist the farmer, a technician is required. He is the
remote pilot. In addition, he collects information and images which were saved previously
on a memory card (SD card) on board and saves this in a folder on his laptop. The detection
algorithm is run on-premise, and the technician adjusts some initial parameters depending
on the type of crop and the characteristics of the farm under study before using it to detect
possible diseases. After applying the detection algorithm to the photographs, he is able to
indicate to the farmer if there is an ochre spot in his almond crop, the quantification of the
damage, and the location of the affected plants.

1.  Regarding the selection of the RGB camera to take photographs of plants, the re-
quirements for it were a low price and as small and light as possible. Cameras used
in other articles about agriculture exceed $1000. For this work, we chose the Vic-
ture Action Camera AC700. Its low price (less than $55), weight (61 g), small size
(8ecm x 6 cm x 2.5 cm), and 16 MP resolution made it appropriate for our application.
Additionally, the camera had a special operating mode (electronic image stabilization)
to reduce vibration problems caused by drone flight. We undertook a variety of tests
with this camera, both in a laboratory with single leaves and in a field of almond trees,
at different distances from the object of interest. We concluded that the drone should
take photographs at a distance of around 1 m or 1.5 m from the tree to distinguish
the symptoms of the disease. As well, in general, the value of the ISO parameter
(or sensitivity to light) of the camera should be set as low as possible (ISO 100, for
example).

We initially performed laboratory tests with cameras to check these characteristics.
We also took photographs from five different fields. They are located in Andalusia (South
of Spain), mainly in Granada and Seville, and present common characteristics that were
mentioned in Section 1 (almond trees are usually planted on very dry and vacant land, and
the soil around the tree presents similar shades to the ocher tones of the almond disease).

2.2. Study of Color Carried out for Ochre Spot

As we presented, the symptoms of ochre spot disease can be recognized by the visual
tracking of spots on almond leaves. We used color-recognition techniques to detect them.
In a preliminary study, we decided to process the images directly from the RGB image file.
This method is simple and robust, but it has certain drawbacks, such as color inconstancy;
that is, it is affected by the lighting at the time of shooting, shadows, and, as seen in the
laboratory tests we made, the capabilities of the camera. Furthermore, although image
capture and display devices generate a color by mixing primary colors (red, green, blue),
the amount applied to each one is not intuitive for the human being at first glance due to the
great amalgam of tonalities, and consequently, the variation in the values RGB according to
the disease does not follow a logical pattern. For this reason, we finally decided to use the
HSL (hue, saturation, and lightness) color model instead of the RGB model to define the
color range associated with the different symptoms. The HSL model is a representation
of the color space that is more similar to the human perception of color. It is a cylindrical
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representation of the RGB tetrahedron (Figure 2), based on how humans organize colors in
terms of hue, saturation, and lightness, as well as classic pigment mixing methods. The
amount of tone H is identified from the dominant wavelength and is the angle around
the cylindrical axis, so it takes a value within the interval [0, 360]. Saturation S shows the
purity of the color: it is the proportion between pure light, associated with the dominant
wavelength, and white light, which is generally expressed as a percentage. A pure color
has a saturation of 100% and is visually recognized as an intense and vivid color. Lightness
L is the amount of light present in a certain color, so 100% corresponds to the white color,
while, on the contrary, 0% represents black. It can also be expressed in the range [0, 1], as in
this paper.

@ ®)
Figure 2. Color models: (a) RGB cube; (b) HSL cylinder.

The HSL model allows one to effectively narrow the range of tones in which, regardless
of the lightness and saturation of the image, we can consider that the point of interest is
traditionally identified with colors associated by humans with a disease. For our study,
we used one of the many online tools available. As shown in Figure 3, the value of H
increases as one advance in the color band located on the right, which represents linearly
the angular variation in H in Figure 2b. The upper end of the color band is associated with
0° and the lower one with 360°. In this way, we can narrow the range of shades that are
identified with traditional colors. For example, in Figure 3, the value H = 23 is commonly
related to the color ‘orange-brown’. Although RGB values vary as the color matrix on the
left is traversed, corresponding to an S-L plane of the cylindrical HSL model (changing
saturation and lightness), the value of H remains constant and can never be confused with
other clearly differentiated tones, such as “green”.

