
Citation: Abbass, M.A.B.; Kang, H.-S.

Drone Elevation Control Based on

Python-Unity Integrated Framework

for Reinforcement Learning

Applications. Drones 2023, 7, 225.

https://doi.org/10.3390/

drones7040225

Academic Editor: Andrey V. Savkin

Received: 30 January 2023

Revised: 11 March 2023

Accepted: 15 March 2023

Published: 24 March 2023

Copyright: © 2023 by the authors.

Licensee MDPI, Basel, Switzerland.

This article is an open access article

distributed under the terms and

conditions of the Creative Commons

Attribution (CC BY) license (https://

creativecommons.org/licenses/by/

4.0/).

drones

Article

Drone Elevation Control Based on Python-Unity Integrated
Framework for Reinforcement Learning Applications
Mahmoud Abdelkader Bashery Abbass 1,2 and Hyun-Soo Kang 1,*

1 Department of Information and Communication Engineering, School of Electrical and Computer Engineering,
Chungbuk National University, Cheongju-si 28644, Republic of Korea;
mahmoud.gohar1992@m-eng.helwan.edu.eg

2 Department of Mechanical Power Engineering, Helwan University, Cairo 11772, Egypt
* Correspondence: hskang@cbnu.ac.kr; Tel.: +82-43-261-3488

Abstract: Reinforcement learning (RL) applications require a huge effort to become established
in real-world environments, due to the injury and break down risks during interactions between
the RL agent and the environment, in the online training process. In addition, the RL platform
tools (e.g., Python OpenAI’s Gym, Unity ML-Agents, PyBullet, DART, MoJoCo, RaiSim, Isaac, and
AirSim), that are required to reduce the real-world challenges, suffer from drawbacks (e.g., the limited
number of examples and applications, and difficulties in implementation of the RL algorithms, due to
difficulties with the programing language). This paper presents an integrated RL framework, based
on Python–Unity interaction, to demonstrate the ability to create a new RL platform tool, based on
making a stable user datagram protocol (UDP) communication between the RL agent algorithm
(developed using the Python programing language as a server), and the simulation environment
(created using the Unity simulation software as a client). This Python–Unity integration process,
increases the advantage of the overall RL platform (i.e., flexibility, scalability, and robustness), with the
ability to create different environment specifications. The challenge of RL algorithms’ implementation
and development is also achieved. The proposed framework is validated by applying two popular
deep RL algorithms (i.e., Vanilla Policy Gradient (VPG) and Actor-Critic (A2C)), on an elevation
control challenge for a quadcopter drone. The validation results for these experimental tests, prove
the innovation of the proposed framework, to be used in RL applications, because both implemented
algorithms achieve high stability, by achieving convergence to the required performance through the
semi-online training process.

Keywords: reinforcement learning agent; simulation platform; Python programming language;
Unity simulation software; UDP communication protocol; Vanilla Policy Gradient algorithm; Actor–
Critic algorithm

1. Introduction

In recent years, significant research in the reinforcement learning (RL) domain, has
had a significant impact on different applications [1] (e.g., healthcare [2–6], gaming [7–9],
natural language processing [10–13], self-driving cars [14–17], and robotics [18–23]). At the
same time, applying RL requires high safety considerations during the training and imple-
mentation steps, especially in applications that require online training steps or interactions
between the agent and the real-world environment (e.g., self-driving cars and robotics).
These safety considerations come from the risk of insufficient action from the agent, with
respect to the instant state, before achieving convergence to the best performance. There-
fore, the concept of performing the RL training process in a real-world (i.e., online training)
environment is challenging, because of the RL model adjustment required, with respect to a
continuous feed for real-time data and continuous change of the environment’s parameters.
For example, the incorporation of an RL algorithm in an unmanned aerial vehicle (UAV)

Drones 2023, 7, 225. https://doi.org/10.3390/drones7040225 https://www.mdpi.com/journal/drones

https://doi.org/10.3390/drones7040225
https://doi.org/10.3390/drones7040225
https://creativecommons.org/
https://creativecommons.org/licenses/by/4.0/
https://creativecommons.org/licenses/by/4.0/
https://www.mdpi.com/journal/drones
https://www.mdpi.com
https://orcid.org/0000-0003-1795-4276
https://orcid.org/0000-0002-4333-2852
https://doi.org/10.3390/drones7040225
https://www.mdpi.com/journal/drones
https://www.mdpi.com/article/10.3390/drones7040225?type=check_update&version=2


Drones 2023, 7, 225 2 of 20

control, in real-time (online training), has a high-risk probability (e.g., breakdown or human
injury risks). So, most of the real-life implementations of RL algorithms in UAVs, include
many safety considerations [23,24].

Meanwhile, research has also focused on the RL simulation platforms (e.g., Python
OpenAL Gym, and Unity ML-Agents), as a preprocessing step for the agent’s behavior in a
real-world environment. However, the existing technology in the RL simulation platforms
either suffers from limited environment abilities and examples (e.g., Python OpenAI Gym,
PyBullet, DART, MoJoCo, RaiSim, Isaac, and AirSim), or is based on difficult programming
languages (e.g., Unity ML-Agents). Hence, the proposed framework must overcome all of
the drawbacks of the existing platforms. So, a review of the current state of the art is given
in the rest of the introduction section, to clearly explain the contribution and innovation of
the proposed framework, with a comparison to the existing technology.

1.1. Related Work

To create an efficient framework for RL applications, the most utilized tools in this area
must be demonstrated. Hence, the most popular platforms (Table 1) and communication
protocols are described in the following sub-sections.

1.1.1. Existing Platforms

OpenAI Gym: This is a free Python software package from OpenAI, that uses several
reinforcement learning benchmarks, including traditional control, Atari, robotics, and
MuJoCo tasks. Environments for creating and testing learning agents are present in OpenAI.
Although it is concentrated, and most appropriate for reinforcement learning agents, it
does not prevent one from experimenting with alternative techniques, such as hard-coded
game solvers or other deep learning techniques [25,26]. The environments are limited
(e.g., cartpole, mountain car, pendulum, acrobat, car racing, pi-pedal walker), and adding
new environments is hard. So, most research work uses this platform for implementing
and developing the RL agent algorithms [27–32].

Unity ML-Agents: An open-source project called Unity Machine Learning Agents
Toolkit (ML-Agents), which makes it possible to use simulations and games as training
grounds for intelligent agents. The behavior of NPCs may be controlled (in many contexts,
such as multi-agent and adversarial), the game builds can be automatically tested, and
various game design choices can be assessed, before release, using these trained agents.
The ML-Agents Toolkit offers a single platform, where developments in AI can be assessed
on Unity’s rich settings and then made available to the larger research and game developer
communities, which benefits both game creators and AI researchers [33]. Due to the
environment creation flexibility in Unity, this tool has been used in different applications,
such as a tennis competition and soccer competition [34], a billiards competition, transport
bricks, a capture flag competition [35], an obstacle tower environment [36], and a marathon
race [37]. At the same time, it contains a limited number of RL algorithms (e.g., Proximal
Policy Optimization (PPO) and Soft Actor–Critic (SAC)), and adding more algorithms is
hard because of the challenging programming language (i.e., C#). So, it is not suitable for
the implementation and development of RL algorithms [33].

PyBullet: This is a type of platform that was created based on an integration with
the Gazebo platform [38], to perform a full simulation. Based on the PyBullet Physics
SDK, PyBullet is a simple-to-use Python package for robotics, deep reinforcement learning,
and physics simulation. The PyBullet robotic examples, such as a simulated Minitaur
quadruped, humanoids running using TensorFlow inference, and KUKA arms gripping
items, are also part of the PyBullet Physics SDK. Users may import articulated bodies from
URDF, SDF, and other file formats to PyBullet. In addition to physics simulation, Pybullet
includes rendering, including virtual reality headset compatibility, a CPU renderer, and
OpenGL visualization [39]. Additionally, this platform is used in different RL research
applications such as teaching manipulators to pick or throw objects [40,41], adjusting
and enhancing MuJoCo robot control [42], and imitating motions for humans [43] or



Drones 2023, 7, 225 3 of 20

animals [44–46], by robots. On the downside, this platform requires a large effort to create a
fully detailed environment (i.e., everything needs to be created from scratch on Gazebo and
imported into PyBullet) [47] and does not have enough environment resources on websites.

