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Abstract: Applications of unmanned aerial vehicle (UAV) spectral systems in precision agriculture
require raw image data to be converted to reflectance to produce time-consistent, atmosphere-
independent images. Complex light environments, such as those caused by varying weather condi-
tions, affect the accuracy of reflectance conversion. An experiment was conducted here to compare
the accuracy of several target radiance correction methods, namely pre-calibration reference panel
(pre-CRP), downwelling light sensor (DLS), and a novel method, real-time reflectance calibration
reference panel (real-time CRP), in monitoring crop reflectance under variable weather conditions.
Real-time CRP used simultaneous acquisition of target and CRP images and immediate correction
of each image. These methods were validated with manually collected maize indictors. The results
showed that real-time CRP had more robust stability and accuracy than DLS and pre-CRP under
various conditions. Validation with maize data showed that the correlation between aboveground
biomass and vegetation indices had the least variation under different light conditions (correlation all
around 0.74), whereas leaf area index (correlation from 0.89 in sunny conditions to 0.82 in cloudy
days) and canopy chlorophyll content (correlation from 0.74 in sunny conditions to 0.67 in cloudy
days) had higher variation. The values of vegetation indices TVI and EVI varied little, and the model
slopes of NDVI, OSAVI, MSR, RVI, NDRE, and CI with manually measured maize indicators were
essentially constant under different weather conditions. These results serve as a reference for the
application of UAV remote sensing technology in precision agriculture and accurate acquisition of
crop phenotype data.

Keywords: unmanned aerial vehicle; real time; reflectance; conversion; correction; downwelling light
sensor; calibration reference panel

1. Introduction

Unmanned aerial vehicle (UAV) systems carrying multispectral or hyperspectral
equipment operating in the visible and short-wave infrared spectral regions are widely
used in agriculture because they are good at monitoring crop growth, nutrition, and stress
conditions [1]. With the advantages of flexibility, low cost, simple structure, and images
with higher temporal, spatial and spectral resolution, the UAV is gradually becoming an
effective supplementary means to satellite remote sensing and ground remote sensing [2].
It is possible to obtain spectral information of features and correct them into usable remote
sensing data in challenging atmospheric conditions due to the low flight altitude of UAVs
unobstructed by cloud cover.

Conversion of digital number (DN) captured by the sensor to reflectance is the basis
for normalizing ambient light intensity variations for the quantitative analysis of field
spectra [3]. Prior to reflectance conversion, sensor calibration of the raw image is required
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to remove the effects of dark pixels, light chains, exposure, and gain [4]. In this step, the
digital image is converted to a common unit system (radiance). The conversion from counts
to radiance requires a radiometric calibration of the gain of the sensor. The radiometric
gain is calibrated by the instrument manufacturer with a suitable accuracy. In the process
of converting irradiance to reflectance, solar incident irradiance needs to be measured [5].
However, due to the extended battery life of UAVs and changing atmospheric conditions
during the missions, the variation of solar irradiance on the time series has to be considered
in the reflectance conversion of spectral images. There are three types of methods to
perform radiometric correction to account for this variation: (1) the calibration reference
panel (CRP); (2) downwelling light sensor (DLS); and (3) radiative transfer model.

The pre-calibration reference panel (pre-CRP) is a standard radiometric correction
method under sunny conditions that is used for studying and resolving variations in
reflection spectra caused by environmental changes in the collected multispectral or hy-
perspectral data [6,7]. The calibration reference panel (CRP) images captured before and
after flight missions are used to establish a relationship between reflectance and the cor-
responding values collected by a UAV-mounted sensor. All images are then calibrated
using this established relationship [8,9]. However, the pre-CRP correction method assumes
that CRP and monitoring data are collected under constant incident irradiance. The best
time to acquire spectral images should be midday on a clear day when the ambient light
intensity is most stable [10]. However, in agricultural applications, the key growth stages
of crops requiring spectral monitoring occur mainly in poor light conditions such as cloudy
days. Under cloudy conditions, there is a severe reduction in the accuracy of the pre-CRP
correction method [11]. To eliminate the temporal variation of solar irradiance in data
acquisition, one scientist placed 197 CRPs in an experimental area and obtained acceptable
radiometric correction results [12]. Although such methods can enable accurate corrections,
they are not commonly used in practice because they are time consuming and costly.