[ ] #9D4209 157,66, 9 23,94%, 32%

904209
157

9
22
94
2
L}

Figure 3. Color study with a converter tool.

Then, our purpose was to study and narrow down the approximate range of tones in
the region of interest: the color associated with the diseased part of the leaf and the green
color associated with its healthy part. To conduct this, the aforementioned converter was
used, choosing random pixels from the images of leaves associated with almonds and the
ochre spot. The ochre spot, generated by the fungus Polystigma Ochraceum, is one of the
diseases of almond cultivation, especially affecting Mediterranean countries. Represen-
tative symptoms are yellow-red spots on the leaves [51]. As shown in Figure 4, a visual
assessment of the amount of affected leaf area can be made, from level 0, corresponding
to an “absence of symptoms’, up to 4, with a ‘high presence of ochre spots caused by the
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pathogen’ [51]. The ochre spot can also appear as reddish spots caused by the Polystigma
Amygdalinum fungus, which results in damage similar to that mentioned previously [52].

(L1

Figure 4. Scale with different levels of surface affected by ocher stain [51].

We conducted a preliminary study in the laboratory on individual leaves with ochre
spots collected from almond trees in the field. We took a variety of photos for each leaf
with the Victure Action Camera AC700 in 16 MP resolution mode at different distances and
different ISO parameters. As we stated before, in order to distinguish the ocher spots in a
photo the drone should take the photographs at a distance of around 1 m or 1.5 m from
the tree with a low value for the ISO parameter. Afterward, we used the selected photos to
perform the color study, manually analyzing the photos, and collecting multiple samples in
healthy and unhealthy areas. Table 1 collects the RGB data and H values after conversion.
Then, we concluded that the value of H associated with the green color of the healthy leaf
could be approximately between 69 and 105. As far as the ochre spot is concerned, it would
be located with an H in the range from 12 to 64, which is difficult to limit at the upper end
as it is a derivation of the yellow tone, which is very close to the green one of the leaves
themselves.

Table 1. Data from the tonality study for almonds ochre spot.

Healthy Part: Green Unhealthy Part: Ochre Spot

R G B H R G B H
142 170 68 76 144 146 84 62
150 172 104 79 196 166 124 35
114 144 62 82 212 188 136 41
90 114 66 90 108 84 56 32
96 126 60 87 178 136 102 27
124 140 66 73 92 62 52 15
184 196 104 68 90 66 51 23
138 146 100 70 164 126 92 28
180 206 114 77 112 102 58 50
156 192 96 82 74 74 58 60
192 210 120 72 80 62 52 21
90 110 62 85 70 62 56 26
150 180 94 81 110 78 78 0
134 178 86 89 98 70 64 11
85 130 57 97 92 56 52 6
42 60 36 105 146 100 88 12
170 184 80 68 92 64 62 4
190 218 129 77 76 60 54 16
182 192 84 66 66 51 51 0
67 89 43 89 110 112 51 62
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Once the algorithm of this work, presented in the following subsection, was developed,
we used it to redefine the ranges of H in an even finer way, using the photographs of groups
of leaves on trees. Finally, this H range was decided: from 6 to 62, for the ochre spot, and
from 64 to 128, for the healthy leaf (green).

