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Abstract: The problem of vision-based fixed-wing UAV formation control under communication
limitations and the presence of measurement errors was investigated. In the first part of this paper,
the single UAV motion model and the process of estimating the neighboring UAV states using the
Extended Kalman Filter are introduced. The second part describes how we designed a sliding mode
controller considering the sensor measurement errors and discusses the sufficient conditions for
the stability and formation system in the presence of state transfer time delays in the formation.
The main motivation of this paper was to develop a hierarchical, globally stable sliding mode
controller that could enable the considered vision-based multiple fixed-wing UAVs to achieve and
maintain formation in the presence of measurement errors. To this end, the selected problem was
first transformed into a state-tracking problem for UAVs in the neighborhood, and then the stability
criterion was established using the Lyapunov stability theory. Finally, the effectiveness of the proposed
control method was illustrated using three numerical arithmetic examples.

Keywords: UAV; UAV formation; formation control; sliding mode control; time delay system

1. Introduction

In recent years, with the development of technology, UAV formations are able to
integrate more sensors compared to single UAVs to achieve diverse tasks in complex
mission environments, so UAV formations are widely used in activities such as search [1],
reconnaissance and target tracking [2], aerial refueling [3], and cloud computing [4]. In
ref. [5], Alsamhi et al. provide a thorough review of the application of UAVs in search.
Additionally, considering that although rotary-wing UAVs have the advantages of being
mobile and flexible and able to hover at will, but their disadvantages, such as limited load
capacity and short flight duration, cannot be ignored, this paper selects fixed-wing UAV
formations capable of performing various complex tasks with long flight times as the object
of study.

In previous studies, UAV formation control with communication links has become a
research topic for researchers because of stable inter-aircraft information transmission, easy
implementation, and the ability to adapt to most mission situations to achieve a variety
of formation control strategies. According to the control strategy, it can be classified as
Leader-Follower [6–8], Virtual Structure [9,10], Behavior-Based [11–13], and Consensus-
Based [14,15]. A distributed control method was proposed in [16] to effectively reduce
the requirement of the follower UAV speed and achieve formation control under the
follower speed no greater than the leader speed limit. Additionally, in [17], to reduce the
formation error due to parameter uncertainty, the feedback linearization approach was used
to design the formation controller to achieve a zero dynamic error in formation. Unlike
the previous two, Zhao et al. in [18] designed controllers with full consideration of UAV
input constraints as well as inter-aircraft collision avoidance constraints and implemented
simulation experiments in a 3D environment. Kim et al. [19] designed control laws for the
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dynamic compensation of UAVs during turns and implemented algorithmic simulations of
hardware-in-the-loop. Arumugam et al. in [20] derived sufficient conditions for nonlinear
intelligence consistency based on matrix linear inequalities and later in [21] studied multi-
intelligence consistency for semi-Markov jump in the perturbed case.

However, in recent years, with the complexity of the mission environment and various
types of communication sabotage facilities for UAV formations, it was difficult for UAV for-
mations to form effective communication links within the mission area. Therefore, formation
control methods that rely only on visual information transfer are gradually being empha-
sized by researchers and are widely used in various mission environments. Refs. [22–24]
use adaptive primitives to achieve control enhancement without modeling the dynamics
and interference, while ref. [25] builds on the former to design the adaptive control of the
guiding law line of sight to achieve formation control on a pair of UAVs. A control law
based on the inverse height between the optical center of the camera and the feature point
was proposed in [26] to achieve formation control under visibility constraints. The ref. [27],
on the other hand, designs adaptive control laws for formation control in the absence of a
distance state using position navigator velocity and vision-related parameters. To reduce
the constraint of information transfer direction, a pilotless formation control method was
proposed in [28] and achieved obstacle avoidance and reorganization of the formation.
A controller achieved large-scale cluster formation in a measurable error environment,
which was presented by Chen et al. in [29] and realized comparative simulations in
multiple cases.

Although the above-mentioned article implements vision-based formation control, it
makes high demands on the controller design due to the measurement error of the sensor in
estimating the state of the leader UAV and the need to form a stable form in a short period.
The sliding mode control, on the other hand, is not sensitive to error and has a good control
effect, and is widely used by researchers to realize the formation control of UAV formation.
To solve the drawbacks of jitter in the sliding mode control method and the difficulty
in setting the control gain, adapting the sliding mode control was applied to formation
control [30]. The refs. [31,32] integrated sliding-mode controllers into feedback linearization
to achieve formation control in the case of unknown leader UAV speed. A bilateral control
law using linear quadratic adjustment of the outer loop control and sliding mode control
achieved inner loop attitude control and was proposed by Ghamry et al. in [33] to solve
the problems of the long computation time of the sliding mode controller and system jitter.
To achieve the formation control of multiple aircraft, ref. [34] used a higher-order sliding
mode control to achieve the extension of UAV formation. The UAV formation control
method is applicable to the model-free case and was proposed in the literature [35], while
Mobayen et al. designed two adaptive laws [36] to deal with uncertainties and disturbances
with unknown upper bounds, and demonstrated the effectiveness of the algorithm in
practical applications. The work in [37], on the other hand, used an integral sliding mode
control to achieve the formation control of three UAVs with little change in the speed of
the leader.