DART: This collaborative, cross-platform, open-source library called DART (Dynamic
Animation and Robotics Toolkit) was created by the Georgia Institute of Technology’s
Graphics Lab and Humanoid Robotics Lab with ongoing assistance from the Personal
Robotics Lab at the University of Washington and the Open-Source Robotics Foundation.
This platform can be handled by two programming languages (i.e., C++ and Python), and
can be integrated with the Gazebo platform [38] to create a different environment and
import it as URDF or SDF files into DART. As a result of its multibody dynamic simulator
and different kinematic tools for control and motion planning, DART has applications
in robotics and computer animation [48]. Furthermore, it is used in RL research work
like enhancing RL algorithms for different robots and tasks (e.g., robotic arm simulator,
and hexapod locomotion in [49] (or) cart-pole swing-up, the double inverted pendulum,
locomotion of a hopper, and block-throwing of a manipulator in [50] (or) pendubot swing-
up, and hexapod robot moving in [51] (or) legged robot hoping or bipedal moving in [52]),
overcoming the challenges that may face the robots during learning (e.g., the damage
that may be done for various robots (i.e., wheeled robot, and six-legged robot) [53], and
the falling that may be done [54]), and learning different skills (e.g., navigate cloth [55],
assist dressing [56]). On the other hand, the DART platform requires a high experience
and skills to create the environment details, because it was also created from scratch on
Gazebo and imported into DART (similar to PyBullet) [47]. In addition, it doesn’t have
enough environmental resources on various online websites, and there is a lot of required
enhancement for the available communication protocols.

MuJoCo: a unique physics engine called MuJoCo (Multi-Joint Dynamics with Contact)
allows for accurate, effective rigid body simulations with contacts. It supports three differ-
ent programming languages (i.e., C, C++, and Python); and it also can be integrated with
Python OpenAI Gym, to perform RL algorithms enhancement, on the ready environments
of OpenAI Gym. In addition, environments with continuous control tasks, like walking or
running, may be made with MuJoCo [57]. Unfortunately, due to the environment creation
difficulty, most of the RL work that is based on this platform, is proposed by using the
ready environment. Thus, multiple MuJoCo ready environments have been used to evalu-
ate a variety of RL algorithms (e.g., HalfCheetah, Hopper, Walker2d, and Ant in [58,59]).
Therefore, the MuJoCo platform doesn’t have efficient online website resources.

RaiSim: a closed-source multi-body physics engine platform based mainly on C++
programming language, that can be used through different operating systems (e.g., Linux,
and Windows) [60]. This platform is used in some applications, by using ANYmal ready
locomotion model, like RL algorithms implementation and developments (e.g., motion
path optimization learning by importance sampling [61], and moving control in non-flat
space by terrain-aware locomotion [62,63]) (or) imitate the human and animals’ behaviors
(e.g., recover from falling in hard environments [64], and learning the dexterous circus
abilities [65]). Furthermore, it works very accurately and quickly, with respect to other
platforms, in some ready environments (e.g., speed control, momentum, and energy tests for
ANYmal robot) or simple environments that are created from scratch (e.g., friction rolling
test, bouncing ball due to elasticity test, hard contact test of many balls) [66]. Although,
it includes the ability to add XML or URDF files for sensors or bodies; it is difficult to
find resources for this platform because it is a closed-source, and the creation of detailed
agents or environments is difficult, that is the reason for using the ready robot models
(e.g., ANYmal locomotion) for the most of applications. In addition, it is not suitable for
drone applications, because it doesn’t have significant libraries for that [67].

Isaac: a closed-source NVIDIA robotics platform based on the PhysX physics engine
and Linux operating system, that can be programmed by C or Python programming
language, to create virtual environments [68]. Due to its high capability to make simulation
environments with a high degree of similarity to the real world, it’s mainly used in synthetic



Drones 2023, 7, 225 4 of 20

data generation for various computer vision tasks (e.g., classification, object detection,
semantic segmentation, and depth estimation) [69,70]. It is accepted the URDF files and
contains some extensions (e.g., sensors, control, and RL algorithms). On the other hand,
this platform consumes a huge memory size during simulation, with respect to other
platforms, and gets a lot of failures through performing tasks and algorithms (i.e., pick
and place tasks, and throw tasks) [69]. However, there is some previous trials to integrate
some libraries to enhance the implementation and development of the algorithms on this
platform, but this integration for a little number of environments (e.g., Ant, Humanoid,
Franka-cube-stack, Ingenuity, ShadowHand, ANYmal, Allegro, and TriFinger); without
any flexibility in environment creation through this integration (Isaac Gym or OpenAI
Gym) [71,72].

AirSim: an open-source simulation platform called Aerial Informatics and Robotics
Simulation (AirSim), created especially for autonomous vehicle (e.g., drone, and car) re-
search and developments by Microsoft [73]. This platform is based on the Unreal Engine
for environment creation (recently, there is an experimental version that is based on Unity),
because it has a high capability of realistic environment creation easily from a high pro-
gramming layer level (i.e., the AirSim is just a plugin put inside Unreal environment). In
addition, it can be programmed by different programming languages (i.e., C++, Python,
C#, and Java) [73]. However, a limited number of environments, are released (e.g., Urban,
CityEnviron, and Woodland environments) [74]; and contain only two types of drones [75].
These two limitation features are the reason for using this platform mainly in algorithms
implementation and developments only (e.g., obstacle avoidance algorithms [74,76], object
detection and tracking algorithm [75], swarm path planning algorithm [75], autonomous
driving algorithm [75], and moving algorithms in a non-stationary environment [75]). Also,
it doesn’t have enough online resources for adjusting the environments or the drones. On
the other hand, there aresome trials to overcome this platform’s drawbacks by adding a
programmable engine called PEDRA, which includes some additional environments for
RL drone applications. It represents an abstraction layer between the low-level Python
programming language, and the user interface; to reduce the time and the effort of users
during algorithms implementation and environment creation. In other words, the user
interfaces with a configuration file (.cfg), to specify the environments with algorithm op-
tions (e.g., one drone with vanilla RL algorithm, or prioritized experience relay with deep
duel Q-learning) [77,78]. But, these trials are not sufficient enough; because it focuses
on reducing the difficulties for the users’ platform, not increasing the platform capability
(i.e., drone design creation); and the PEDRA doesn’t have enough online resources too. So,
the limitation problem for the AirSim platform still exists.

Table 1. Comparison between the most popular RL existing platforms in terms of programming
language, communication protocol, and environment creation; with respect to the proposed one.

Simulation Platform Programming
Language

Communication
Protocol

Environment
Creation Comment

OpenAI Gym [25] Python ___ Very Complex
So limited environments,
without low possibility

for creation

Unity ML-Agents [33] C# ___ Easy
Hard programing language,
and very hard to adding or

developing algorithms

PyBullet [39] Python
TCP
(or)

UDP
Complex

Complexity of environment
creation on Gazebo, is

high [47]

DART [48]
C++
(or)

Python
UDP Complex

Complexity of environment
creation on Gazebo, is high

[47]. Also, the communication
protocol need to be enhanced



Drones 2023, 7, 225 5 of 20

Table 1. Cont.

Simulation Platform Programming
Language

Communication
Protocol

Environment
Creation Comment

MuJoCo [57]

C
(or)
C++
(or)

Python

___ Complex

There is a limited number of
environment, and the

environment creation is
very complicated

RaiSim [60] C++ ___ Complex

Complexity of environment
creation. In addition, doesn’t

have suitable libraries for
aerial applications [67]

Isaac [68]
C

(or)
Python

___ Medium Complex

Not suitable for algorithms
implementation and

developments, due to failure
cases [69]

AirSim [73]

C++
(or)

Python
(or)
C++
(or)
Java

___ Complex
There is limited number of

available environments, and
only two drones’ type [73,75]

Proposed Work Python UDP Easy

The online resources is widely
spread, the algorithms
implementation and

development is allowable, and
suitable for infinite number

of applications

1.1.2. Communication Protocol

From previous work that is mentioned in (Table 1), the two possible communication
protocols for the proposed framework are: (1) Transmission Control Protocol (TCP), and
(2) User Datagram Protocol (UDP). Both protocols are similar because they are examples
of transport layer protocols. But, the UDP is a connectionless protocol, and TCP is a
connection-oriented protocol. This indicates that whereas UDP does not require any con-
nection before communicating, TCP does. In addition, the acknowledgment mechanism is
used by TCP, but not used in UDP. This process involves the sender receiving an acknowl-
edgment from the recipient and determining whether it is positive or negative. Also, while
UDP does not adhere to the flow control technique (i.e., the package sending slices, slices
ordering) used by TCP to ensure that many packets are not transmitted to the recipient
at once, the latter does. The connection-oriented, error checking and flow control of the
TCP, reduce its speed of data transfer with respect to the UDP. Finally, the UDP can be
established between one python server and multi-agents, but the TCP can’t [79,80].