2.3. Algorithm

The algorithm takes the images of the leaves and processes them, providing a quan-
titative result of the damage. MATLAB® was used to implement the algorithm. Figure 5
shows the flow diagram with the main steps of the algorithm for each image. After read-
ing an image, the contours of interest (that is, the contours of the leaves) are identified,
and uninteresting objects are removed from the image. The leaves are then rebuilt with
their original RGB color; that is, the area within the contours is recovered. The following
step is to study the color of the leaves and identify the symptoms of the disease under
study. Finally, the system provides a percentage value for the level of disease progression.
This value allows optimal decision-making based on disease progression, following the
recommendations and thresholds that are set by what is called integrated production (IP).
IP is a dynamic, tied approach to agriculture in which farmers must adjust agricultural
practices and the use of alternatives over time, taking into account new knowledge and
new methods. Additionally, the system can provide the location (GPS coordinates) where
each photograph was taken and warn if the established disease thresholds were exceeded.
The system also saves the original images with the located and highlighted symptoms so
that a person can display and check them later.

Image reading

|

Shape recognition

Object RGB
reconstruction

I}

Disease recognition

!

Damage Quantification

Figure 5. Flow chart of the main program for each image.

Those main steps will be explained in more detail in the following, applying them to a
particular image to help the reader understand them.

2.3.1. Shape Recognition

This step consists of identifying the contours of the objects of interest in a previously
read image and discarding the rest of the objects. We have built the secondary flow chart in
Figure 6 to illustrate this process.
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Start
(Shape recognition),

Intensity adjustment

RGB to greyscale
conversion

Edge detection

{

Dilatation

|

Hole filling

|

Removal of small objects

End
(Shape recognition),

Figure 6. Flow chart of the block ‘shape recognition” of the main program.

We used the image in Figure 7a, which was taken in the laboratory, as an example to
illustrate the operation of the algorithm. It is a single leaf with a plain, light background,
that is, an idealized version of what a photograph of almond leaves should look similar to
in practice, but it allows us to help the reader deeply understand the details of how the
algorithm works in an easy way. The reader can visually check himself in Figures 7-9: the
result of each of the main steps of the algorithm on that photograph. After this section, in
Section 2.3.2, we will show the results of applying the algorithm to more realistic photos.

First, the image intensity values were adjusted. After numerous tests with the pho-
tographs that we had selected in the laboratory, among those taken on individual leaves
with an ocher stain, we decided to linearly map intensity values from [0.1, 0.5] in the
original image to [0.2, 1] in the resulting image in order to increase the contrast of the
RGB image. Then, if a pixel in the input image had an intensity value less than 0.1, it was
saturated to a value of 0.2 in the output image. If a pixel in the input image had an intensity
value greater than 0.5, it could be saturated to 1 in the output image. The intensified image
is shown in Figure 7b.

The next step was to convert the RGB image to grayscale by eliminating the hue
and saturation information while retaining luminance. The grayscale image is shown in
Figure 7c. We then applied the edge detection image processing technique to identify
points in the image that experienced sharp changes in brightness. These points where
the brightness of the image varied considerably are called the edges (or boundaries) of
the image. The ‘edge’ function of MATLAB® returns a binary mask containing 1 where
edges are found and are 0 elsewhere. In particular, the Sobel edge detector was used. The
resulting binary gradient mask is shown in Figure 7d.

The following step was to dilate the binary mask and make the gaps in the lines
surrounding the object of interest disappear (‘dilate’ function). For this process, two
perpendicular linear structuring elements (‘strel” function) were used. The dilated image is
shown in Figure 7e.

Then, we filled the holes in the interior of the objects outlined (function ‘imfill"). The
filled image is shown in Figure 7f.
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Original image Intensified image

(@) (b)

Binary gradient mask

Greyscale image
oo

© ()

Filled image

Dilated image

@© ®

Final image

Blue mask over original image

(2 ()

Figure 7. (a) Original image of a leaf with ochre spot; (b) Intensified image; (c) Grayscale image;
(d) Binary gradient mask; (e) Dilated image; (f) Filled image; (g) Final open binary image; (h) Fused
image of the original image and the binary mask after shape recognition.

Image with the RGB object of interest

Figure 8. Image with the RGB object of interest.