The above research results show that the sliding mode control algorithm has the
advantages of being insensitive to state estimation errors and fast tracking, but there are
problems with large initial input values and system jitter. To solve the above problems, this
paper adopts the two-layer global stable sliding mode control to design the controller. While
ensuring the fast convergence of the system, the sliding mode control input amplitude was
limited to ensure that the UAV formation could be controlled under the input limitation and
the existence of state estimation delay. The contributions of this paper can be summarized
as follows:

(1) The formation control problem of fixed-wing UAVs in an uncommunicated situation
was studied. UAVs use only onboard vision sensors to obtain the status of UAVs in
the neighborhood and to achieve formation control.
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(2) In this paper, we considered sensor measurements and used Extended Kalman Filter-
ing to reduce errors and designed a sliding mode controller to reduce sensitivity to
measurement errors.

(3) In this paper, the formation control was divided into a two-layer control structure
of position control and attitude control, and a suitable Lyapunov function was con-
structed to prove the system’s stability.

(4) The UAV state transfer delay was considered, the UAV error state equation was given,
and a suitable Lyapunov- Krasovskii generalized function was constructed to derive
sufficient conditions for the stability of the delayed system, and finally, the obtained
theoretical results were illustrated by three numerical simulations.

The rest of the article is outlined below. Section 2 describes the process of estimating
the neighborhood UAV state using the Extended Kalman Filter. Section 3 describes the
controller development process and sufficient conditions for system stability in the pres-
ence of time-delayed states. Section 4 provides numerical simulations to determine the
effectiveness of the proposed control method. Finally, then Section 5 gives conclusions.

2. Extended Kalman Filter-Based State Estimation
2.1. Equation of Motion for Single Machine

In order to introduce the UAV formation movement and modeling process, we intro-
duced three coordinate frames I, Vi, and Li as the inertial coordinate frame, the follower
velocity frame of the UAV i, and the line of sight frame. The origin of the follower velocity
frame and the line of sight frame is the mass point of the UAV. The relative relationship
between the coordinate frames is shown in Figure 1.
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Figure 1. Coordinate frames.

The inter–aircraft relative relationship diagram (shown in Figure 2) can be obtained
from Figure 1, where lij, χij, and γij are the relative distance, relative yaw angle, and relative
pitch angle between the follower and the leader UAV in its neighborhood.
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From [29], the equation of the state of motion of a single UAV is given by:

.
xi =



.
xi.
yi.
zi.
vi.
χi.
γi

 =



vi cos γi cos χi
vi cos γi sin χi
−vi sin γi

axi
azi/vi

−ayi/vi

 (1)

where: ai =
[

aVi
xi aVi

yi aVi
zi

]T
∈ R3 is the UAV control input. Considering the actual flight

of the UAV, the input is not able to be chosen arbitrarily, considering the actual state of
the UAV, and the input is restricted to a certain action area. Therefore, in this paper, we
assumed that the UAV input satisfied:

ai =

|axi|∣∣ayi
∣∣

|azi|

 ≤
axmax

aymax
azmax

 (2)

[
axmax aymax azmax

]T in Equation (2) are known constants. The position error
between the leader UAV and the follower UAV can be expressed as:

ex =

ex
ey
ez

 =

xi − xl
yi − yl
zi − zl

 (3)

2.2. Leader UAV Status Estimation

In this paper, considering the measurement error in the binocular camera, this pa-
per used the Extended Kalman Filter to estimate the state of the leader UAV. The Ex-
tended Kalman Filter for the continuous measurement of the UAV state equation can be
expressed as:

Ψl(k + 1) = AΨl(k) + w(k) (4)
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z(k) = H(Ψl(k)−Ψi(k)) + v(k) (5)

where, Ψi(k) =
[
xi yi zi vxi vyi vzi

]
is the position and velocity state vector of

Leader UAV. z(k) =
[
lij χij γij

]T is the relative information vector between the navigator
and the follower where:

A =



1 0 0 T 0 0
0 1 0 0 T 0
0 0 1 0 0 T
0 0 0 1 0 0
0 0 0 0 1 0
0 0 0 0 0 1

, H =


∂lij
xi

∂lij
yi

∂lij
zi

∂lij
vxi

∂lij
vyi

∂lij
vzi

∂χij
xi

∂χij
yi

∂χij
zi

∂χij
vxi

∂χij
vyi

∂χij
vzi

∂γij
xi

∂γij
yi

∂γij
zi

∂γij
vxi

∂γij
vyi

∂γij
vzi



The estimation process of the Extended Kalman Filter can be divided into the following
estimation parts as well as the gain update part,

Ψ̂l(k + 1|k ) = AΨ̂l(k|k )
P(k + 1|k ) = AP(k|k )AT + Q(k)

(6)

where Ψ̂l is the leader state estimation vector, P is the covariance matrix of the state errors,
and is the covariance matrix of noise due to sensor errors in the state variables. After
obtaining the state estimation vector, the state estimation vector was corrected by the
following equation, and the Kalman gain was updated by Equation (8).