Installing a downlinked light sensor (DLS) attached to the sensor on the UAV is also
one way to address the ambient light variations in spectral data acquisition. The down-
welling light sensor (DLS) captures the angle of flight and hemispherical irradiance in flight
and stores it in the raw image [8]. However, the accuracy of DLS correction is controversial.
Some scientists compared plant reflectance values obtained by CRP with those collected
via a portable spectrometer in the field, and concluded that DLS has sufficient accuracy in
fixed plant monitoring and vegetation mapping [6,13]. Yuri Taddia et al. found that DLS
has significant errors in algae monitoring compared to the standard radiation correction
method [14]. Although DLS can compensate for illumination fluctuations, it should be
noted that radiation resolution can be reduced when sensors are underexposed, and may
be affected by flight altitude and angle [13,15]. It remains to be further verified whether the
DLS-corrected images are accurate for crop monitoring.

Some scientists have tried to eliminate the effect of ambient light variations on the
whole set of spectral images by modeling the radiative transfer between the same features of
the images. Yang Guijun et al. corrected the whole set of images by the radiation correction
model of the same name point between adjacent images [16]. Jiang et al. determined the
reflectance relationship between concurrent satellite data and UAV multispectral images,
and then established a relative radiometric model to correct UAV images [17]. Even though
consistent correction of image radiation under changes in ambient light can be achieved
using a radiation correction model built from the same feature, the cumulative error and
the complexity of the calculation limit the practical application of this method.

To address ambient light variations in spectral data acquisition, the present study was
designed to establish a real-time calibration reference panel (real-time CRP) correction method
to increase consistency in multispectral image radiometry. The method used here was based on
CRP images acquired in real time, and synchronous multispectral monitoring was completed
to perform radiometric correction. Radiometric correction results from pre-CRP, DLS, and
real-time CRP were evaluated and compared under various ambient light levels resulting
from natural weather conditions. The results were used to assess whether real-time CRP was
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a truly weather-condition-independent radiometric correction method. This study is expected
to improve the accuracy of crop growth monitoring via UAVs.

2. Materials and Methods
2.1. Experimental Design Overview

The real-time calibration reference panel (real-time CRP) method described here
achieves radiometric consistency in correcting remotely sensed images under variable
weather conditions. Images of CRP and features are captured simultaneously by two
multispectral cameras. To verify the robustness of this method compared to the traditional
downwelling light sensors (DLS) and pre-calibration reference panel (pre-CRP) methods,
both on-ground and UAV experiments were carried out.

When features are spatially fixed, it is easier to analyze trends in reflectance and
light intensity. Fixed ground experiments were therefore implemented to analyze and
compare the effects of image correction with real-time CRP, DLS, and pre-CRP. To analyze
the influence of different correction methods on crop monitoring, a radiation correction
experiment was carried out for fixed objects on the ground. A soybean field and a cement
floor were selected for data collection. The cement floor was used because it had a relatively
uniform surface and was insensitive to environmental conditions. The effectiveness of
crop monitoring under different weather conditions was verified using UAV multispectral
imagery captured in a nitrogen-regulated maize field combined with manually collected
agronomic data of maize.

Two multispectral cameras were used in all experiments, one on a tripod for acquiring
time series images of the CRP and the other for capturing features and DLS data acquisition.
The time-series CRP images and DLS data were used for real-time CRP and DLS radiometric
correction of the feature images. For pre-CRP, the CRP images acquired at the beginning of
each mission were selected for radiometric correction of the full set of feature spectral images.

