Optimum Flight Height for the Control of Desert Locusts Using Unmanned Aerial Vehicles (UAV)
Abstract
:1. Introduction
2. Materials and Methods
2.1. Field Site for the Experiment
2.2. Parameters for Spraying Pesticides Using a Drone
2.3. Data Management and Analysis of Optimum Droplet Density at Different Flight Heights
2.4. Efficacy of Metarhizium on Desert Locusts
3. Results
3.1. Variation in Droplet Density among Different Drone Flight Heights
3.2. Optimum ULV Spraying Heights Using a Drone
3.3. Effects of Drone Spraying Height on Mortality of Desert Locusts
3.4. Effects of Drone Spraying Height on Survival Rates of Desert Locusts
4. Discussion
5. Conclusions
Author Contributions
Funding
Data Availability Statement
Acknowledgments
Conflicts of Interest
References
- FAO. Desert locust upsurge; Global response plan, January–December 2020. In Appeal for Rapid Response and Anticipatory Action; FAO: Rome, Italy, 2020. [Google Scholar]
- Cullen, D.; Ceace, A.; Latchinisky, A.; Ayali, A.; Berry, K.; Buhl, J.; Keyser, R.; Foquet, B.; Hadrich, J.; Matheson, T.; et al. From molecules to management: Mechanisms and consequences of locust phase polyphenism. Adv. Insect Physiol. 2017, 53, 167–285. [Google Scholar] [CrossRef]
- Sword, G.; Lecoq, M.; Simpson, S. Phase polyphenism and preventative locust management. J. Insect Physiol. 2010, 56, 949–957. [Google Scholar] [CrossRef] [PubMed]
- Symmons, P.M.; Cressman, K. Desert Locust Guidelines, Biology and Behaviour; Food and Agriculture Organization of the United Nations: Rome, Italy, 2001. [Google Scholar]
- Cressman, K.; Stefanski, R. Weather and Desert Locusts; WMO: Geneva, Switzerland, 2016. [Google Scholar]
- Githae, E.W.; Kuria, E.K. Biological control of desert locust (Schistocerca gregaria Forskål). CAB Rev. 2021, 16, 1–8. [Google Scholar] [CrossRef]
- Shrestha, S.; Thakur, G.; Gautam, J.; Acharya, N.; Pandey, M. Desert locust and its management in Nepal. J. Agric. Nat. Resour. 2021, 4, 1–28. [Google Scholar] [CrossRef]
- Lomer, C.; Bateman, B.; Johnson, D.; Langewald, J.; Thomas, M. Biological Control of Locusts and Grasshoppers. Annu. Rev. Entomol. 2001, 46, 667. [Google Scholar] [CrossRef] [Green Version]
- Magor, I.; Lecoq, M.; Hunter, D. Preventive control and Desert Locust plagues. Crop Prot. J. 2008, 27, 1527–1533. [Google Scholar] [CrossRef]
- Mullie, W.C.; Robert, A.C.; Robert, A.; Young, S.; Ibrahim, A.B.; Murk, A.J. Increased and sex-selective avian predation of desert locusts Schistocerca gregaria treated with Metarhizium acridum. PLoS ONE 2021, 16, e0244733. [Google Scholar] [CrossRef]
- Kassimatis, E.J.M. Evaluation of Metarhizium anisopliae Mycoinsecticide as an Alternative Locust Control Measure in Southern Africa. Ph.D. Thesis, University of Pretoria, Pretoria, South Africa, 2000; pp. 1–80. [Google Scholar] [CrossRef] [Green Version]
- Hunter, D.M.; Latchininsky, A.V.; Abashidze, E.; Gapparov, F.A.; Nurzhanov, A.A. The Efficacy of Metarhizium acridum against nymphs of the Italian locust, Calliptamus italicus (L.) (Orthoptera: Acrididae) in Uzbekistan and Georgia. J. Orthoptera Res. 2016, 25, 61–65. [Google Scholar] [CrossRef] [Green Version]
- FAO. Field Efficacy Trials with Entomopathogen Metarhiiizum anisopliae Var. Acridum against Desert Locusts; FAO: Rome, Italy, 2007. [Google Scholar]
- Owuor, A.; McRae, H. Desert Locust Control in Somalia between 2019 and 2021. Outlooks Pest Manag 2022, 33, 132–136. [Google Scholar] [CrossRef]
- FAO. dLocusts; Potential of Drones for Locusts Early Warning and Prevention Control. 2018. Available online: https://www.fao.org/3/CA1073EN/ca1073en.pdf (accessed on 16 February 2023).