Ψ̂l(k + 1|k + 1 ) = Ψ̂l(k + 1|k ) + K(k)[z(k)−H(Ψl(k + 1|k )−Ψi(k))]
P(k + 1|k ) = P(k + 1|k )−K(k)BP(k + 1|k ) (7)

K(k) = P(k + 1|k )BT
(

BP(k + 1|k )BT + R(k)
)−1

(8)

where R is the measurement noise caused by the measurement and B is the output matrix,
which can be expressed in the following form.

B = I6×6 (9)

By applying the extended Kalman filter, the leader state vector
Ψl(k) =

[
xl yl zl vxl vyl vzl

]
could be obtained, and the leader state could be

obtained by calculating:

pl =

x
y
z

, vl =

 .
x
.
y
.
z

 =

vxl
vyl
vzl

 (10)

Through the above state estimation for UAVs in the neighborhood, the follower UAV
can obtain the reference state information of UAVs in the neighborhood.

3. Controller Design

The controller designed in this paper controlled the inner and outer loops of the
UAV separately to realize the position control of the outer loop and the attitude control
of the inner loop, respectively. The ideal state of the inner-loop control was generated
while realizing the outer-loop control, which then passed to the inner-loop, and then the
controller design of the inner-loop realized the tracking of the passed signal and finally
realized the closed-loop control of the whole system. In this paper, UAVl was used to
represent the reference UAV in the neighborhood of UAVi. The flow chart of the algorithm
is shown in Figure 3.
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One note here: in the controller design of this paper, we will use the following second-
order differential controller to implement the derivation of the intermediate ideal state
differential generated by the outer loop.

.
x1 = x2.
x2 = −2R2(x1 − n(t))− Rxx
y = xx

(11)

where n(t) is the input signal and is the component to be differentiated, x1 achieves the
tracking of the signal, and x2 is an estimate of the first-order derivative of the signal n(t).The
initial states of x1 and x2 are defined as x1(0) = 0, x2(0) = 0.

3.1. Controller Design

For the UAV to have a smooth trajectory, this also meant that it needed to be a smooth
curve to make the input to the UAV continuous in the 3D environment. From Equation (1),
we obtained:

vi =

√
.
x2

i (t) +
.
y2

i (t) +
.
z2

i (t) (12)

χi = −arctan−1
( .

y(t)
.
x(t)

)
(13)

γi = −arctan−1

 .
z(t)√

.
x2
(t) +

.
y2
(t)

 (14)

Together with Equations (1), (12)–(14), we can obtain the acceleration of the UAV as:

axi =
.
vi =

.
xi(t)

..
xi(t) +

.
yi(t)

..
yi(t) +

.
zi(t)

..
zi(t)√

.
x2

i (t) +
.
y2

i (t) +
.
z2

i (t)
(15)

ayi = vi
.
γi = −

..
zi(t)

[ .
x2

i (t) +
.
y2

i (t)
]
− .

zi(t)
[ .
xi(t)

..
xi(t) +

.
yi(t)

..
yi(t)

]√
.
x2

i (t) +
.
y2

i (t) +
.
z2

i (t)
√

.
x2

i (t) +
.
y2

i (t)
(16)

azi = vi
.
χi =

√
.
x2

i (t) +
.
y2

i (t) +
.
z2

i (t)
.
xi(t)

..
yi(t)−

..
xi(t)

.
yi(t)

.
x2

i (t) +
.
y2

i (t)
(17)
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From the above equation, the UAVs could achieve formation control in the case of
multiple UAVs with smooth paths under continuous trajectories. It was assumed that the
desired trajectory of the UAV in the 3D environment was:xd(t)

yd(t)
zd(t)

 =

 fd(t)
gd(xd(t))
hd(xd(t))

 (18)

Considering that the UAVs’ input is constrained, the following assumptions were
made on the trajectory function.∣∣∣∣dgd(x)

dx

∣∣∣∣ ≤ λ1,
∣∣∣∣d2gd(x)

d2x

∣∣∣∣ ≤ λ2, ∀x ∈ [0, ∞) (19)

∣∣∣∣dhd(x)
dx

∣∣∣∣ ≤ µ1,
∣∣∣∣d2hd(x)

d2x

∣∣∣∣ ≤ µ2, ∀x ∈ [0, ∞) (20)

where λ1, λ2, µ1, µ2 is the determining constant. By substituting Equation (18) into Equa-
tions (15)–(17), which yielded:

axi =

.
f

2
d(t)

(
d2gd(x)

d2x + d2hd(x)
d2x

)
+

..
f d(t)

(
dgd(x)

dx + dhd(x)
dx

)
√

1 +
(

dgd(x)
dx

)2
+
(

dhd(x)
dx

)2
(21)

ayi = −
.
f d(t)

dhd(x)
dx

(
1 +

(
dgd(x)

dx

)2
− dgd(x)

dx
d2gd(x)

d2x

)
√

1 +
(

dgd(x)
dx

)2
+
(

dhd(x)
dx

)2
√

1 +
(

dgd(x)
dx

)2
(22)

azi =

√
1 +

(
dgd(x)

dx

)2
+

(
dhd(x)

dx

)2
.
f d(t)

d2gd(x)
d2x

1 +
(

dgd(x)
dx

)2 (23)