There is a very important note, which is demonstrated by making some experimental
tests of using each one (i.e., TCP, and UDP) during the task of implementing an elevation
control on a quadcopter drone. Mainly, the UDP is very faster and more robust than the
TCP, because the TCP, in most simulation cases, enters an infinite loop due to making
some simple errors during dividing the data package into slices and sending. Herby, the
proposed platform is based on UDP instead of TCP.

1.2. Contributions and Proposed Approach

The proposed framework (Figure 1) is based on three main components: (1) Unity
simulation software, to create the RL environment; (2) Python programming language,
to create the RL agent; and (3) The UDP communication protocol, to perform interaction
between RL agent and its environment. Hereby, the existing platforms based on these



Drones 2023, 7, 225 6 of 20

three components are explained in the next sections. Also, for reliability and applicability
proofing, two popular RL algorithms (Vanilla Policy Gradient (VPG) [81] and Actor-Critic
(A2C) [82]) are implemented, to control the elevation of a quadcopter drone.

Figure 1. The proposed framework layout (the interaction between Python agent and Unity environ-
ment by using the UDP communication protocol).



Drones 2023, 7, 225 7 of 20

Hereby, the paper’s contribution can be stated in: (1) proposing a robust, flexible,
scalable RL framework, based on a UDP interaction between Python RL agent, and Unity
environment; (2) implementing the proposed framework on the quadcopter drone elevation
control task, and making a comparison between VPG and A2C algorithms performance on
the same task.

This paper contains four sections, besides the introduction section which represents
Section 1. In addition, Section 2 is the methodology of the proposed framework and
implementation details, Section 3 is the results and comparisons of experiments on the
quadcopter elevation control using RL algorithms, Section 4 is limitations and future work
for the proposed work, and Section 5 discusses the conclusions of this study.

2. Methodology

In this section, a clear and comprehensive explanation of the proposed framework and
the basics for it, is demonstrated. In addition, the validation for this framework and proof
for its applicability, is illustrated too, by applying a comparison between two of the most
significant reinforcement algorithms (i.e., Vanilla Policy Gradient (VPG), and Actor-Critic
(A2C)) on a control problem for the drone elevation.

2.1. The Proposed Framework

The integration between a flexible programing language (i.e., Python), and powerful
simulation software (i.e., unity); is the backbone for the proposed framework (Figures 2 and 3)
This integration makes full use of both, to overcome the drawbacks of each one separately
and increase the advantages for both. The framework depends on creating a reinforcement
learning (RL) agent by using the Python programing language, and creating a simulation
environment in unity software. The agent interacts with the environment through the UDP
communication protocol. The interaction is done by producing an action from the core of
the agent (i.e., the neural network algorithm), to be performed on the environment, and
monitoring the response updates (i.e., the data and reward) of the environment core (i.e., the
drone) to be used as the inputs for the agent in next time step.

The UDP communication protocol implementation is done by creating a UDP server
and a UDP client; by using a computer with a specification of (12th Gen Intel(R) Core(TM)
i7-12700K 3.60 GHz) processor, (32.0 GB) RAM, and (NVIDIA GeForce RTX 3090) GPU.
Firstly, the UDP server contains five steps: (1) Create a UDP Python socket, (2) Bind
the socket to the specified server address, (3) Wait for the environment datagram packet
arriving from the C# client, (4) Process the environment datagram packet and send the
agent action reply to the client, and (5) Go back to Step 3. On the other hand, the UDP
Client contains five steps: (1) Create a UDP C# socket, (2) Bind the socket to the specified
client address, (3) Send the environment data message to the Python server, (4) Wait until
the agent action response from the Python server is received, (5) Go back to step 3. This
implementation is an enhanced version of a simple one of sending and receiving strings
that created by Youssef Elashry, to solve the common problem of two-way communication
between Python and Unity [83]. The enhancement is achieved by making the process of
communication able to read the game object data from Unity and transfer an array of data
(e.g., drone data, and reward) between the Unity simulation environment and the Python
agent through running simulation, to perform the reinforcement learning concept, instead
of transfer stings only. In addition, this two-way communication between Python and
Unity, is based on sending and receiving bytes. So, all messages (i.e., environment data and
agent action) are converted to bytes through sending and receiving, then converted to their
original case again before using it.



Drones 2023, 7, 225 8 of 20

Figure 2. Overall explanation for the proposed framework.



Drones 2023, 7, 225 9 of 20

Figure 3. Overall explanation for the proposed framework after implementation.



Drones 2023, 7, 225 10 of 20

2.2. The Drone

The game object in the Unity environment is a quadcopter robot (Figure 4), that is
imported from Unity Asset Store [84]. Also, a complete airport surrounding is added,
for just visualization enhancement, from Sketchfab’s leading platform for 3D and AR
environments on the web [85]. The quadcopter represents a six degree of freedom robot,
because it has three rotation motions (ψ, ∅, and Ө), three transitional motions (x, y, and z);
and only four distinct inputs represented by rotor thrust forces (F1, F2, F3, and F4).

Figure 4. The quadcopter coordinate frame.

The quadcopter parameters are identified as follows: (1) the frame structure is a stiff
symmetric body with a 2-m square distance, (2) the mass (m) is 20 Kg concentrated in the
center of gravity and the geometrical center, (3) the gravitational acceleration (g) is 9.8 m/s2,
(4) the maximum thrust force per propeller is 100 N.

The validation case study is the quadcopter elevation control (Figure 5), which depends
on comparing the desired quadcopter elevation (Y) with the environment elevation (Y’) to
produce an error signal (E), that is used as input for the neural network agent, to predict
the required action and send it to the quadcopter environment. The generated action from
the RL agent is the required change for the thrust force to achieve the target elevation (i.e.,
all forces from propellers are increased or decreased by the same value that is produced by
the agent).

Figure 5. Control layout for the quadcopter elevation.



Drones 2023, 7, 225 11 of 20

2.3. Reinforcement Learning (RL) Agent Algorithms

The first implemented algorithm is the VPG (Algorithm 1). Policy gradients’ main
principle is to increase the probability of actions that result in greater returns and decrease
the probabilities of actions that result in lower returns until the algorithm reaches the
optimal action to take. Furthermore, this algorithm is an on-policy, that can be implemented
as producing discrete or continuous action on environment spaces. Hereby, a stochastic
policy is trained using a simple policy gradient in an on-policy manner. This indicates
that it samples activities during exploration in accordance with the most recent iteration
of its stochastic strategy. Action selection’s level of randomness is influenced by both the
training process and the starting conditions. As the update rule encourages the policy to
take advantage of rewards that it has previously discovered, the policy normally becomes
gradually less random throughout training. The policy could become stuck in local optima
as a result of this [86].

The VPG agent depends on selecting an action (a) by the distribution probability (P)
based on policy (π). In other words, the distribution probability of action (P(a|πθ(s)))
depends on the current state (s) for the policy πθ(s), that contains the parameter θ. In
other words, the observation state (s) that represent the elevation error (E) in the control
task, inputs to a fully connected neural network model that represents πθ(s) in the VPG
algorithm, and then the neural network model produces the required thrust action (i.e.,
increasing or decreasing) to eliminate the elevation error. For each episode, the expected
return (Eπθ[R]) is computed using (Equation (1)), where R is the cumulative reward. In
addition, a gradient descent (Equation (2)) method with learning rate (α), is used to optimize
the parameter θ that maximizes (E). As seen in Equations (1) and (2), the probability value
for selecting action (a) in the state (s) is increased when the result of expected reward (R)
is positive, by changing the (θ) value to increase this probability. On the other hand, it
is possible to reduce the probability of taking action (a) in the state (s), by making the
expected reward (R) negative which affects the (θ) value to decrease this action probability.
The neural network contains only one hidden layer with 16 neurons, and each neuron
contains an activation function called Rectified Linear Unit (ReLU). In addition, the selected
optimizer is called the Adam optimizer with a learning rate of 0.001.