- Fischer, N.; Koning, R.; de Ngwenyaman, B.; Slenders, L.; Wools, L. Detecting Desert Locusts: The UAV Way. 2020. Available online: https://www.fao.org/ag/locusts/common/ecg/2245/en/PosterTeamLocustWeb.pdf (accessed on 16 February 2023).
- Shuvo, S.B.; Tusher, M.A.; Ghosh, M. A technical approach to prevent locust swarm. Team Tetrahedron 2020, 1–4. [Google Scholar] [CrossRef]
- Subramanian, K.S.; Pazhanivelan, S.; Srinivasan, G.; Santhi, R.; Sathiah, N. Drones in insect pest management. Front. Agron. 2021, 3, 1–12. [Google Scholar] [CrossRef]
- Mroczkwoski, D.B. Development of a System for Detection, Control and Prevention of Locust Pests Using UAV Platforms. Bachelor’s Thesis, Universitat Politechnica De Catalunya, Barcelona, Spain, 2018. [Google Scholar]
- FAO. The Potential Use of Drones in Locust Early Warning and Preventive Control; FAO: Rome, Italy, 2016. [Google Scholar]
- Matthews, G.A. New Technology for Desert Locust Control. Agronomy 2011, 11, 1052. [Google Scholar] [CrossRef]
- Sharma, A. Locust Control Management: Moving from traditional to new technologies–An empirical analysis. Entomol. Ornithol. Herpetol. 2014, 4, 1–7. [Google Scholar] [CrossRef]
- Beloev, I.H. A review on current and emerging application possibilities for unmanned aerial vehicles. Acta Technol. Agric. 2016, 19, 70–76. [Google Scholar] [CrossRef] [Green Version]
- Filho, F.H.I.; Heldens, W.B.; Kong, Z.; De Lange, E.S. Drones: Innovative technology for use in precision pest management. J. Econ. Entomol. 2019, 113, 1–25. [Google Scholar] [CrossRef] [Green Version]
- Mogili, U.M.R.; Deepak, B.B.V.L. Review on application of drone systems in precision agriculture. Procedia Comput. Sci. 2018, 133, 502–509. [Google Scholar] [CrossRef]
- Qin, W.; Qiu, B.; Xue, X.; Chen, C.; Xu, Z.; Zhou, Q. Droplet deposition and control effect of insecticides sprayed with an unmanned aerial vehicle against plant hoppers. Crop Prot. 2016, 85, 79–88. [Google Scholar] [CrossRef]
- Martin, D.E.; Woldt, W.E.; Latheef, M.A. Effect of application height and ground speed on spray pattern and droplet spectra from remotely piloted aerial application systems. Sensors 2019, 3, 83. [Google Scholar] [CrossRef] [Green Version]
- Lou, Z.; Xin, F.; Han, X.; Lan, Y.; Duan, T.; Fu, W. Effect of unmanned aerial vehicle flight height on droplet distribution, drift and control of cotton aphids and spider mites. Agronomy 2018, 8, 87. [Google Scholar] [CrossRef] [Green Version]
- Yan, X.; Zhou, Y.; Liu, X.; Yang, D.; Yuan, H. Minimizing occupational exposure to pesticide and increasing control efficacy of pests by unmanned aerial vehicle application on cowpea. Appl. Sci. 2021, 11, 9597. [Google Scholar] [CrossRef]