By applying Equations (21)–(23) to Equation (2), we obtained:∣∣∣∣∣∣∣∣
.
f

2
d(t)

(
d2gd(x)

d2x + d2hd(x)
d2x

)
+

..
f d(t)

(
dgd(x)

dx + dhd(x)
dx

)
√

1 +
(

dgd(x)
dx

)2
+
(

dhd(x)
dx

)2

∣∣∣∣∣∣∣∣ ≤ axmax (24)

∣∣∣∣∣∣∣∣−
.
f d(t)

dhd(x)
dx

(
1 +

(
dgd(x)

dx

)2
− dgd(x)

dx
d2gd(x)

d2x

)
√

1 +
(

dgd(x)
dx

)2
+
(

dhd(x)
dx

)2
√

1 +
(

dgd(x)
dx

)2

∣∣∣∣∣∣∣∣ ≤ aymax (25)

∣∣∣∣∣∣∣
√

1 +
(

dgd(x)
dx

)2
+

(
dhd(x)

dx

)2
.
f d(t)

d2gd(x)
d2x

1 +
(

dgd(x)
dx

)2

∣∣∣∣∣∣∣ ≤ azmax (26)

Considering Equations (19) and (20), it was obtained that:∣∣∣∣∣∣
.
f

2
d(t)(λ2 + µ2) +

..
f d(t)(λ1 + µ1)√

1 + λ2
1 + µ2

1

∣∣∣∣∣∣ ≤ axmax (27)
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∣∣∣∣∣∣
.
f d(t)

µ1
(
1 + λ2

1 − λ1λ2
)√

1 + λ2
1 + µ2

1

√
1 + λ2

1

∣∣∣∣∣∣ ≤ aymax (28)

∣∣∣∣∣√1 + λ2
1 + µ2

1
λ2

.
f d(t)

1 + λ2
1

∣∣∣∣∣ ≤ azmax (29)

From Equations (27)–(29), we obtained:∣∣∣ .
f d(t)

∣∣∣ ≤ λ3,

λ3 = min
(
√

axmax, aymax
√

1+λ2
1+µ2

1

√
1+λ2

1
1+λ2

1−λ1λ2
,

azmax(1+λ2
1)

λ2
√

1+λ2
1+µ2

1

) (30)

∣∣∣ ..
f d(t)

∣∣∣ ≤ axmax

√
1 + λ2

1 + µ2
1

λ1 + µ1
(31)

It can be derived from the above equation that when the system input was bounded,
the boundedness of the trajectory could be guaranteed. The design of the outer loop
controller is discussed below. From Equation (3), the system error tracking equation can be
obtained as:

.
ei =

 .
xi −

.
xl.

yi −
.
yl.

zi −
.
zl

 =

vi cos γi cos χi − vxl
vi cos γi sin χi − vyl
−vi sin γi − vzl

 (32)

The outer-loop virtual input can be taken as:

ui =

u1
u2
u3

 =

vi cos γi cos χi
vi cos γi sin χi
−vi sin γi

 =

vxl − a1tanh(ρ1ex)
vyl − a2tanh

(
ρ2ey

)
vzl − a3tanh(ρ3ez)

 (33)

To achieve the inner loop control when the input is ui, the ideal tracking state of the
inner loop can be calculated according to Equation (33) as:

vd = − u3
sin γd

χd = arctan
(

u2
u1

)
γd = −arctan

(
u3√

u2
1+u2

1

) (34)

Take the inner-loop sliding mode functions as:

sv = vi − vd
sχ = χi − χd
sγ = γi − γd

(35)

The system input can be taken as:

axi =
.
vd − k1sv − τ1signsv − b1tanhρ4sv (36)

ayi = −vd
( .
γd − k2sγ − τ2signsγ − b2tanhρ5sγ

)
(37)

azi = vd
( .
χd − k3sχ − τ3signsχ − b3tanhρ6sχ

)
(38)

when the system input is (36)–(38), and the system can ensure global stability (Stability
proofs are made in the next section).
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3.2. System Stability Proof

With the input of Equation (33) for the outer loop system, the tracking error system
(32) can become:

.
ei =

 .
xi −

.
xl.

yi −
.
yl.

zi −
.
zl

 =

−a1tanh(ρ1ex)
−a2tanh

(
ρ2ey

)
−a3tanh(ρ3ez)

 (39)

To prove the stability of the outer-loop system, Theorem 1 is given.

Theorem 1. When the system has a tame solution, as shown in equation:

.
η = −αtanh(kη) (40)

for any constant α.η satisfying α.η > 0, the system converges to 0 in any initial state η(0).
The proof procedure is shown in [38] and is not repeated here. For the inner-loop

system, the Lyapunov function of the inner-loop tracking error system can be taken as:

V1 =
1
2

s2
v +

1
2

s2
χ +

1
2

s2
γ (41)

Taking the derivative of Equation (41) and substituting it into Equations (1) and (35),
we obtained: .