Eπθ[R] =
∫

a
R(a)· P(a|πθ(s)) (1)

θt+1 = θt + αR · ∇θ log(P(a|πθ(s))) (2)

Algorithm 1. Vanilla Policy Gradient (Pseudocode)

Randomly initialize policy network trainable parameter θ

for t = 1 : T do
1. Collect a set of drone data by applying the current policy
2. At each time step t in each trajectory, compute the return (R)

Rt = ∑T − 1
t‘ = t γt‘ − t rt‘

3. Update the policy, using a policy gradient method
θt+1 = θt + ∇θ log P(at | πθ(st))

4. Insert the policy gradient output into ADAM optimizer
end for

The Actor-Critic (A2C), which is based on the policy model and the value function, is
the second algorithm that has been put into use (Algorithm 2). Learning the value function
in addition to the policy (the Actor updates the policy parameters, and the Critic updates
the value function parameters) makes a lot of sense since doing so will help with updating
the policy. So, the A2C technique reduces gradient variance in VPGs [82].

For the implementation of the A2C algorithm, the action value function (Q(s,a)) is
separated into two parts: (1) the potential value (V(s)) that is independent of action (a),
and (2) the advantage (equation 3) (A(a,s)) that depends on action (a) and state (s), where



Drones 2023, 7, 225 12 of 20

(rt) is the current reward and (γ) is the discount factor. Hereby, a value function (V(s))
is constructed and optimized based on the estimation value in that state, and the policy
gradient is done on the advantage function (A(a,s)) to optimize the action selection in that
state (i.e., two neural networks are created, one for the value estimation, and the other
to the policy function that based on advantage function for action prediction). In other
words, the policy gradient is applied to the advantage function (A(a,s)) to minimize it,
instead of maximizing the expected return (Eπθ[R]) in the VPG algorithm. So, a more stable
conversion is expected (i.e., when the reward increases significantly, the value will increase
in this scenario, and the value loss will therefore be greater than policy loss) Finally, there
are two neural networks (one for predicting the state values, and the other for the required
action prediction), each one is similar to the previous one that used with VPG (i.e., contains
only one hidden layer with 16 neurons, each neuron contain ReLU activation function. In
addition, the selected optimizer is Adam with a 0.001 learning rate. The tuning process
for all used neural networks is done manually, based on the author’s experience [87,88], to
overcome common problems like overfitting and underfitting problems.

A(at, st) = rt + γV(st+1)−V(st) (3)

Algorithm 2. Actor-Critic Algorithm (Pseudocode)

Randomly initialize networks trainable parameters w for value and θ for policy

for t = 1 : T do
1. Apply an action a ∼ πθ(a|s)
2. Collect the data of reward rt ∼ R(s, a) and next state s′ ∼ P(s′|s, a)
3. Update the policy network parameters: θ ← θ + αθ Qw(s, a)∇θ ln πθ(a|s)
4. Calculate the advantage at time t
5. Compute the correction (TD error) for action-value at time t:

At = rt + γVw(s′, a′)−Vw(s, a)
and use it to update the parameters of value network:
w← w + αw At∇wVw(s, a)

6. Insert the policy gradient output into ADAM optimizer
7. Update a← a′ and s← s′

end for

3. Results and Discussion

The main target for the results section is the validation for the proposed integrated
framework to be used in reinforcement learning (RL) problems. Furthermore, the validation
is an essential step, to prove the framework’s flexibility, scalability, and robustness. The
flexibility, scalability, and robustness are proven by implementing two RL algorithms
(i.e., Vanilla Policy Gradient (VPG) algorithm and Actor-Critic (A2C) algorithm) using the
Python programming language. In addition, creating a custom environment for drones by
using Unity simulation software.

The evaluation process for the RL algorithms depends on many factors, that are based
on collecting positive rewards by the agent as much as he can. These positive rewards
mean that the agent learning process, is done as required. The evaluation metrics such as
total reward, average reward, and cumulative reward; are all important during algorithm
training, because the target is increasing the reward in the short-run (represented by total
reward and average reward) and the long-run (represented by cumulative reward) also.

The reward curves shapes in Figure 6 show that the VPG algorithm learning curve
fluctuated higher than the A2C algorithm curve; because the first one is much more simple
than the second one. On the other hand, the A2C algorithm curve takes much more
episodes to converge and outperform the VPG algorithm, because the algorithm is based
on making optimization for two neural networks (i.e., policy neural network and value
neural network). so, it needs much more time but can reach to higher average reward with
minimum fluctuation.



Drones 2023, 7, 225 13 of 20

Figure 6. Total reward and average reward curves for Vanilla Policy Gradient (VPG) and Actor-Critic
(A2C) algorithms (A2C converge slower than VPG, with much more stability).

In addition, the cumulative reward curves in Figure 7 prove the ability of both algo-
rithms to get a high reward in the long-run. Also, the A2C algorithm can overcome the
delay in converges and the curve be closer to the VPG algorithm curve in long-run, because
it can collect a higher average reward in the short-run.

Figure 7. Cumulative reward curves for Vanilla Policy Gradient (VPG) and Actor-Critic (A2C)
algorithms (A2C outperform the VPG on the long run).



Drones 2023, 7, 225 14 of 20

Also, the comparison of error signals that performing due to each algorithm in Figure 8,
demonstrates the compensation of error signal. But, the A2C algorithm takes a longer
time than VPG, to get the best solution to converge with higher performance and lower
fluctuation. In other words, the A2C algorithm has higher error signal fluctuation, at
the beginning of training steps. But, in long run, the algorithm can perform more stable
than the VPG algorithm. Even with large error values, the algorithm gets the required
elevation quickly.

Figure 8. Elevation error signal for Vanilla Policy Gradient (VPG) and Actor-Critic (A2C) algorithms
(A2C compensate the error with higher stability than VPG, but after much more time steps).

Finally, the proposed integrated simulation framework can be used as a simulation
platform for RL problems. Because of the ability to create infinite numbers of environments
and implement different agent algorithms (the simple and complicated algorithms, and it
gets an expected performance for the implemented algorithms, that declared when getting
high performance from A2C algorithm with respect to VPG algorithm). Furthermore, the
resultant video files of the training record for the platform environment running and RL
agent training, are uploaded in these video links [89–91].

4. Limitations and Future Work

In the previous section, the declaration for the applicability of the proposed framework
is done, and the results of the platform validation process are explained in detail. Hereby,
in this section, the limitations and future work for the proposed framework are discussed
based on the expected impacts on the research community. The impacts of the proposed
framework on the research field, can be affected on two application fields: (1) reinforcement
learning (RL) applications field, and (2) computer vision applications field.

Firstly, for the field of RL, the proposed framework will be the basis for a flexible,
robust, and scalable platform. This platform will be able to simulate any complex environ-
ment easily by using the Unity simulation engine software, and develop any RL algorithm
by implementing it easily on the Python server. This type of platform overcomes the
drawbacks of implementing some RL applications (e.g., making an RL learning process
for drones in a real-world environment, because the crashing probability is very high
for the drone or the surrounding real-world environment). So, an infinite number of RL
applications can be performed through the design stage on this simulation platform, and
then take a risk of real-life implementation. In addition, the extension for the RL platform
to cover the multi-agent applications, is so important, to simulate the interaction between
agents in one environment during the RL training, which is hard to make the training
process from scratch in the real-world.

Secondly, in the computer vision field, the proposed framework can be extended
to generate synthetic data (the data generated through simulation, instead of real-world
data), by creating an infinite number of the simulation environment. Each simulation
environment in the Unity engine will contain a multi-virtual camera, to construct different



Drones 2023, 7, 225 15 of 20

camera views. Then send each camera frame, by using the UDP communication protocol,
to the Python server, which easily makes each frame processing, and finally saves each
frame in a directory that contains the synthetic data. So, the platform can easily create
an infinite number of image applications (e.g., a semantic segmented, object tracked,
and classification).