2.2. Study Sites and Agronomy Data Acquisition

Experiments were conducted in 2021 in maize fields at the experimental station of
the Comprehensive Experimental Base of the Institute of Crop Sciences at the Chinese
Academy of Agricultural Sciences, Xinxiang, Henan Province, China (35◦10′ N, 113◦47′ E).

The maize experimental area contained 34 plots with a total area of 0.66 hm2. The
trial used a randomized block design to test two planting densities (75,000 plant/hm2 and
52,500 plant/hm2). Further information (e.g., amount of nitrogen fertilizer application,
sampling procedures, and field management) are described in a previous publication [18].
Three sample points were selected in each plot and three plants were collected from each
sample point. The data were averaged by plot. To analyze the correlation between multi-
spectral images and agronomic data under optimal weather conditions, measurements
including leaf area index (LAI), aboveground biomass (AGB), and canopy chlorophyll
content (CCC) were taken on 25 July, a sunny day during the jointing (V7) stage. LAI and
CCC were calculated as previously described [18]. The aboveground portion of each plant
was dried and weighed to calculate the AGB per unit area.

2.3. Multispectral Image Acquisition

The UAV system comprised a RedEdge-MX camera mounted on a DJI Matrice 210 UAV.
The RedEdge-MX (MicaSense) is a multispectral (five waveband) camera capable of capturing
several filtered images in parallel [19], and band parameters are shown in Table 1. DLS allows
real-time reflectance conversion of images; irradiance is measured from above, and for each
band, incident irradiance at each timepoint is captured and the corresponding data are stored
within the captured image (Figure 1c). The CRP was a homogeneous scattering panel with an
~50% reflecting ratio in the five bands (Figure 1d). Each panel contained a barcode, allowing
CRP reflectance data to be automatically applied when the images were processed.
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Table 1. Band parameters of RedEdge-MX.

Band Band Center/nm Band Width/nm

Blue 475 20
Green 560 20
Red 668 10
NIR 840 40

Redge 717 10
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Figure 1. Acquisition of ground experiment images. (a,b) The camera configuration used to acquire
reference images of the soybean field (a) and the calibration correction reference panel (CRP) (b).
(c,d) Example images of a downwelling light sensor (DLS) mounted on an unmanned aerial vehicle
(UAV) (c) and a CRP with barcode (d).

2.3.1. Fixed Ground Object Image Acquisition

From September to October 2021, data were acquired for the soybean field and cement
floor every hour between 10:00 and 14:00 (15:00–16:00 on 8 September) under varying
weather conditions (Figure 1a,b). The absolute spectral reflectance of the concrete floor
was obtained by the analytical spectral devices under clear sky conditions to compare the
standardization of CRP and DLS. Details of the data acquisition are shown in Table 2.

Table 2. Summary of multispectral image acquisition parameters.

Experiment
Type Subject Date (2021) Weather Start

Time
End

Time
Sample

#
Interval

(s)

On-ground Cement 8 September Sunny 15:00 16:00 650

5

13 September Cloudy 11:10 13:10 1300
23 September Cloudy 10:10 12:10 1300

Soybean 12 September Cloudy 10:00 12:20 1300
14 September Overcast 10:10 12:10 1300

11 October Overcast 10:30 12:30 1300
UAV Maize 24 July Cloudy 12:10 12:18 500

1.525 July Sunny 12:13 12:21 500
# Number of acquired multispectral image sets.

Background effects and temperature measurements were not taken into consideration
during data collection. The data obtained were as follows:

• Image of the sky (taken with iPhone11, 12MP wide angle, ƒ/1.8 aperture).
• Images of soybean and cement floor (captured with MicaSense RedEdge over two

hours; each set of images was taken over 5 s).
• Correction panel image (captured by RedEdge-MX based on the timepoints and

intervals at which soybean and cement images were captured).
• DLS data for soybean and cement (embedded in and read from the captured images).
• Absolute reflectance of concrete floor (measured by an ASD spectrometer, manufac-

tured by Analytical Spectral Devices Inc of Boulder, CO, USA).