V1 = sv
.
sv + sχ

.
sχ + sγ

.
sγ

= sv
( .
vi −

.
vd
)
+ sχ

( .
χi −

.
χd
)
+ sγ

( .
γi −

.
γd
)

= sv
(
axi −

.
vd
)
+ sχ

(
azi
vd
− .

χd

)
+ sγ

(
− ayi

vd
− .

γd

) (42)

By substituting into Equations (36)–(38), Equation (42) was simplified to obtain:

.
V1 = sv

(
axi −

.
vd
)
+ sχ

(
azi
vd
− .

χd

)
+ sγ

(
− ayi

vd
− .

γd

)
= −

(
k1s2

v + k2s2
χ + k3s2

γ

)
− (τ1svsignsv + τ2sχsignsχ + τ3sγsignsγ)

−(b1svtanhρ4sv + b2sχtanhρ5sχ + b3sγtanhρ6sγ)

< −(b1svtanhρ4sv + b2sχtanhρ5sχ + b3sγtanhρ6sγ)

(43)

Based on Equation (43) and Theorem 1, it was obtained that the inner loop of the
system was convergent under the action of the input, and when the parameter values were
appropriate, the inner loop converged faster than the outer loop, and the inner and outer
loops converged equally when and only when the error was zero. The global stability of the
system is analyzed below. Assuming that there exists a pitch angle as well as a deflection
angle to satisfy the follower for the leader, the position state part of Equation (1) can be
written as:

.
xi = vd cos γd cos χd + cos γd cos χd(vi − vd) + vi cos γi(cos χi − cos χd) + vi cos χd(cos γi − cos γd)
.
yi = vd cos γd sin χd + cos γd sin χd(vi − vd) + vi cos γi(sin χi − sin χd) + vi sin χd(cos γi − cos γd)
.
zi = −vd sin γd − sin γd(vi − vd)− vi(sin γi − sin γd)

(44)

From Equation (44), the state tracking system produces corresponding deviations
when there are errors in χi, χd as well as γi, γd. Considering that the system inputs (36)
to (38) were bounded, the system state quantity vi, χi, γi satisfies the global Lipschitz
condition. Substituting the outer-loop reference control and inputting them into Equation
(44) yielded:
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
.
ex = −a1tanh(ρ1ex) + cos γd cos χd(vi − vd) + vi cos γi(cos χi − cos χd) + vi cos χd(cos γi − cos γd)
.
ey = −a2tanh

(
ρ2ey

)
+ cos γd sin χd(vi − vd) + vi cos γi(sin χi − sin χd) + vi sin χd(cos γi − cos γd)

.
ez = −a3tanh(ρ3ez)− sin γd(vi − vd)− vi(sin γi − sin γd)

(45)

The following is an example of analyzing the stability of the system with ex. the system
Lyapunov function can be taken as:

V = 3a1 ln(cosh ρ1ex) +
1
2

ρ1e2
x (46)

where α, ρ1 > 0. Taking the derivative of Equation (46) leads to,

.
V = 3a1ρ1

.
extanhρ1ex + ρ1ex

.
ex (47)

Let m1 = a1tanh(ρ1ex), m2 = cos γd cos χd(vi − vd),m3 = vi cos γi(cos χi − cos χd),
m4 = vi cos χd(cos γi − cos γd), then

.
ex can be expressed as:

.
ex = −m1 + m2 + m3 + m4,

and, when substituted into Equation (47), gives:

.
Vex = 3ρ1m1(−m1 + m2 + m3 + m4) + ρ1ex(−m1 + m2 + m3 + m4)

= −ρ1

[
m2

1 − 3m1m2 +
( 3

2 m2
)2
]
− ρ1

[
m2

1 − 3m1m2 +
( 3

2 m2
)2
]
− ρ1

[
m2

1 − 3m1m2 +
( 3

2 m2
)2
]

−ρ1exm1 +
9
4 ρ1m2(m2 + ex) +

9
4 ρ1m3(m3 + ex) +

9
4 ρ1m3(m3 + ex)

Additionally, because of a1tanh(ρ1ex) > 0, therefore:

.
Vex < −ρ1

[
m2

1 − 3m1m2 +
( 3

2 m2
)2
]
− ρ1

[
m2

1 − 3m1m2 +
( 3

2 m2
)2
]
− ρ1

[
m2

1 − 3m1m2 +
( 3

2 m2
)2
]

+ 9
4 ρ1m2(m2 + ex) +

9
4 ρ1m3(m3 + ex) +

9
4 ρ1m3(m3 + ex)

< −ρ1

[(
m1 − 3

2 m2
)2

+
(
m1 − 3

2 m3
)2

+
(
m1 − 3

2 m4
)2
]

+ 9
4 ρ1m2(m2 + ex) +

9
4 ρ1m3(m3 + ex) +

9
4 ρ1m3(m3 + ex)

(48)

Additionally, the following can be considered:

|cos χi − cos χd| =
∣∣∣∣2 sin

χi + χd
2

sin
χi − χd

2

∣∣∣∣ ≤ 2
∣∣∣∣sin

χi − χd
2

∣∣∣∣ ≤ |χi − χd| (49)

The same reasoning leads to:

|cos γi − cos γd| ≤ |γi − γd| (50)

From Equation (43), vi, γi, χi is exponentially convergent. For ∀ε > 0, ∃tvi > 0,
when t > tvi , |vi − vd| < ε; similarly, this applies when t > tχi , |χi − χd| < ε and when
t > tγi ,|γi − γd| < ε. So, there exists a finite time tex , when tex > max{tvi , tχi , tγi},

.
Vex < 0

and when t→ ∞ , mi → 0, (i = 2, 3, 4) . So when t→ ∞ , ex → 0 , Similarly, it can be
proved that when t→ ∞ , ey → 0 , ez → 0 , and the global stability of the system is proved.