Recognition of the unhealthy area: ocher stain Recognition of the healthy area

(@) (b)

Figure 9. Image with parts highlighted with a blue mask: (a) Unhealthy and (b) Healthy.
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After that, we removed all the small objects from the binary image, i.e., those that
presented fewer than 10,000 pixels. The resulting final open binary image is shown in
Figure 7g.

Before progressing to the next step of the main algorithm, as an illustration of the
result achieved so far, Figure 7h shows the result of combining the final mask of Figure 7g
with the original image (function ‘labeloverlay’): the blue pixels are part of the recognized
object, and it can be seen that leaf shape recognition was achieved.

2.3.2. Object RGB Reconstruction

This step consists of isolating the object of interest from the original image, with its
RGB colors which, based on the binary mask of the object obtained in the previous step,
discard the uninteresting objects of the image. For this, we created a three-dimensional
matrix of zeros in which the element (i, j) in the three planes was filled with the original
RGB value of the pixel (i, j). This process applies only in the case where the corresponding
element (j, j) in the binary mask is true (value 1). To illustrate this step, we took the image
shown in Figure 7b as an original image (that is, the intensified image), and the result of
the RGB reconstruction is shown in Figure 8.

2.3.3. Disease Recognition

In this step, the recognition of colors associated with the disease under study was
carried out. For it, as mentioned in Section 2.3.2, the H ranges taken into account in our
algorithm ranged from 6 to 62 for the ochre spot and 64 to 128 for the healthy leaf. From
the original intensified image, a matrix with the three RGB planes was generated. With that
matrix and the corresponding one to the image with the RGB object of interest, we generate
another matrix, called H_matrix, with two dimensions, where the element (i, j) was equal
to zero if the element (i, j) in the three planes RGB in the image with the RGB object of
interest was also zero. For the rest of the elements, we converted RGB to HSL [53], and
then the element (i, j) of the H_matrix could have the hue value (H) of element (i, j) in the
intensified image. Therefore, going through this matrix pixel by pixel and comparing each
tone value with the H range that was established for the diseased leaf and the healthy leaf,
we can count the pixels corresponding to the healthy part and the diseased part, as well
as the pixels not recognized as being of one type or another. In addition, we generated an
auxiliary matrix called Ochre_matrix with ones on the positions (i, j) of the pixels (i, j) of the
H_matrix corresponding to the unhealthy part and zeros elsewhere. Analogously, a second
auxiliary matrix was generated, called the Healthy_matrix; the ones on the positions (i, j)
of the pixels (i, j) of the H_matrix was found to correspond to the healthy part and zeros
elsewhere. This allowed us to locate and save parts of interest in the original image in order
to perform the necessary checks later. In addition, these matrixes allowed us to show those
parts as a blue mask over the original image.

To illustrate this step, we took the image shown in Figure 7b as an original image (that
is, the intensified image) and the image in Figure 8 as an image with the RGB object of
interest. The graphic result of the recognition of the diseased part (with an ochre spot) is
shown in Figure 9a. The graphic result of the recognition of the healthy part is shown in
Figure 9b.

2.3.4. Damage Quantification

This is the last step of the algorithm. After saving N, (the number of pixels classified
as the unhealthy part), Nj, (the number of pixels classified as the healthy part), N, (the
number of pixels classified as ‘recognized’, that is, the sum of N;, and Nj), N;r (the number
of pixels classified as 'not recognized’), and N (the total number of pixels); we calculated
the percentage of the unhealthy area (P,), the percentage of the healthy area (P}), and the
percentage of the not recognized area (Py;) as:

P, = (Nu/(N;)) =100 1)



Drones 2023, 7, 186 11 of 20
P, = (N,/(N;)) %100 @)
Py = (Nur/N) %100 ®)

These percentages were calculated for each image, but since they are based on a pixel
count, can be easily extended to the whole collection of images collected from a crop, giving
the representative percentages according to the case: either over the entire field if it has
been photographed in its entirety or over the part of the field sampled.