The camera equipment was mounted on a tripod and placed in the middle of the
experimental area (Figure 2a,b). There was a brief pause during data acquisition when the
SD card was replaced at 10:48 A.M. on 13 September.
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2.3.2. UAV Image Capturing of Nitrogen-Regulated Maize Plot

In 2021, consecutive multispectral images were acquired in nitrogen-regulated maize
test plots. The weather conditions on 24 and 25 July 2021 were cloudy and sunny, respec-
tively. Images were taken with the following flight parameters: 85% end gap along the
flight path; 80% side gap across the path; flight altitude of 30 m above the ground. The
parameters of each flight mission, including the flight area, heading, and flight altitude,
were consistent between missions. Sky images, wind speed, DLS, and correction panel
data were collected as described above for the ground experiments. Images captured in
this field were used for linear analysis of correction methods and verification of manually
measured maize data.

2.4. Data Analysis

Prior to image reflectance conversion, raw digital images needed to be converted
to absolute spectral radiance. MicaSense software contained a radiometric calibration
correction model, which was used to solve the vignette and row gradients in the raw
images, allowing conversion of the digital counts to radiance values [20].

Irradiance values were obtained with real-time CRP and pre-CRP by converting
CRP images to radiance and irradiance. The region of interest (ROI) radiance and DLS
recorded irradiance were obtained by preprocessing ground or UAV images and reading
DLS data, respectively. Finally, reflectance values from real-time CRP, DLS, and pre-CRP
were obtained by converting radiance and irradiance (Figure 3).
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2.4.1. Real-Time CRP

For the CRP method, the reflectance of each feature image was corrected using the
CRP image at the corresponding timepoint. The reflectance of a feature was calculated
as the reflected radiance multiplied by π divided by the incident irradiance. The canopy
reflectance ρ(λ) of each image was converted as follows:

ρ(λ) =
L(λ) × ρCRP(λ)

LCRP(λ)
=

L(λ) × π

ECRP(λ)
(1)
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where L(λ) and LCRP(λ) represent canopy and CRP radiance, respectively. The components
of the CRP were presumed to have equal radiance values in all directions, and ECRP(λ) was
therefore expressed as the CRP measured radiance multiplied by pi. The CRP reflectance
was already known, and CRP radiance could thus be obtained using the MicaSense radio-
metric calibration model. The crop surface was regarded as a horizontal scattering material,
and ρ(λ) was considered the canopy reflectance.

2.4.2. DLS

Solar incident light irradiance is here expressed as EDLS(λ). This value was recorded by
the DLS and stored in each image. Using the stored metadata, image reflectance conversion
with DLS was calculated as follows:

ρ(λ,t1)
=

L(λ,t1)
× ρCRP(λ)

LCRP(λ,t2)
=

L(λ,t1)
× π

EDLS(λ,t2)
(2)

2.4.3. Pre-CRP

As with the real-time CRP correction method, pre-CRP also used CRP to correct feature
images. However, pre-CRP used a reflectance conversion of all target images from a CRP
image acquired before each mission.

After cement floor and soybean field images were converted to reflectance data using
each of the three methods (pre-CRP, real-time CRP, and DLS), an ROI was manually selected
for analysis in each image. For the cement floor images, the ROI was an area directly in
the center of each image and ~10% of the size of the original image. To alleviate time
discrepancies between the soybean or cement multispectral images and the corresponding
CRP images, the calibrated reflectance was smoothed using a Savitzky–Golay filter with a
window of 75 in Origin 2021. The concrete ground data acquired by ASD were converted
to reflectance in multispectral bands by spectral response function [21]. In UAV images of
maize, the middle tenth of each image was selected as the ROI for linear analysis between
correction methods, and the region corresponding to the sampled plants was selected as
an ROI for verification of the accuracy of the real-time CRP, DLS, and pre-CRP correction
methods. The average of all pixels in the ROI was used for statistical analysis of plant
reflectance trends and vegetation indices (VIs). To evaluate and verify the influence of
weather and correction methods on crop monitoring accuracy, the 15 commonly used VIs
summarized by Huete (Table 3) were used here. Correlations were calculated to determine
the relationships between data generated using different correction methods under different
weather conditions using the coefficient of determination (R2) as follows:

R2 = 1− SSE
SST

= 1−
∑i(yi−y′i)

2

n

∑i(yi−y′i)
2

n

= 1− MSE
VAR

= 1− MRSE2

STD2 (3)
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Table 3. Summary of vegetation indices used in the present study.

Index Equation Application Reference

Enhanced Vegetation Index (EVI) 2.5(RNIR − Rred)/(RNIR + 6Rred −
7.5Rblue + 1) Biomass [22]

Normalized Difference Vegetation
Index (NDVI) (RNIR − Rred)/(RNIR + Rred)

Intercepted PAR, vegetation
cover [5]

Red Edge NDVI (NDRE) (RNIR − Rredge)/
(

RNIR − Rredge

) Intercepted PAR, vegetation
cover [23]

Triangular Vegetative Index (TVI)
60
(

RNIR − Rgreen
)
−

100
(

Rred − Rredge

) Leaf area [24]

Chlorophyll Absorption Ratio
Index (CARI) (Rredge − Rred)− 0.2

(
Rredge + Rred

)
Canopy chlorophyll [24]

Difference Vegetation Index (DVI) RNIR − Rred LAI [25]

Green NDVI (GNDVI)
(

RNIR − Rgreen
)
/
(

RNIR + Rgreen
)

Intercepted PAR [26]

Chlorophyll Indices (CI) (RNIR/Rredge)− 1 LAI, GPP, chlorophyll [27]

Soil Adjusted Vegetation Index
(SAVI) 1.5(RNIR − Rred)/(RNIR + Rred + 0.5) LAI [28]

Optimized Soil Adjusted
Vegetation Index (OSAVI) (RNIR − Rred)/(RNIR + Rred + 0.1) LAI [29]

Renormalized Difference
Vegetation Index (RDVI) (RNIR − Rred)/

√
(RNIR + Rred) Vegetation Cover [30]

Non-linear Vegetation Index
(NLI) (R2

NIR − Rred)/(R2
NIR + Rred) LAI [31]

Modified Simple Ratio (MSR) (RNIR/Rred − 1)/
√

RNIR/Rred + 1 Intercepted PAR [32]

Modified Nonlinear Vegetation
Index (MNLI)

1.5(R2
NIR −

Rred)/
(

R2
NIR + Rred + 0.5

) LAI [33]

Ratio Vegetation Index (RVI) RNIR/Rred Vegetation Cover [25]

3. Results
3.1. Reflectance Comparisons between Real-Time CRP, DLS, and Pre-CRP Correction Methods

The reflectance values of the soybean field and the cement floor (adjusted using DLS,
pre-CRP, and real-time CRP correction) differed based on weather conditions (Figure 4).
Ideally, the reflectance of a fixed object after correction would be constant (i.e., a horizontal
line in a plot of reflectance vs. time). Compared with real-time CRP and DLS (the two
real-time correction methods), reflectance values corrected with pre-CRP showed greater
irregularity and higher fluctuations, especially on cloudy days (e.g., 13 and 14 September
2021). The reflectance trends were consistent between the five wavebands measured for
both the soybean field and the cement floor. Notably, the values themselves were not
consistent; reflectance in the blue band was lower in the DLS-corrected values compared to
the real-time CRP-corrected data.