3.3. Delayed System Stability Proof

When the navigator exists within the field of view of the follower UAV, the system can
achieve tracking in a time-delay-free state. However, when the navigator is not present in
the field of view of the follower UAV, there is a time delay in the state transfer, and Theorem
II is given below and demonstrates that the delayed system can achieve convergence.
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Theorem 2. When the time delay of system lim
t→∞

xl−4 = xris h, satisfyingh > 0,h ∈
(

0, h
]

,happears

as the upper limit of delay, then when:

Γ(h) =



Q1 0 0 P1A12r

0 −Q1 0 0

0 0 −hZ1 0

AT
12rP1 0 0 AT

12rhZ1A12r + P2A22r + AT
22rP2 + Q2 + AT

22rhZ2A22r

AT
12dP 0 0 AT

12dhZ1A12r + AT
22dP2 + AT

22dhZ2A22r

0 0 0 0

0 0 0 BT
2rP2 + BT

2rhZ2A22r

0 0 0 BT
2dP2 + BT

2dhZ2A22r

P1A12d 0 0 0

0 0 0 0

0 0 0 0

AT
12rhZ1A12d + P2A22d + AT

22rhZ2A22d 0 P2B2r + AT
22rhZ2B2r P2B2d + AT

22rhZ2B2d

AT
12dhZ1A12d −Q2 + AT

22dhZ2A22d 0 AT
22dhZ2B2r AT

22dhZ2B2d

0 −hZ2 0 0

BT
2rhZ2A22d 0 R + BT

2rhZ2B2r BT
2rhZ2B2d

BT
2dhZ2A22d 0 BT

2dhZ2B2r BT
2dhZ2B2d −R



< 0

this indicates delayed system stability. Among others,P1, Z1, P2, Q, R, Z2 > 0.

Proof of Theorem 2. First, linearizing the error state Equation (32) results in:

.
ei = Aei + Bui (51)

where:

A =

[
A11 A12
A13 A14

]

=



0 0 0 cos γr cos χr −vr cos γr sin χr −vr sin γr cos χr

0 0 0 cos γr sin χr vr cos γr cos χr −vr sin γr sin χr

0 0 0 sin γr 0 vr cos γr

0 0 0 0 0 0

0 0 0 −1/v2
r 0 0

0 0 0 −1/v2
r 0 0


, B =

[
B11
B21

]
=



0 0 0

0 0 0

0 0 0

1 0 0

0 1/vr 0
0 0 −1/vr



namely,
.
e1(t) = A12re2(t) + A12de2(t− h)
.
e2(t) = A22re2(t) + A22de2(t− h) + B2ru(t) + B2du(t− h)

(52)
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where A12r, A22r, B2r is the ideal state error matrix and A12d, A22d, B2d is the error between
the ideal state matrix and the actual matrix. The Lyapunov–Krasovskii generalized function
can be taken as follows.

V3(e2, t) = eT
1 (t)P1e1(t)

V4(e2, t) =
∫ t

t−h eT
1 (α)Q1e1(α)dα

V5(e2, t) =
∫ 0
−h

∫ t
t−h

.
eT

1 (t)Z1
.
e1(t)dαdβ

V6(e2, t) = eT
2 (t)P2e2(t)

V7(e2, t) =
∫ t

t−h eT
2 (α)Q2e2(α)dα

V8(u2, t) =
∫ t

t−h uT
2 (t)Ru2(t)dα

V9(e2, t) =
∫ 0
−h

∫ t
t−h

.
eT

2 (t)Z2
.
e2(t)dαdβ

(53)

where P1, Z1, P2, Q, R, Z2 > 0, and it is clear that the above equation satisfies this.

V(e, t) =
8

∑
i=3

Vi(e, t) > 0 (54)

From the system (52), the derivative of Equation (53) can be obtained as:

.
V3(e1, t) = 2eT

1 (t)P1
.
e1(t)

= 2eT
1 (t)P1A12re2(t) + 2eT

1 (t)P1A12de2(t− h) + 2eT
1 (t)P1w1(t)

= 1
h

∫ t
t−h
[
2eT

1 (t)P1A12re2(t) + 2eT
1 (t)P1A12de2(t− h) + 2eT

1 (t)P1w1(t)
]
dα

(55)

.
V4(e1, t) =

1
h

∫ t

t−h

[
eT

1 (t)Q1e1(t)− eT
1 (t− h)Q1e1(t− h)

]
dα (56)