5. Conclusions

The main contribution of this paper is the creation of a high-performance platform to be
used in reinforcement learning (RL) applications, based on the proposed framework. This
contribution is done by passing through many steps: (1) makes a clear comparison of the
existing tools that can be used in RL applications, (2) puts a layout for the framework and
then explained it in detail, (3) validates the framework by implementing it on a quadcopter
drone control using RL algorithms, and finally (4) explains the expectations and impacts of
creating such platforms on the research field.

Firstly, this paper started by discussing the most recent challenges in the RL field,
to create the most significant simulation platforms, that can be used as a preprocess for
creating a pre-trained RL agent, due to the risk of making the agent training in the real-
world directly. This discussion makes a complete viewpoint of the importance of creating a
flexible, robust, and scalable framework; to be the basis of creating the most complementary
RL simulation platform.

Secondly, the proposed framework is based on creating a UDP communication protocol
between the Python programming language (as the RL agent), and the Unity simulation
software (as the RL environment). To be used as a platform for such applications.

Thirdly, the proof for the framework’s applicability to the RL problems, is done by
implementing it on the elevation control of a quadcopter drone; and using two of the most
popular RL algorithms (i.e., Vanilla Policy Gradient (VPG), and Actor-Critic (A2C)). To
declare the flexibility, robustness, and scalability of the proposed work, in the creation and
development of RL algorithms.

Finally, the expected impacts, limitations, and future work of this research, are men-
tioned as the effects on two fields (RL, and computer vision) by the applicability of creating
a complementary platform to be used in the RL applications, and the synthetic data genera-
tion for the computer vision application.

Author Contributions: Conceptualization, M.A.B.A.; methodology, M.A.B.A.; software, M.A.B.A.;
validation, M.A.B.A.; formal analysis, M.A.B.A.; investigation, M.A.B.A.; resources, M.A.B.A.; data
curation, M.A.B.A.; writing—original draft preparation, M.A.B.A.; writing—review and editing,
M.A.B.A.; visualization, M.A.B.A.; supervision, H.-S.K. All authors have read and agreed to the
published version of the manuscript.

Funding: This work was supported by the MSIT (Ministry of Science and ICT), Korea, under the
Grand Information Technology Research Center support program (IITP-2023-2020-0-01462), super-
vised by the IITP (Institute for Information & communications Technology Planning & Evaluation).

Institutional Review Board Statement: Not applicable.

Informed Consent Statement: Not applicable.

Data Availability Statement: Not applicable.

Acknowledgments: This work was supported by the MSIT (Ministry of Science and ICT), Korea, under
the Grand Information Technology Research Center support program (IITP-2023-2020-0- 01462), supervised
by the IITP (Institute for Information & communications Technology Planning & Evaluation).

Conflicts of Interest: The authors declare no conflict of interest.



Drones 2023, 7, 225 16 of 20

Nomenclature

Symbol Description Units

a Produced Action from Agent __
A(s,a) The Advantage Function __
A2C Actor-Critic __
AI Artificial Intelligence __
E Error Signal for Quadcopter Elevation Meter (m)
Eπθ[R] Expected Return from Environment __
F1 Quadcopter Thrust Force from Motor 1 Newton (N)
F2 Quadcopter Thrust Force from Motor 2 Newton (N)
F3 Quadcopter Thrust Force from Motor 3 Newton (N)
F4 Quadcopter Thrust Force from Motor 4 Newton (N)
g Gravitational Acceleration Meter/Square Second (m/s2)
IP Internet Protocol __
m Quadcopter Mass Kilogram (Kg)
ML Machine Learning __
NN Neural Network __
P Action Probability Distribution __
P(a|πθ(s)) Probability of Action Based on Specific Policy __
Q(s,a) The Action Value Function __
r The Current Step Reward from Environment __
R(a) Return from Environment __
RL Reinforcement Learning __
s Quadcopter States Data Meter (m)
TCP Transmission Control Protocol __
UDP User Datagram Protocol __
V(s) The State Value Function __
VPG Vanilla Policy Gradient __
w Trainable Parameters for Value Neural Network __
X Quadcopter Position in X Axis Meter (m)
Y Quadcopter Position in Y Axis Meter (m)
Y’ The Measured Quadcopter Position in Y Axis from The Unity Environment Meter (m)
Z Quadcopter Position in Z Axis Meter (m)
∅ Quadcopter Rotation Angle Around X Axis Degree
α Learning Rate for The Neural Network __
γ The Discount Factor for Total Return __
θ Trainable Parameters for Policy Neural Network __
πθ(s) The Policy Between States and Actions __
ψ Quadcopter Rotation Angle Around Z Axis Degree
Ө Quadcopter Rotation Angle Around Y Axis Degree

References
1. Li, Y. Reinforcement Learning Applications. arXiv 2019, arXiv:1908.06973. [CrossRef]
2. Norgeot, B.; Glicksberg, B.S.; Butte, A.J. A call for deep-learning healthcare. Nat. Med. 2019, 25, 14–15. [CrossRef]
3. Komorowski, M.; Celi, L.A.; Badawi, O.; Gordon, A.C.; Faisal, A.A. The Artificial Intelligence Clinician learns optimal treatment

strategies for sepsis in intensive care. Nat. Med. 2018, 24, 1716–1720. [CrossRef]
4. Li, C.Y.; Liang, X.; Hu, Z.; Xing, E.P. Hybrid Retrieval-Generation Reinforced Agent for Medical Image Report Generation. In

Proceedings of the 32nd International Conference on Neural Information Processing Systems 2018 (NIPS 2018), Montréal, Canada,
3–8 December 2018; pp. 1537–1547.

5. Ling, Y.; Hasan, S.A.; Datla, V.; Qadir, A.; Lee, K.; Liu, J.; Farri, O. Diagnostic Inferencing via Improving Clinical Concept
Extraction with Deep Reinforcement Learning: A Preliminary Study. In Proceedings of the 2nd Machine Learning for Healthcare
Conference (PMLR), Boston, MA, USA, 18–19 August 2017; Volume 68, pp. 271–285.

6. Peng, Y.-S.; Tang, K.-F.; Lin, H.-T.; Chang, E.Y. REFUEL: Exploring Sparse Features in Deep Reinforcement Learning for Fast
Disease Diagnosis. In Proceedings of the 32nd International Conference on Neural Information Processing Systems (NIPS 2018),
Montréal, QC, Canada, 3–8 December 2018; pp. 7333–7342.

http://doi.org/10.48550/arXiv.1908.06973
http://doi.org/10.1038/s41591-018-0320-3
http://doi.org/10.1038/s41591-018-0213-5


Drones 2023, 7, 225 17 of 20

7. Silver, D.; Hubert, T.; Schrittwieser, J.; Antonoglou, I.; Lai, M.; Guez, A.; Lanctot, M.; Sifre, L.; Kumaran, D.; Graepel, T.; et al.
A general reinforcement learning algorithm that masters chess, shogi, and Go through self-play. Science 2018, 362, 1140–1144.
[CrossRef] [PubMed]

8. Aytar, Y.; Pfaff, T.; Budden, D.; Paine, T.; Wang, Z.; Freitas, N. Playing hard exploration games by watching YouTube. In
Proceedings of the 32nd Conference on Neural Information Processing Systems (NeurIPS 2018), Montréal, QC, Canada, 3–8
December 2018.

9. García-Sánchez, P.; Georgios, N. Yannakakis and Julian Togelius: Artificial Intelligence and Games. Genet. Program. Evolvable
Mach. 2018, 20, 143–145. [CrossRef]

10. Chen, L.; Chang, C.; Chen, Z.; Tan, B.; Gašić, M.; Yu, K. Policy Adaptation for Deep Reinforcement Learning-Based Dialogue
Management. In Proceedings of the 2018 IEEE International Conference on Acoustics, Speech and Signal Processing (ICASSP),
Calgary, AB, Canada, 15 April 2018; pp. 6074–6078.