The reflectance of concrete floors measured by ASD and obtained from multispectral
images converted by CRP and DLS is shown in Figure 5. The hyperspectral reflectance of the
concrete recorded by the ASD is converted into the reflectance of the corresponding band of
the RedEdge-MX camera by means of a band response function calculation. Measurements
by the ASD were higher than the reflectance measured by RedEdge-MX after conversion
by CRP and DLS, except for the NIR band. Compared to the DLS-corrected measurements,
the CRP radiation-corrected reflectance of the concrete floor is closer to ASD in all bands,
especially in the blue band (ASD, 0.18; CRP, 0.15; DLS, 0.11). The standard deviation of
the cement floor reflectance was significantly lower on sunny days (e.g., 8 September)
(Figure 6). Furthermore, the standard deviation of reflectance varied considerably between
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dates and weather conditions in each environment (e.g., for the cement floor between
13 and 23 September and for the soybean field between 14 September and 11 October). The
differences in mean values derived from DLS and real-time CRP correction were negligible
in the red and near-infrared (NIR) bands.
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The performance of each reflectance correction method was assessed in all five wave-
bands under cloudy conditions (Figure 7). The reference value was reflectance using
pre-CRP correction under sunny conditions (25 July). Except for the blue band, R2 values
were significantly higher for real-time CRP than for pre-CRP; the values generated with
real-time CRP were closer to those calculated with DLS. In the blue band, the differences in
R2 were largest between real-time CRP and DLS and between the reflectance of DLS on
cloudy days and pre-CRP on sunny days. Compared with real-time CRP and pre-CRP, the
reflectance calculated using DLS was the most different from the 1:1 line for each band,
indicating that the reflectance values resulting from DLS correction were very different
from the values obtained with CRP correction.

3.2. Relationship between VIs and Measured Indicators under Multiple Weather Conditions

Correlation coefficients were calculated between VIs and several parameters under
multiple weather conditions (Figure 8). All of the measured LAI, AGB, and CCC had
higher correlations with VIs under sunny than under cloudy conditions. However, the real-
time CRP correction method somewhat improved the correlation between the measured
parameters and VIs. For example, the correlation coefficients of the Ratio Vegetation Index
(RVI), Non-linear Vegetation Index (NLI), Soil Adjusted Vegetation Index (SAVI), and
Normalized Difference Vegetation Index (NDVI) with all measured parameters were higher
using values derived from real-time CRP than using values calibrated with DLS or pre-CRP.
However, sensitivity to weather varied between indicators. The correlation coefficient
of AGB with each VI was the most stable of all indicators and was least affected by the
weather. LAI had the highest correlation coefficients with VIs out of all the measured
indicators; weather had only a slight influence on this measurement. CCC was the most
weather-sensitive and had the lowest correlations with VIs.

Next a manually measured maize indicator model was generated between the VIs
on sunny days (25 July) and cloudy days (24 July) (Figure 9). The VIs used a combination
of pre-CRP-corrected reflectance data. Most VIs, except TVI and EVI, were higher under
sunny conditions than under cloudy conditions. The slopes of the NDVI, OSAVI, MSR,
RVI, NDRE, and CI models did not have large variations from the corresponding measured
indicators under different weather conditions.
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Figure 8. Correlations between vegetation indices (VIs) and leaf area index (LAI), aboveground
biomass (AGB), and canopy chlorophyll content (CCC). (I) Data from a sunny day (25 July) corrected
with the pre-calibration reference panel (pre-CRP) method. (II–IV) Data from a cloudy day (24 July)
corrected with the real-time calibration reference panel (real-time CRP) (II), downwelling light sensor
(DLS) (III), and pre-CRP (IV) methods.
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values corrected with the pre-calibration reference panel (pre-CRP) method.