With the definition of these metrics, we could say that the method worked well when
the percentage of unrecognized pixels was not considerable (less than 30%), and, in that
case, we could also affirm that the plant was healthy if the percentage of sick pixels was low
or very low (depending on the thresholds set by integrated production in Andalusia). In
order to compare the results of the algorithm with ground truth data in different contexts,
we defined Pyg as the ground truth percentage of the unhealthy area of the plant in the
photograph. Therefore, Py is the ground truth percentage of the healthy area of the plant
in the photograph, which is equal to 100% minus Pyg. It is expected that P, > Pyg because
Nyur < N (Nyr should be zero ideally and, in this case, N; = N and P, = Pyg). For the image
of Figure 8, we obtained P, = 26.0274% and P}, = 73.9726%. Furthermore, P;,, = 3.7674%,
which corresponds at most to the external pixels of the main outline of the leaf. For this
image, Pyg was around 25%, while Ppg was around 75%. Therefore, we can claim that
for this example photograph, the algorithm was shown to be successful in detecting the
ochre stain. In Section 2.4, the application of the algorithm to a variety of photographs is
presented. Finally, we compared the estimated percentage of damage with the damage
threshold established by the specific regulation of the integrated production of almonds
in Andalusia. It established that if there was more than 5% of leaves in the almond tree
affected by the ochre spot, treatment would need to be applied urgently to avoid further
deterioration of the plantation.

2.4. Operation of the Algorithm with Simple Photographs

Before using the final real images, we worked with two simpler types of photos to
study the weaknesses of the algorithm and overcome them: individual leaves and a set of
leaves. After that, we faced actual photographs of the trees in different contexts in order to
evaluate the conditions where our algorithm and method would be valid or not.

First, we checked individual leaves in an ideal scenario (a leaf on a white background).
In Figure 10a (taken in the laboratory), an example is shown. It is an image with a leaf to
process, which is of poor quality and even has shadows. After applying the algorithm,
Figure 10b shows the image with unhealthy parts highlighted (blue mask), and Figure 10c
shows the image with healthy parts highlighted (blue mask). It can be seen that shadows
are identified as non-recognized areas. Thus, they do not affect the percentages of P, and
Py,. In this case, we had P, = 30.0667%, P;, = 69.9333%, and Py, = 25.3894%. In Figure 10a,
Pug = 22% and Ppg = 78% approximately. Therefore, although the algorithm did not
recognize 25% of the pixels in the photo, the percentage of the unhealthy part estimated by
the algorithm can be considered a good and useful result for a farmer. We have checked
other similar photographs with single leaves, and these good results are maintained.
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Recognition of the unhealthy area: ocher stain Recognition of the healthy area

Original image

>

i .
(a) (b) ()

Figure 10. (a) Image to process; (b) Image with unhealthy areas highlighted; (c) Image with healthy
areas highlighted.

The second type of test has been with photos with a small set of leaves but still on
a white background. In that case, shape recognition is more complex than before. In
Figure 11a we show an example of an image to process now, which is of poor quality and
even with shadows as well. It was taken in the laboratory. For a better comparison, it is a
combination of a solitary leaf and a set of leaves. After applying the algorithm, Figure 11b
shows the image with the unhealthy parts highlighted (blue mask) and Figure 11c shows
the image with healthy parts highlighted (blue mask). In this case, we have P, = 65.5576%,
Py, = 34.4224%, and Py, = 28.6558%. In this case, Pyg = 57% and Phg = 43% approximately.
We can see in Figure 11b that it is more difficult for the algorithm to recognize the shape of
the individual leaves of the set, with the number N, being larger in this case (the pixels
within the set of leaves that are not actually part of the leaves). However, the results of Py
agree quite well with reality. In addition, for this kind of photographs the image sensitivity
threshold is calculated and multiplied by a fudge factor value 0.8 so that it ignores all edges
whose values intensity are smaller than that product. This helps to form a better prediction.
For example, in Figure 12a, we show an example of a very unfavorable image, with a
human hand, taken in the laboratory. Figure 12b shows the image with unhealthy parts
highlighted (blue mask) and Figure 12¢ shows the image with healthy parts highlighted
(blue mask). For this example, we have P, = 64.9266%, P}, = 35.0734%, and P;,; = 25.6595%.
As expected, the human hand is not recognized. In this case, Pyg = 54% approximately and,
again, the results of P, and Pyg are in quite good agreement.
Recognition of the healthy area