.
V5(e1, t) =

∫ 0
−h

∫ t
t−h

.
eT

1 (t)Z1
.
e1(t)dαdβ

=
∫ t

t−h

[ .
eT

1 (t)Z1
.
e1(t)−

.
eT

1 (t + β)Z1
.
e1(t + β)

]
dβ

t+β=α
=

∫ t
t−h

[ .
eT

1 (t)Z1
.
e1(t)−

.
eT

1 (α)Z1
.
e1(α)

]
dα

= 1
h

∫ t
t−h h

[
(A12re2(t) + A12de2(t− h) + w1(t))

TZ1(A12re2(t) + A12de2(t− h) + w1(t))
− .

eT
1 (α)Z1

.
e1(α)

]
dα

(57)

.
V6(e2, t) = 2eT

2 (t)P2
.
e2(t)

= 2eT
2 (t)P2A22re2(t) + 2eT

2 (t)P2A22de2(t− h)

+2eT
2 (t)P2B2ru(t) + 2eT

2 (t)P2B2du(t− h)

= 1
h

∫ t
t−h

[
2eT

2 (t)P2A22re2(t) + 2eT
2 (t)P2A22de2(t− h)

+2eT
2 (t)P2B2ru(t) + 2eT

2 (t)P2B2du(t− h)

]
dα

(58)

.
V7(e2, t) =

1
h

∫ t

t−h

[
eT

2 (t)Q2e2(t)− eT
2 (t− h)Q2e2(t− h)

]
dα (59)

.
V8(u2, t) =

1
h

∫ t

t−h

[
uT

2 (t)Ru2(t)− uT
2 (t− h)Ru2(t− h)

]
dα (60)
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.
V9(e2, t) =

∫ 0
−h

∫ t
t−h

.
eT

2 (t)Z2
.
e2(t)dαdβ

=
∫ t

t−h

[ .
eT

2 (t)Z2
.
e2(t)−

.
eT

2 (t + β)Z2
.
e2(t + β)

]
dβ

t+β=α
=

∫ t
t−h

[ .
eT

2 (t)Z2
.
e2(t)−

.
eT

2 (α)Z2
.
e2(α)

]
dα

= 1
h

∫ t
t−h h


(A22re2(t) + A22de2(t− h) + B2ru(t) + B2du(t− h))T

hZ2(A22re2(t) + A22de2(t− h) + B2ru(t) + B2du(t− h))

− .
eT

2 (α)Z2
.
e2(α)

dα

(61)

From Equations (55)–(61), it can be obtained that:

.
V(e, t) =

1
h

∫ t

t−h

[
ΞT(t, α)Γ(h)Ξ(t, α)

]
dα (62)

where:

Ξ(t, α) =
[
e1(t) e1(t− h)

.
e1(α) e2(t) e2(t− h)

.
e2(α) u(t) u(t− h)

]
,

So, when Γ(h) < 0,
.

V(e, t) < 0, theorem II can be proved. �

4. Simulation and Test Results

In order to verify the algorithm proposed in this paper, the control algorithm proposed
was simulated with MATLAB, as outlined in this section. We assumed that the UAVs used
for simulation carried onboard sensors that were capable of measuring the relative distance,
relative pitch, and relative yaw angles. The simulation parameters were set as shown in
Table 1. The initial states of the drones are shown in Table 2.

Table 1. Simulation parameters table.

Parameter Name Symbols Numerical Value

Sampling interval Tk 0.01

Sampling time T 30

Number of drones Nv 4

Intermachine delay h 0.004

Table 2. UAV initial parameter table.

UAV Number Initial Location v(m/s) Yaw Angle

1 [2,−2, 0]T 0 π
3

2 [−2, 3, 0]T 0 π
3

3 [2,−1, 0]T 0 π
3

4 [−2,−1, 0]T 0 π
3

4.1. Case 1

In case 1, we first simulated the case of four UAVs in formation in a simple curve
environment. The simulation results are shown in Figures 4–9. We set the desired
trajectory as: [

xd yd zd
]T

=
[
t sin(0.5× xd) + 0.5× xd + 0.5 xd

]T
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As can be seen in Figure 4, the UAV is able to achieve the expected formation control
and maintain the stability of the formation until the end of the simulation, verifying the
effectiveness of the algorithm in simple curved paths. Additionally, when the leader is
not in the follower’s field of view, and there is a certain delay in state transfer, No. 4 is
able to follow the leader effectively. In Figure 5, at the first sampling moment, the solution
time of the UAV controller of No. 1 was significantly higher than that of the other UAVs,
but it was less than 0.01 s, verifying that the controller could complete the solution within
the sampling time to avoid the errors caused by an untimely solution. Figure 6 shows
the acceleration input of the UAV during the actual motion, and it can be seen that the
algorithm of this controller avoided the jitter of the input. Figure 7 gives the virtual input
of the system calculated based on the UAV position error, from which it can be seen that
the virtual input was able to generate a continuous inner-loop control signal (as shown in
Figure 8 for the inner-loop ideal tracking state). Regardless of the UAV state volume (as
shown in Figure 8) or the position error (as shown in Figure 9), the following UAV was able
to achieve finite time convergence, while the inner loop convergence rate was greater than
the outer loop convergence rate, ensuring the convergence of the system.