4. Discussion
4.1. Removing the Impact of Correction Methods from Irradiance Variation

Numerous studies have shown that the pre-CRP method is only suitable for short
periods on sunny days, but there have been few studies of the accuracy of correction
methods during complex weather conditions [7]. The post-image enhancement radiometric
correction method uses complex processing and has low precision; a simple and effective
correction method that could improve image quality is highly desirable [16]. The present
study reports such a method, the real-time CRP correction method, which is well-suited to
accurately eliminate variation in solar irradiance under changeable conditions.

Real-time correction methods are shown here to perform better than pre-CRP under
complex environments; this effect was particularly pronounced on a sample concrete floor,
which was insensitive to wind. This result likely occurred because both real-time CRP
and DLS captured instantaneous changes in solar incident irradiance, the former through
known reflectance and DN values of CRP images, and the latter through sensors [6,8].
DLS was more sensitive to external environmental factors such as wind, flight angle, and
light intensity. The stability of real-time CRP was therefore higher than that of DLS [13].
Moreover, the reflectance values derived from correction with real-time CRP and DLS
showed differences in each band, especially in the blue band. The effects that these
differences may have on crop growth measurements remain to be verified. Due to inter-
sensor differences [34], the reflectance of the concrete ground captured by the multispectral
camera RedEdge-MX and ASD differed, and the CRP-corrected results are closer to the
absolute reflectance (as measured by ASD) than the DLS (Figure 5). Real-time CRP is here
shown to be the best correction method for the improvement of spectral image quality in
an environment with variable solar irradiance, and these findings suggest that the real-time
CRP approach should be widely used to calibrate spectral images in future experiments.
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Real-time correction methods (real-time CRP and DLS) are shown here to perform
better in experiments with UAV-captured images and have better performance than pre-
CRP in reducing variations in illumination intensity (Figures 4 and 6). Furthermore, the data
showed that real-time correction methods had better performance in radiation consistency
correction than pre-CRP in UAV applications under complex weather conditions. However,
there were deviations in DLS reflectance values compared to standard conditions in each
band (Figures 5 and 6). The variations in performance between DLS and CRP were due to
differences in incident irradiance monitoring principles. The deviation from the standard
was smallest in the red and NIR bands, which have the greatest influence in crop monitoring.
For studies that do not require high monitoring accuracy, such as submerged seaweed
and vegetation mapping [13,14], orthobeam correction with DLS alone does not affect the
accuracy, but the accuracy must be verified for studies such as this one that require high
monitoring accuracy. Notably, the reflectance of the blue band was clearly lower after DLS
correction than CRP correction. Although few VIs that are in common use include the blue
band, these data are nevertheless important for crop classification, lodging monitoring, and
vegetation mapping [35–37].

4.2. Effects of Light Intensity and Scattering on Crop Growth Monitoring

Real-time correction methods can sufficiently eliminate the influence of solar irradi-
ance variations using multi-radiation consistency correction of spectral images. However,
this study demonstrated that crop monitoring accuracy was consistently higher under
sunny conditions than under cloudy conditions. In addition to the effects of changes in
incident irradiance on the accuracy of image correction, the state of the light also has
significant effects. When solar radiation passes through clouds, it is selectively absorbed
and scattered [38]. The direction of the light scattered through the cloud is irregular, which
leads to uncertainty of the irradiance reaching sensors and crops, thus affecting the accuracy
of the spectral information [39]. Stratus-type clouds, such as those observed on 24 July
in this experiment, are thick and low (~2 km from the Earth’s surface), and thus have
a greater impact on crops and sensors than cirrus, cirrocumulus, and other cloud types
do [40]. Accurate spectral information can be obtained under thinly clouded conditions
with only small changes in the incident light state.

The real-time CRP correction method proposed in this study had higher accuracy than
pre-CRP and DLS for UAV remote monitoring of maize plants in cloudy weather. However,
the advantage of this method was not outstanding. Because there was minimal variation in
solar incident irradiance over the duration of each short flight mission (8 min), the advantages
of real-time CRP in spectral image radiation consistency correction were not fully reflected
here. The DLS correction method remains inaccurate in crop monitoring, even though high
correlations were here calculated between VIs using DLS correction and manually measured
plant parameters. The gap between the reflectance values in the red and NIR bands was
miniscule after correction with DLS or CRP, explaining the similarity in correlation coefficients
between VIs and measured parameters when those methods were used.