Original image Recognition of the unhealthy area: ocher stain

@ (b) ©

Figure 11. (a) Image to process; (b) Image with unhealthy areas highlighted; (c) Image with healthy
areas highlighted.
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Recognition of the unhealthy area: ocher stain

Original image

Recognition of the healthy area
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Figure 12. (a) Image to process; (b) Image with unhealthy areas highlighted; (c) Image with healthy
areas highlighted.
3. Results

In this section, we present some of the results obtained, both numerical and graphic,
from the tests carried out with realistic photographs corresponding to entire real almond
trees. These are photographs taken in the field. To this day, although we have not yet
been able to fly our particular drone over our almond crop, we have taken a variety of
photographs of almond trees that have been affected by the ochre stain, emulating that
the camera was on board a flying drone. We have taken photos at different heights and
different angles. In addition, to test the robustness of our algorithm against the camera
model, we used another camera to complete our set of real photographs for our almond
field in the study so that we could test the correct or incorrect operation of our algorithm.
The other camera was an old Nikon Coolpix L830 with a 16 MP resolution. In addition,
some researchers have provided us with real aerial photographs of an almond grove taken
from a drone, and although they are still taken from a much higher height than we need,
they serve to establish the scope of the proposed method.

Then, within the type of photographs of whole trees, the next kind of photographs
that we studied was similar to the one shown in the example of Figure 13a. It was taken
just above the tree top, pointing the camera downward, and not only does the top of the
tree appear in it, but also a large part of the ground. Here, we found what could be the first
important problem in applying our drone algorithm successfully. If the terrain under the
study is very dry, as is usual in Spain (especially Andalusia, where it is common to dedicate
the poorest land to the almond tree), the part of the ground appearing in the photos is
brown, just the color of the ochre stain. It makes it very difficult to detect healthy and
unhealthy parts of the tree: sometimes, part of the soil is taken as the ochre part of the tree,
and, other times, the contours of the plant are not well delimited. In addition, in this kind
of photograph, it is necessary to carry out a last step after shape recognition, which is to
invert the binary matrix of the mask obtained for the RGB reconstruction of the object. In
this way, the algorithm recognizes the object of the study and not its environment. By way
of illustration, we show the result of applying the algorithm to photos as described above.
In Figure 13a, the plant is surrounded by dry brown soil with some green weeds. After
applying the algorithm, Figure 13b shows the image with unhealthy parts highlighted
(blue mask), and Figure 13c shows the image with healthy parts highlighted (blue mask).
In this case, we have P,, = 9.7368%, Pj, = 90.2632%, and P, = 58.0339%. It can be seen that
there are many pixels of the reconstructed RGB object that are actually ground pixels but
end up being treated as unrecognized and, thus, do not affect the good estimate of the
percentages P, and Pj,. Additionally, there are some soil pixels (in the upper left corner
of the photo and in some gaps among the leaves of the plant) that are considered the
unhealthy part; therefore, they contribute a bit to the overestimation of P,. In this case,
Pyg = 5.5% approximately. So, the result of P, would be useful for a farmer. Another
illustrative example is based on the image in Figure 14a. The background of this photo is
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cream-colored. In this case, we have P,, = 35.2909%, P;, = 64.7091%, and P, = 69.1765%.
The high number of pixels not recognized may seem too high, but it mostly corresponds to
those gaps among leaves which are part of the soil, and it hardly affects the estimations of
unhealthy and healthy areas. In this case, Pug = 29% and Py,g = 71% approximately. Thus,
the result of P, agrees quite well with reality.