- Chen, P.; Lan, Y.; Huang, X.; Qi, H.; Wang, G.; Wang, J.; Wang, L.; Xiao, H. Droplet deposition and control of planthoppers of different nozzles in two-stage rice with a quadrotor unmanned aerial vehicle. Agronomy 2020, 10, 303. [Google Scholar] [CrossRef] [Green Version]
- Song, X.P.; Liang, Y.J.; Qui, Z.X.; Qiang, Q.Z.; Ju, W.J.; Rui, L.Y.; Wu, J.M. Intrusion of fall armyworm (Spodoptera frugiperda) in sugarcane and its control by drone in China. Sugar Tech. 2020, 22, 734–737. [Google Scholar] [CrossRef]
- Wang, G.; Lan, Y.; Yuan, H.; Qi, H.; Chen, P.; Ouyang, F.; Han, Y. Comparison of spray deposition, control efficacy on wheat aphids and working efficiency in the wheat field of the unmanned aerial vehicle with boom sprayer and two conventional knapsack sprayers. Appl. Sci. 2019, 9, 218. [Google Scholar] [CrossRef] [Green Version]
- Retkute, R.; Hinton, R.G.K.; Cressman, K.; Gilligan, C.A. Regional differences in control operations during the 2019–2021 desert locust upsurge. Agronomy 2021, 11, 2529. [Google Scholar] [CrossRef]
- Bock, C.H.; Hotchkiss, M.W.; Cottrell, T.E.; Wood, B.W. The Effect of sample height on spray coverage in mature Pecan trees. Plant Dis. 2015, 99, 916–925. [Google Scholar] [CrossRef] [Green Version]
- Dobson, H.M. Control. In Desert Locust Guidelines; FAO: Rome, Italy, 2001. [Google Scholar]
- Machado, B.B.; Spadon, G.; Arruda, M.S.; Goncalves, W.N.; Carvalho, A.C.P.L.F.; Rodrigues-Jr, J.F. A smartphone application to measure the quality of pest control spraying machines via image analysis. In Proceedings of the 33rd Annual ACM Symposium on Applied Comuting, Pau, France,, 9–13 April 2016; ACM: New York, NY, USA, 2018; pp. 956–963. [Google Scholar]
- Abbott, W.S. A method of computing the effectiveness of an insecticide. J. Econ. Entomol. 1925, 18, 265–267. [Google Scholar] [CrossRef]
- Wang, J.; Lan, Y.; Zhang, H.; Zhang, Y.; Wen, S.; Yao, W. Drift and deposition of pesticide applied by UAV on pineapple plants under different meteorological conditions. Int. J. Agric. Biol. Eng. 2018, 11, 5–12. [Google Scholar] [CrossRef] [Green Version]
- Wang, C.; Zeng, A.; He, X.; Song, J.; Herbst, A.; Gao, W. Spray drift characteristics test of unmanned aerial vehicle spray unit under wind tunnel conditions. Int. J. Agric. Biol. Eng. 2020, 13, 13–21. [Google Scholar] [CrossRef]
- Lan, Y.; Qian, S.; Chen, S.; Zhao, Y.; Deng, X.; Wang, G.; Zang, Y.; Wang, J.; Qiu, X. Influence of the downwash wind field of plant protection uav on droplet deposition distribution characteristics at different flight heights. Agronomy 2021, 11, 2399. [Google Scholar] [CrossRef]
- OECD. Report on the State of the Knowledge–Literature Review on Unmanned Aerial Spray Systems in Agriculture; OECD: Paris, France, 2021; No. 105. [Google Scholar]