The correlation coefficients between various plant indicators and VIs were inconsis-
tently affected by weather conditions. LAI and AGB are structural parameters of crops,
and a small range of variation will therefore not have a great impact on their monitoring
accuracy [41]. In contrast, CCC, which is itself a physiological parameter, is impacted
considerably by even a slight change in the spectrum [42]. Furthermore, light in the red
and NIR bands are less affected by weather due to their high cloud penetration levels [6].
LAI and AGB are more strongly correlated with the red and NIR bands, further decreasing
the effects of weather on these parameters [43].

In addition to the correlations discussed above, the slopes and intercepts of each
model under different weather conditions should be analyzed to assess the feasibility of
implementing crop monitoring under different light conditions. The VIs used in this study
had linear relationships with LAI, AGB, and CCC [25] (Figure 9). VIs were lower under
cloudy conditions than under sunny conditions; this was because the plant reflectance
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values were higher under cloudy weather than under sunny conditions, and the VIs were
calculated using combinations of changing reflectance values in each band [13]. TVI and
EVI can theoretically achieve accurate monitoring of maize under cloudy weather. For
VIs with little change in slope under different weather conditions (e.g., NDVI, OSAVI,
MSR, RVI, NDRE, and CI), their relationships with solar incident irradiance can be further
analyzed to achieve crop monitoring under complex lighting conditions.

4.3. Limitations and Prospects

Although the real-time CRP approach was more effective in accurate image correction
than traditional methods were, there are some limitations of this method. Real-time CRP
is more expensive than pre-CRP and DLS monitoring devices for UAV imagery correction.
However, real-time correction is more advantageous in both short and long flight missions, but
especially on long flight missions [14,19]. The real-time CRP correction method is particularly
recommended when an experiment requires high precision and has sufficient funding.

Changes in light intensity and light state caused by complex weather can affect the
shadows and background in a crop image. Due to the effects of specular reflection, soil
has less influence on the spectrum of the crop canopy when the soil is in scattered light
or shadow [27]. Under higher light intensities, when shadows are deeper, the soil and the
shadows have greater impacts on the spectrum of the crop canopy [44]. Li et al. found that
crop shadows and soil background had the least impact on wheat leaf chlorophyll content
monitoring at 15:00 [45]. Another study indicated that VIs show stronger relationships with
CCC across growth stages when measurements are taken at non-noon times [46]. Here, canopy
spectral images of maize were analyzed without background and shadow removal. Although
the maize canopy is more lush and less affected by the soil background at the jointing stage
(the stage in which images were taken in this study), the influence of shading is unavoidable.
Future work should also account for the effects of shadows on correction methods.

5. Conclusions

This study proposes a novel real-time reflectance calibration reference panel method
based on dual multispectral devices for the application of UAV multispectral monitoring
technology under complex weather conditions. The CRP image sequence was used to
generate a time series of irradiance coefficients and calibrate the sample multispectral
images in parallel. This is a promising method due to its excellent stability and accuracy
compared with conventional methods, namely DLS and pre-CRP, especially in the blue
band. The effects of complex weather on remotely sensed biomass indices such as AGB
and LAI were insignificant compared with the effects on physiological indices such as
CCC. There were linear relationships between several vegetation indices (including NDVI,
OSAVI, MSR, RVI, NDRE, and CI) under sunny and cloudy conditions, and crop monitoring
under complex weather could therefore be achieved by studying the relationships between
solar irradiance and vegetation indices. These results suggest that further in-depth research
is needed to identify optimal methods of applying spectroscopic techniques to monitor
crop growth and nutrient indicators under complex weather conditions.
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