Recognition of the unhealthy area: ocher stain Recognition of the healthy area

(®) (©)

Figure 13. (a) Image to process; (b) Image with unhealthy areas highlighted; (c) Image with healthy
areas highlighted.

Recognition of the unhealthy area: ocher stain Recognition of the healthy area
= o R i

T b D 2 e, =

Figure 14. (a) Image to process; (b) Image with unhealthy areas highlighted; (c) Image with healthy
areas highlighted.

Thus, our algorithm needs to ensure that the land where it is going to be applied is
not too brown and dry and that it is as free of weeds as possible. In this way, the images
can have a light background, not brown. An example of a valid terrain for our method
would be the one shown in Figure 15. Figure 15a shows two rows of almonds, whereas
Figure 15b shows one of those almonds. It can be verified that the soil is dry but of a
very light color. Unfortunately, although we obtained quite a few photos from that field,
taken from a drone and courtesy of other researchers, it was not flying at the right height
so that the images could be processed by our algorithm. We have estimated that useful
photographs must be taken at a distance of around one meter from the tree. We have tested
the operation of the algorithm with photos of entire trees and a light background. We have
taken them from the side of every tree, pointing a little towards the sky in clear weather
so that the background of the photograph corresponds to the blue sky. An illustrative
example of this kind of image is shown in Figure 16a. Anyway, with this kind of photo,
we have found other difficulties and have proposed improvements to the algorithm and
certain strategies to obtain better results. First, it is not necessary to intensify this kind of
image at the beginning of the algorithm. Second, with such a mixture of green leaves and
brown parts by image, it is necessary to limit the H range from [6, 62] to [6, 40] so that we
can better distinguish the unhealthy part from the healthy part. In addition, as previously
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stated, the structure of the almond tree may be inconvenient for the precise quantification
of the disease. This is because they are trees of sympodial branching; that is, new divergent
branches are born radially around the trunk. This aspect and the scarce leafiness that
this plant could present hinder the delimitation of contours and allows for the incorrect
recognition of the environment between branches and leaves (sky or ground). Anyway, in
this type of photograph, since the algorithm does not take into account unrecognized pixels,
those pixels within the reconstructed object are actually part of the image background; the
estimated Ny, in this case, would be lower than it should be. However, those pixels within
the reconstructed object, due to their color, would not be taken into account to estimate Py,
or Py, so the estimation of P, and P, would still be in good agreement with reality.

(@ &}

Figure 15. Example of a valid terrain for our algorithm: (a) Almond crop and (b) One of the almond

trees on it.

Figure 16. (a) Image to process; (b) Image with unhealthy areas highlighted; (c) Image with healthy

areas highlighted.

Then, after applying the algorithm to the image of Figure 16a, Figure 16b shows the
image with unhealthy areas highlighted (blue mask), and Figure 16¢ shows the image with
healthy areas highlighted (blue mask). In this case, we have P, = 15.2212%, P, = 84.7788%,
and Py, = 41.2325%, with Pyg = 16% and Phg = 84% approximately. So, the result of P,
agrees quite well with reality.

Another illustrative example is based on the image in Figure 17a. After applying
the algorithm, Figure 17b shows the image with unhealthy parts, and Figure 17c shows
the image with healthy parts. In this case, we have P, = 15.0005%, P}, = 84.9995%, and
Py = 53.4982%, with Pyg = 10% approximately. So, again, the result of P, agrees quite well
with reality.

Furthermore, we also checked that the variation in the capture angle of the photograph
did not have a significant effect on the recognition of the object of study: our algorithm
would analyze the image correctly as long as the background of the photograph was light,
not brown.
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Figure 17. (a) Image to process; (b) Image with unhealthy areas highlighted; (c) Image with healthy
areas highlighted.