11. Hudson, D.A.; Manning, C.D. Compositional Attention Networks for Machine Reasoning. In Proceedings of the International
Conference on Learning Representations) ICLR, Vancouver, BC, Canada, 30 April–3 May 2018.

12. Zhang, X.; Lapata, M. Sentence Simplification with Deep Reinforcement Learning. In Proceedings of the Empirical Methods in
Natural Language Processing, Copenhagen, Denmark, 9–11 September 2017.

13. He, J.; Chen, J.; He, X.; Gao, J.; Li, L.; Deng, L.; Ostendorf, M. Deep Reinforcement Learning with a Natural Language Action
Space. In Proceedings of the 54th Annual Meeting of the Association for Computational Linguistics, Berlin, Germany, 7–12
August 2016; pp. 1621–1630.

14. Li, D.; Zhao, D.; Zhang, Q.; Chen, Y. Reinforcement Learning and Deep Learning based Lateral Control for Autonomous Driving.
IEEE Comput. Intell. 2018, 14. [CrossRef]

15. Pérez-Gil, Ó.; Barea, R.; López-Guillén, E.; Bergasa, L.M.; Gómez-Huélamo, C.; Gutiérrez, R.; Díaz-Díaz, A. Deep reinforcement
learning based control for Autonomous Vehicles in CARLA. Multimed. Tools Appl. 2022, 81, 3553–3576. [CrossRef]

16. Lange, S.; Riedmiller, M.; Voigtländer, A. Autonomous Reinforcement Learning on Raw Visual Input Data in a Real world
application. In Proceedings of the 2012 International Joint Conference on Neural Networks (IJCNN), Brisbane, QLD, Australia,
10–15 June 2012.

17. O’Kelly, M.; Sinha, A.; Namkoong, H.; Duchi, J.; Tedrake, R. Scalable End-to-End Autonomous Vehicle Testing via Rare-event
Simulation. In Proceedings of the 32nd International Conference on Neural Information Processing Systems (NeurIPS 2018),
Montréal, QC, Canada, 3–8 December 2018; pp. 9849–9860.

18. Argall, B.D.; Chernova, S.; Veloso, M.; Browning, B. A survey of robot learning from demonstration. Robot. Auton. Syst. 2009, 57,
469–483. [CrossRef]

19. Kober, J.; Bagnell, J.A.; Peters, J. Reinforcement learning in robotics: A survey. Int. J. Robot. Res. 2013, 32, 1238–1274. [CrossRef]
20. Deisenroth, M.P. A Survey on Policy Search for Robotics. Found. Trends Robot. 2011, 2, 1–142. [CrossRef]
21. Zhu, Y.; Mottaghi, R.; Kolve, E.; Lim, J.J.; Gupta, A.; Fei-Fei, L.; Farhadi, A. Target-driven Visual Navigation in Indoor Scenes

using Deep Reinforcement Learning. In Proceedings of the ICRA, Singapore, 16 September 2017.
22. Hwangbo, J.; Lee, J.; Dosovitskiy, A.; Bellicoso, D.; Tsounis, V.; Koltun, V.; Hutter, M. Learning agile and dynamic motor skills for

legged robots. Sci. Robot. 2019, 4, eaau5872. [CrossRef]
23. Song, Y.; Steinweg, M.; Kaufmann, E.; Scaramuzza, D. Autonomous Drone Racing with Deep Reinforcement Learning. In

Proceedings of the IEEE/RSJ International Conference on Intelligent Robots and Systems (IROS), Prague, Czech Republic, 27
September–1 October 2021.

24. Hwangbo, J.; Sa, I.; Siegwart, R.; Hutter, M. Control of a Quadrotor with Reinforcement Learning. IEEE Robot. Autom. Lett. 2017,
2, 99. [CrossRef]

25. Brockman, G.; Cheung, V.; Pettersson, L.; Schneider, J.; Schulman, J.; Tang, J.; Zaremba, W. OpenAI Gym. arXiv 2016,
arXiv:1606.01540. [CrossRef]

26. Beysolow, T. Applied Reinforcement Learning with Python With OpenAI Gym, Tensorf low, and Keras; Apress Media LLC: San Francisco,
CA, USA, 2019.

27. Chen, L.; Lu, K.; Rajeswaran, A.; Lee, K.; Grover, A.; Laskin, M.; Abbeel, P.; Srinivas, A.; Mordatch, I. Decision Transformer:
Reinforcement Learning via Sequence Modeling. In Proceedings of the Thirty-Fifth Conference on Neural Information Processing
Systems (NeurIPS), Virtual-Only, 6–14 December 2021.

28. Peng, X.B.; Kumar, A.; Zhang, G.; Levine, S. Advantage Weighted Regression: Simple and Scalable Off-Policy Reinforcement
Learning. In Proceedings of the International Conference on Learning Representations (ICLR), Addis Ababa, Ethiopia, 26–30
April 2020.

29. Li, Y.-J.; Chang, H.-Y.; Lin, Y.-J.; Wu, P.-W.; Wang, Y.-C.F. Deep Reinforcement Learning for Playing 2.5D Fighting Games. In
Proceedings of the 25th IEEE International Conference on Image Processing (ICIP), Athens, Greece, 7–10 October 2018.

30. Fujimoto, S.; Hoof, H.v.; Meger, D. Addressing Function Approximation Error in Actor-Critic Methods. In Proceedings of the 35th
International Conference on Machine Learning (ICML-18), Stockholmsmässan, Stockholm, Sweden, 10–15 July 2018.

31. Plappert, M.; Andrychowicz, M.; Ray, A.; McGrew, B.; Baker, B.; Powell, G.; Schneider, J.; Tobin, J.; Chociej, M.; Welinder, P.; et al.
Multi-Goal Reinforcement Learning: Challenging Robotics Environments and Request for Research. arXiv 2018, arXiv:1802.09464.

32. Matthew Hausknecht, P.S. Deep Recurrent Q-Learning for Partially Observable MDPs. In Proceedings of the Conference on
ArtificialIntelligence (AAAI-15), Austin, TX, USA, 25–30 January 2015.

http://doi.org/10.1126/science.aar6404
http://www.ncbi.nlm.nih.gov/pubmed/30523106
http://doi.org/10.1007/s10710-018-9337-0
http://doi.org/10.48550/arXiv.1810.12778
http://doi.org/10.1007/s11042-021-11437-3
http://doi.org/10.1016/j.robot.2008.10.024
http://doi.org/10.1177/0278364913495721
http://doi.org/10.1561/2300000021
http://doi.org/10.1126/scirobotics.aau5872
http://doi.org/10.1109/LRA.2017.2720851
http://doi.org/10.48550/arXiv.1606.01540


Drones 2023, 7, 225 18 of 20

33. Majumder, A. Deep Reinforcement Learning in Unity with Unity ML Toolkit; Apress Media LLC: San Francisco, CA, USA, 2021.
34. Cao, Z.; Lin, C.-T. Reinforcement Learning from Hierarchical Critics. In Proceedings of the IEEE Transactions on Neural Networks

and Learning Systems, Casablanca, Morocco, 14 May 2021.
35. Song, Y.; Wojcicki, A.; Lukasiewicz, T.; Wang, J.; Aryan, A.; Xu, Z.; Xu, M.; Ding, Z.; Wu, L. Arena: A General Evaluation Platform

and Building Toolkit for Multi-Agent Intelligence. In Proceedings of the AAAI Conference on Artificial Intelligence: Multiagent
Systems, Stanford, CA, USA, 21–23 March 2022; pp. 7253–7260.

36. Juliani, A.; Berges, V.-P.; Teng, E.; Cohen, A.; Harper, J.; Elion, C.; Goy, C.; Gao, Y.; Henry, H.; Mattar, M.; et al. Unity: A General
Platform for Intelligent Agents. arXiv 2018, arXiv:1809.02627.

37. Booth, J.; Booth, J. Marathon Environments: Multi-Agent Continuous Control Benchmarks in a Modern Video Game Engine. In
Proceedings of the AAAI Workshop on Games and Simulations for Artificial Intelligence, Honolulu, HI, USA, 29 January 2019.

38. Koenig, N.; Howard, A. Design and Use Paradigms for Gazebo, An Open-Source Multi-Robot Simulator. In Proceedings of the
IEEE/RSJ International Conference on Intelligent Robots and Systems (IROS), Sendai, Japan, 28 September–2 October 2004.