4.2. Case 2

In case 2, we simulated the formation control and retention problem of four UAVs in a
complex path, and the simulation results are shown in Figures 9–13. We set the desired
trajectory as:[

xd yd zd
]T

=
[
t 5× sin(0.5× xd) 5× cos(0.5× xd) + 0.5× xd

]T
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In Figure 10 of case 2, it can be seen that the four UAVs were still able to achieve
the formation and maintenance of the formation under complex path conditions, but
the tracking effect was not particularly good in the initial phase when the UAVs started
tracking, and further improvement is needed in the next step of work. From Figure 11, it
can be seen that the No. 1 UAV and No. 2 UAV had a long controller calculation time in the
first sampling moment, and the controller solution time within the cluster was less than
0.01 s. In Figure 12, it can be seen that the inputs of the four UAVs were still able to achieve
formation control and acceleration convergence in a short time in a complex environment.
Additionally, as can be seen in Figure 13, when the path was continuous, the generated
virtual inputs were also continuous and could provide continuous desired signals to the
inner loop control. In Figures 14 and 15, it can be seen that the state, as well as the position
error of the UAV, can achieve fast convergence under the action of the algorithm, and the
inner loop converged faster than the outer loop converges, which ensured the formation
and maintenance of the formation.
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4.3. Case 3

To further verify the effectiveness of the algorithm for the formation control of large-
scale clusters, the formation control of eight UAVs was simulated in a complex environment
with the initial states of the UAVs shown in Table 3, and the simulation results are shown
in Figure 14–18. In case 3, we set the desired trajectory as:[

xd yd zd
]T

=
[
t 5× sin(0.5× xd) 5× cos(0.5× xd) + 0.5× xd

]T

Table 3. UAV initial parameter table.

UAV Number Initial Location v(m/s) Yaw Angle

1 [2,−2, 0]T 0 π
3

2 [−2, 3, 0]T 0 π
3

3 [2,−1, 0]T 0 π
3

4 [−2,−1, 0]T 0 π
3

5 [−2, 2, 0]T 0 π
3

6 [2,−3, 0]T 0 π
3

7 [−2, 1, 0]T 0 π
3

8 [−2,−2, 0]T 0 π
3

In Figure 16, it can be seen that the eight UAVs were able to effectively achieve and
maintain an ideal formation under the action of the algorithm, but there was also a situation
where some of the UAVs were poorly tracked during the initial phase, which required
correcting in the next step to ensure that the system could achieve stability from the initial
state under various paths. In Figure 17, it is shown that among the cluster of 8 UAVs,
there existed 3 UAVs (UAVs No. 1,3,5) whose first solving time is much longer than
the other sorties, and all other numbered UAVs were able to satisfy the solving of the
controller within one sampling moment. In Figure 18, it can be seen that the acceleration
of each UAV experienced large fluctuations in the initial state, and after the system error
started to converge, the system input gradually converged, and the amplitude decreased,
ensuring the formation control at low acceleration. Figure 19 then shows that the virtual
inputs of each UAV gradually converged after stabilization and were able to provide
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a stable and continuous tracking signal to the inner loop (as shown in Figure 20). In
Figures 20 and 21, the UAV inner-loop state error, as well as the outer-loop position error
are given, respectively; from this, it can be seen that the large-scale cluster could achieve
the convergence of the state error as well as formation control in the complex path case.
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4.4. Discussion

From the above three numerical simulation examples, it can be seen that:
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1. The designed controller can be effectively applied to the formation control of fixed-
wing UAVs, even in the presence of measurement errors as well as state transfer time
delays in multiple UAV formations.

2. It can be seen from the computation times of the three examples that, since the
controller was distributed, it did not increase the solution time of individual UAVs
as the number of UAVs increased. However, there was a long initial moment at the
beginning of each phase in the time of each numerical simulation, which would be
the next step to improve.

3. When there were multiple UAVs in the neighborhood, the selection of the follower
UAV for the desired leader UAV became an issue. In the next step of the study, rules
need to be developed or the research method updated to ensure the efficiency and
accuracy of the follower UAV’s selection of the desired leader UAV.

5. Conclusions

In this paper, a global sliding mode control algorithm for the vision-based control of
multiple UAV formations was proposed. In the presence of sensor errors, the follower UAV
uses extended Kalman filtering to achieve an estimate of the position as well as the state
of the leader UAV in the field of view, and the follower UAV uses the estimated position
as a reference value for the local outer loop control. After that, the continuous signal of
the inner loop control reference is generated using the outer loop virtual control, which
is then passed to the inner loop. Later, the inner-loop controller was designed to ensure
the tracking of the inner-loop reference signal, and it was mathematically proven that the
inner-loop controller converged faster than the outer loop while the stability of the global
algorithm was demonstrated. Finally, the stability of the formation in the presence of time
delay was given considering the time delay in the transmission of the ideal state of the UAV
due to the limited range of action of the UAV sensors. In a future study, this algorithm will
be further investigated in its initial state for the tracking of the reference value, the control
of a larger number of clusters, and the further improvement of the algorithm in the case of
poor initial state tracking.
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