4. Discussion

In this particular case of the utilization of drones for the detection of diseases in crops
using RGB cameras and traditional computer vision techniques simultaneously, to date, we
have found few articles in scientific databases. Some of them are based on aerial images
taken at a height of hundreds of meters, and they are very different from those that we
process, which are taken at only some meters from the ground. Therefore, those images
include wide areas with many trees or plants, and solutions are proposed for the detection
of dead, infected, or withered pines [54-56] or the detection of plant failures in rows of
planted crops [57,58]. Other articles [43,59-61] are based on aerial images taken at a low
height from the ground and are more comparable to ours. In [43], the authors proposed a
methodology to discriminate healthy plants from those infected with the stripe and rust
of the wheat leaf in winter wheat. The approach presented in [59] is geared towards the
detection of potato pathogens. In [60], the authors used a UAV flying at 46 m and equipped
with a multispectral camera to calculate the vegetation index of turfgrass fields, but they
also used another UAV flying at 30 m and equipped with an RGB camera to estimate
the percentage of ground green cover. However, RGB cameras in [43,59,60] can still be
considered expensive (more than $500). The authors in [61] show that a low-cost UAV
flying at 30 m with an RGB camera can be used to monitor the vegetation cover of the coffee
crop. The authors in [62] present a method that is specifically oriented to the diagnosis
of rust disease in spruce forests and applicable to individual branches and entire juvenile
and adult trees, based on RGB photographs taken by a semi-professional UAV flying at a
distance from the ground between 7 m and 15 m. Despite these advances, to our knowledge,
the application to almond plantations has not yet become widespread, even less the use of
very low-cost tools.

5. Conclusions

This work has demonstrated that, under certain environmental conditions, it is feasible
that the detection of ochre spot disease in almond plantations can be based on conventional
techniques of computer vision and images from a very low-cost RGB camera that would be
situated on board a drone. This detection system would be easy and inexpensive compared
to other proposals based on machine learning techniques and/or more expensive cameras
(such as multispectral, hyperspectral, or thermal cameras). A study of the color of ochre
spot disease in almonds has been presented. It is based on an HSL (hue, saturation, and
lightness) color model instead of an RGB model in order to avoid color inconstancy. An
algorithm that is able to process limited-quality images from a very low-cost camera has
been developed. It was able to estimate the percentage of the healthy and unhealthy parts of
the plant. A variety of tests with different types of photographs have been made to evaluate
the conditions where the algorithm would be valid or not. We have concluded that it could
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be effective if aerial photographs, taken by the drone, have a light, not brown background
and are taken around one meter away from the tree. In the event that the terrain is very
unfavorable (brown and dry soil), the algorithm may work well if the photographs are
taken from the side of the tree and pointing a little toward the sky: the method would be
feasible if the distance between the outer branches of the adjacent trees were large enough
to allow the drone to fly (two meters); if the rows of the trees are too close, then it would be
more practical for a ground vehicle to take those photos. For images such as those required,
the results show a maximum discrepancy of 10% between the estimated percentage and
the ground truth percentage of the unhealthy area.

This approach shows the potential to be extended to other crop diseases by carrying
out color studies, algorithm parameter adjustments, and tests in different scenarios. It
could even provide better results with other diseases than those presented here with the
ocher spot disease in almond trees. In the future, we intend to extend the number and
coverage of the experiments to demonstrate the performance of the system under other
circumstances and even under bad weather conditions. Carrying out several flight tests, we
could verify aspects such as the proposed flight mode of operation, the correct functioning
of the different subsystems on board, the flying range and its adaptation to the farm to be
mapped, or the influence of vibrations on the acquisition of the images. We would also
like to study the possibility of doing a photogrammetric mapping to increase the accuracy
of disease localization using some commercial software and study the cost of the entire
system after incorporating that tool. We also aspire to adapt our prototype UAV to carry a
‘sense and avoid’ system and fly it over with more safety.
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