39. Coumans, E.; Bai, Y. PyBullet Quickstart Guide. 2016. Available online: https://docs.google.com/document/d/10
sXEhzFRSnvFcl3XxNGhnD4N2SedqwdAvK3dsihxVUA/edit# (accessed on 14 March 2023).

40. Breyer, M.; Furrer, F.; Novkovic, T.; Siegwart, R.; Nieto, J. Comparing Task Simplifications to Learn Closed-Loop Object Picking
Using Deep Reinforcement Learning. In Proceedings of the Intelligent Robots and Systems (IROS), Las Vegas, NV, USA, 25–29
October 2020.

41. Zeng, A.; Song, S.; Lee, J.; Rodriguez, A.; Funkhouser, T. TossingBot: Learning to Throw Arbitrary Objects with Residual Physics.
IEEE Trans. Robot. 2019, 36, 1307–1319. [CrossRef]

42. Choromanski, K.; Pacchiano, A.; Parker-Holder, J.; Tang, Y.; Jain, D.; Yang, Y.; Iscen, A.; Hsu, J.; Sindhwani, V. Provably Robust
Blackbox Optimization for Reinforcement Learning. In Proceedings of the 3rd Conference on Robot Learning (CoRL), Osaka,
Japan, 30 October–1 November 2019.

43. Peng, X.B.; Abbeel, P.; Levine, S.; van de Panne, M. DeepMimic: Example-Guided Deep Reinforcement Learning of Physics-Based
Character Skills. ACM Trans. Graph. 2018, 37, 1–14. [CrossRef]

44. Peng, X.B.; Coumans, E.; Zhang, T.; Lee, T.-W.; Tan, J.; Levine, S. Learning Agile Robotic Locomotion Skills by Imitating Animals.
In Proceedings of the Robotics: Science and Systems, Corvalis, OR, USA, 12–16 July 2020.

45. Singla, A.; Bhattacharya, S.; Dholakiya, D.; Bhatnagar, S.; Ghosal, A.; Amrutur, B.; Kolathaya, S. Realizing Learned Quadruped
Locomotion Behaviors through Kinematic Motion Primitives. In Proceedings of the International Conference on Robotics and
Automation (ICRA), Montreal, QC, Canada, 20–24 May 2019.

46. Tan, J.; Zhang, T.; Coumans, E.; Iscen, A.; Bai, Y.; Hafner, D.; Bohez, S.; Vanhoucke, V. Sim-to-Real: Learning Agile Locomotion
For Quadruped Robots. In Proceedings of the Robotics: Science and Systems, Pittsburgh, PA, USA, 26–30 June 2018.

47. Pyo, Y.; Cho, H.; Jung, R.; Lim, T. ROS Robot Programming from the Basic Concept to Practical Programming and Robot Application;
ROBOTIS: Seoul, Republic of Korea, 2017.

48. Lee, J.; Grey, M.X.; Ha, S.; Kunz, T.; Jain, S.; Ye, Y.; Srinivasa, S.S.; Stilman, M.; Liu, C.K. DART: Dynamic Animation and Robotics
Toolkit. J. Open Source Softw. 2018, 3, 500. [CrossRef]

49. Paul, S.; Chatzilygeroudis, K.; Ciosek, K.; Mouret, J.-B.; Osborne, M.A.; Whiteson, S. Alternating Optimisation and Quadrature
for Robust Control. In Proceedings of the AAAI Conference on ArtificialIntelligence., New Orleans, LA, USA, 2–7 February 2018.

50. Yu, W.; Tan, J.; Liu, C.K.; Turk, G. Preparing for the Unknown: Learning a Universal Policy with Online System Identification. In
Proceedings of the 13th Robotics: Science and Systems, Cambridge, MA, USA, 12–16 July 2017.

51. Chatzilygeroudis, K.; Mouret, J.-B. Using Parameterized Black-Box Priors to Scale Up Model-Based Policy Search for Robotics. In
Proceedings of the IEEE International Conference on Robotics and Automation (ICRA), Brisbane, Australia, 21–25 May 2018.

52. Yu, W.; Liu, C.K.; Turk, G. Multi-task Learning with Gradient Guided Policy Specialization. CoRR Abs 2017, 5, 257–270. [CrossRef]
53. Chatzilygeroudis, K.; Vassiliades, V.; Mouret, J.-B. Reset-free Trial-and-Error Learning for Robot Damage Recovery. Robot. Auton.

Syst. 2016, 100, 14. [CrossRef]
54. Kumar, V.C.V.; Ha, S.; Liu, C.K. Learning a Unified Control Policy for Safe Falling. In Proceedings of the IEEE/RSJ International

Conference on Intelligent Robots and Systems (IROS), Vancouver, BC, Canada, 24–28 September 2017.
55. Clegg, A.; Yu, W.; Erickson, Z.; Tan, J.; Liu, C.K.; Turk, G. Learning to Navigate Cloth using Haptics. In Proceedings of the

IEEE/RSJ International Conference on Intelligent Robots and Systems (IROS), Vancouver, BC, Canada, 24–28 September 2017.
56. Clegg, A.; Yu, W.; Tan, J.; Kemp, C.C.; Turk, G.; Liu, C.K. Learning Human Behaviors for Robot-Assisted Dressing. arXiv 2017,

arXiv:1709.07033. [CrossRef]
57. Todorov, E.; Erez, T.; Tassa, Y. MuJoCo: A physics engine for model-based control. In Proceedings of the IEEE/RSJ International

Conference on Intelligent Robots and Systems, Vilamoura-Algarve, Portugal, 7–12 October 2012.
58. Nachum, O.; Norouzi, M.; Xu, K.; Schuurmans, D. Trust-PCL: An Off-Policy Trust Region Method for Continuous Control. In

Proceedings of the International Conference on Learning Representations (ICLR), Vancouver, BC, Canada, 24–28 September 2018.
59. Wu, Y.; Mansimov, E.; Liao, S.; Grosse, R.; Ba, J. Scalable trust-region method for deep reinforcement learning using Kronecker-

factored approximation. In Proceedings of the 31st Conference on Neural Information Processing Systems (NIPS), Long Beach,
CA, USA, 4–9 December 2017.

60. Hwangbo, J.; Lee, J.; Hutter, M. Per-Contact Iteration Method for Solving Contact Dynamics. IEEE Robot. Autom. Lett. 2018, 3,
895–902. [CrossRef]

https://docs.google.com/document/d/10sXEhzFRSnvFcl3XxNGhnD4N2SedqwdAvK3dsihxVUA/edit#
https://docs.google.com/document/d/10sXEhzFRSnvFcl3XxNGhnD4N2SedqwdAvK3dsihxVUA/edit#
http://doi.org/10.1109/TRO.2020.2988642
http://doi.org/10.1145/3197517.3201311
http://doi.org/10.21105/joss.00500
http://doi.org/10.48550/arXiv.1709.07979
http://doi.org/10.1016/j.robot.2017.11.010
http://doi.org/10.48550/arXiv.1709.07033
http://doi.org/10.1109/LRA.2018.2792536


Drones 2023, 7, 225 19 of 20

61. Carius, J.; Ranftl, R.; Farshidian, F.; Hutter, M. Constrained stochastic optimal control with learned importance sampling: A path
integral approach. Int. J. Rob. Res. 2022, 41, 189–209. [CrossRef] [PubMed]

62. Tsounis, V.; Alge, M.; Lee, J.; Farshidian, F.; Hutter, M. DeepGait: Planning and Control of Quadrupedal Gaits using Deep
Reinforcement Learning. In Proceedings of the IEEE International Conference on Robotics and Automation (ICRA), Paris, France,
31 May–31 August 2020.

63. Lee, J.; Hwangbo, J.; Wellhausen, L.; Koltun, V.; Hutter, M. Learning Quadrupedal Locomotion over Challenging Terrain. Sci
Robot. 2020, 5, eabc5986. [CrossRef]

64. Lee, J.; Hwangbo, J.; Hutter, M. Robust Recovery Controller for a Quadrupedal Robot using Deep Reinforcement Learning. arXiv
2019, arXiv:1901.07517.

65. Shi, F.; Homberger, T.; Lee, J.; Miki, T.; Zhao, M.; Farshidian, F.; Okada, K.; Inaba, M.; Hutter, M. Circus ANYmal: A Quadruped
Learning Dexterous Manipulation with Its Limbs. In Proceedings of the IEEE International Conference on Robotics and
Automation (ICRA), Xi’an, China, 30 May–5 June 2021.

66. Kang, D.; Hwangho, J. Physics engine benchmark for robotics applications RaiSim vs. Bullet vs. ODE vs. MuJoCo vs. DartSim.
RaiSim Platf. 2018. Available online: https://leggedrobotics.github.io/SimBenchmark/ (accessed on 14 March 2023).

67. Wang, Z. Learning to Land on Flexible Structures; KTH: Stockholm, Sweden, 2022.
68. Corporation, N. Nvidia Isaac Sim. Available online: https://developer.nvidia.comisaac-sim (accessed on 14 March 2023).
69. Audonnet, F.P.; Hamilton, A.; Aragon-Camarasa, G. A Systematic Comparison of Simulation Software for Robotic Arm Manipula-

tion using ROS2. In Proceedings of the 22nd International Conference on Control, Automation and Systems (ICCAS), BEXCO,
Busan, Republic of Korea, 27–30 November 2022.

70. Monteiro, F.F.; Vieira-e-Silva, A.L.B.; Teixeira, J.M.X.N.; Teichrieb, V. Simulating real robots in virtual environments using
NVIDIA’s Isaac SDK. In Proceedings of the XXI Symposium on Virtual and Augmented Reality, Natal, Brazil, 28–31 October 2019.

71. Makoviychuk, V.; Wawrzyniak, L.; Guo, Y.; Lu, M.; Storey, K.; Macklin, M.; Hoeller, D.; Rudin, N.; Allshire, A.; Handa, A.; et al.
Isaac Gym: High Performance GPU Based Physics Simulation For Robot Learning. arXiv 2021, arXiv:2108.10470. [CrossRef]

72. Rojas, M.; Hermosilla, G.; Yunge, D.; Farias, G. An Easy to Use Deep Reinforcement Learning Library for AI Mobile Robots in
Isaac Sim. Appl. Sci. 2022, 12, 8429. [CrossRef]

73. Shah, S.; Dey, D.; Lovett, C.; Kapoor, A. AirSim: High-Fidelity Visual and Physical Simulation for Autonomous Vehicles. In
Proceedings of the Field and Service Robotics conference (FSR), Zurich, Switzerland, 12–15 September 2017.

74. Shin, S.-Y.; Kang, Y.-W.; Kim, Y.-G. Obstacle Avoidance Drone by Deep Reinforcement Learning and Its Racing with Human Pilot.
Appl. Sci. 2019, 9, 5571. [CrossRef]

75. Park, J.-H.; Farkhodov, K.; Lee, S.-H.; Kwon, K.-R. Deep Reinforcement Learning-Based DQN Agent Algorithm for Visual Object
Tracking in a Virtual Environmental Simulation. Appl. Sci. 2022, 12, 3220. [CrossRef]

76. Wu, T.-C.; Tseng, S.-Y.; Lai, C.-F.; Ho, C.-Y.; Lai, Y.-H. Navigating Assistance System for Quadcopter with Deep Reinforcement
Learning. In Proceedings of the 1st International Cognitive Cities Conference (IC3), Okinawa, Japan, 7–9 August 2018.

77. Anwar, A.; Raychowdhury, A. Autonomous Navigation via Deep Reinforcement Learning for Resource Constraint Edge Nodes
using Transfer Learning. arXiv 2019, arXiv:1910.05547. [CrossRef]

78. Yoon, I.; Anwar, M.A.; Joshi, R.V.; Rakshit, T.; Raychowdhury, A. Hierarchical Memory System With STT-MRAM and SRAM to
Support Transfer and Real-Time Reinforcement Learning in Autonomous Drones. IEEE J. Emerg. Sel. Top. Circuits Syst. 2019, 9,
485–497. [CrossRef]

79. Tanenbaum, A.S. Computer Networks Tanenbaum; Pearson Education: Upper Saddle River, NJ, USA, 2003.
80. Peterson, L.L.; Davie, B.S. ComputerNetworks: A Systems Approach; Morgan Kaufmann: Burlington, NJ, USA, 2012.
81. Grooten, B.; Wemmenhove, J.; Poot, M.; Portegies, J. Is Vanilla Policy Gradient Overlooked? Analyzing Deep Reinforcement

Learning for Hanabi. In Proceedings of the ALA(Adaptive and Learning Agents Workshop at AAMAS), Auckland, New Zealand,
9–10 May 2022.

82. Sutton, R.S.; McAllester, D.; Singh, S.; Mansour, Y. Policy Gradient Methods for Reinforcement Learning with Function Approxi-
mation. In Proceedings of the 12th International Conference on Neural Information Processing Systems (NIPS-99), Cambridge,
MA, USA, 29 November–4 December 1999; pp. 1057–1063.

83. Two-Way Communication between Python 3 and Unity (C#)-Y. T. Elashry. Available online: https://github.com/Siliconifier/
Python-Unity-Socket-Communication (accessed on 14 March 2023).

84. Unity Asset Store. Available online: https://assetstore.unity.com/packages/3d/vehicles/air/simple-drone-190684#description
(accessed on 14 March 2023).

85. Sketchfab Platform for Ready 3D Models. Available online: https://sketchfab.com/3d-models/airport-c26922efb90c44988522d4
638ad5d217 (accessed on 14 March 2023).

86. Schulman, J. Optimizing Expectations: From Deep Reinforcement Learning to Stochastic Computation Graphs; EECS Department,
University of California: Berkeley, CA, USA, 2016.

87. Abbass, M.A.B.; Hamdy, M. A Generic Pipeline for Machine Learning Users in Energy and Buildings Domain. Energies 2021,
14, 5410. [CrossRef]

88. Abbass, M.A.B.; Sadek, H.; Hamdy, M. Buildings Energy Prediction Using Artificial Neural Networks. Eng. Res. J. EJR 2021,
171, 12.

http://doi.org/10.1177/02783649211047890
http://www.ncbi.nlm.nih.gov/pubmed/35694721
http://doi.org/10.1126/scirobotics.abc5986
https://leggedrobotics.github.io/SimBenchmark/
https://developer.nvidia.comisaac-sim
http://doi.org/10.48550/arXiv.2108.10470
http://doi.org/10.3390/app12178429
http://doi.org/10.3390/app9245571
http://doi.org/10.3390/app12073220
http://doi.org/10.1109/ACCESS.2020.2971172
http://doi.org/10.1109/JETCAS.2019.2932285
https://github.com/Siliconifier/Python-Unity-Socket-Communication
https://github.com/Siliconifier/Python-Unity-Socket-Communication
https://assetstore.unity.com/packages/3d/vehicles/air/simple-drone-190684#description
https://sketchfab.com/3d-models/airport-c26922efb90c44988522d4638ad5d217
https://sketchfab.com/3d-models/airport-c26922efb90c44988522d4638ad5d217
http://doi.org/10.3390/en14175410


Drones 2023, 7, 225 20 of 20

89. A Video Link for Actor-Critic Algorithm to Control Drone. Available online: https://youtu.be/OyNK6QSuMuU (accessed on 14
March 2023).

90. A Video Link for Vanilla Policy Gradient Algorithm to Control Drone. Available online: https://youtu.be/r-DKqIC1bGI (accessed
on 14 March 2023).

91. A Video Link for Overall Python-Unity Integrated Platform in Runtime. Available online: https://youtu.be/ZQzC05qr_q0
(accessed on 14 March 2023).

Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual
author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to
people or property resulting from any ideas, methods, instructions or products referred to in the content.

https://youtu.be/OyNK6QSuMuU
https://youtu.be/r-DKqIC1bGI
https://youtu.be/ZQzC05qr_q0

	Introduction 
	Related Work 
	Existing Platforms 
	Communication Protocol 

	Contributions and Proposed Approach 

	Methodology 
	The Proposed Framework 
	The Drone 
	Reinforcement Learning (RL) Agent Algorithms 

	Results and Discussion 
	Limitations and Future Work 
	Conclusions 
	References