- Qin, W.; Xue, X.; Zhou, L.; Zhang, S.; Sun, Z.; Kong, W.; Wang, B. Effects of spraying parameters of unmanned aerial vehicle on droplets deposition distribution of maize canopies. Trans. Chin. Soc. Agric. Eng. 2014, 30, 50–56. [Google Scholar]
- Qin, W.; Xue, X.; Zhang, S.; Wei, G.; Baokun, W. Droplet deposition and efficiency of fungicides sprayed with small UAV against wheat powdery mildew. Int. J. Agric. Biol. Eng. 2018, 11, 27–32. [Google Scholar] [CrossRef] [Green Version]
- Bashir, E.M.; El Shafie, H. Laboratory evaluation of the effects of neem (Azadirachta indica) oil and Metarhizium anisopliae against some immature stages of the desert locust Schistocerca gregaria (Forskal) (Orthoptera: Acrididae) Ebtisam. J. Agric. Vet. Sci. 2017, 18, 116–126. [Google Scholar]
- Youssef, N.A. Effect of certain entomopathogenic fungi and nematode on the desert locust Schistocerca gregaria (Forskal). Ann. Agric. Sci. 2014, 59, 125–131. [Google Scholar] [CrossRef] [Green Version]
- Wakil, W.; Ghazanfar, M.U.; Usman, M.; Hunter, D.; Shi, W. Fungal-based biopesticide formulation to control nymphs and adults of the desert locusts, Schistocerca gregaria Forkal(Orthoptera: Acrididae): A labaratory and field cage study. Agronomy 2022, 12, 1160. [Google Scholar] [CrossRef]
Flight Height (m) | Mean (±SE) Droplet Density |
---|---|
2.5 | 152.2 ± 24.8 b |
5.0 | 75.3 ± 11.1 a |
7.5 | 96.0 ± 29.4 ab |
10.0 | 40.2 ± 10.1 a |
12.5 | 24.8 ± 6.51 a |
F4,40 | 7.2 |
p-Value | 0.0002 |
Spray Heights | Mean Droplet Density | One Sample t-Test (Mu = 45 Droplets/cm2) | ||
---|---|---|---|---|
(m) | t-Value | Df | p-Value | |
2.5 | 152.2 ± 24.8 | 6.02 | 227 | 7.07 × 10−9 *** |
5.0 | 75.3 ± 11.1 | 3.63 | 289 | 0.0003 *** |
7.5 | 96.0 ± 29.4 | 2.07 | 369 | 0.039 * |
10.0 | 40.2 ± 10.1 | 1.03 | 308 | 0.304 |
12.5 | 24.8 ± 6.51 | 6.39 | 343 | 5.61 × 10−10 *** |
Stages of Desert Locusts | Drone Spraying Height (Metres above Ground Level) | ||||||
---|---|---|---|---|---|---|---|
2.5 | 5.0 | 7.5 | 10.0 | 12.5 | F4,10 | p-Value | |
Third | 100.00 ± 0.00 cA | 100.00 ± 0.00 cA | 86.66 ± 6.67 bA | 80.00 ± 0.00 bB | 40.00 ± 0.00 aC | 68.50 | <0.0001 |
Fourth | 100.00 ± 0.00 cA | 86.66 ± 6.67 bcA | 86.66 ± 6.67 bcA | 73.33 ± 6.66 bB | 26.66 ± 6.67 aB | 22.74 | <0.0001 |
Adults | 100.00 ± 0.00 dA | 83.33 ± 8.33 cA | 75.00 ± 0.00 cA | 50.01 ± 0.00 bA | 0.00 ± 0.00 aA | 109.00 | <0.0001 |
F2,6 | 1.22 | 2.04 | 1.53 | 16.73 | 27.97 | ||
p-value | 1.00 | 0.21 | 0.29 | 0.0035 | 0.0009 |
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2023 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Ochieng’, V.; Rwomushana, I.; Ong’amo, G.; Ndegwa, P.; Kamau, S.; Makale, F.; Chacha, D.; Gadhia, K.; Akiri, M. Optimum Flight Height for the Control of Desert Locusts Using Unmanned Aerial Vehicles (UAV). Drones 2023, 7, 233. https://doi.org/10.3390/drones7040233
Ochieng’ V, Rwomushana I, Ong’amo G, Ndegwa P, Kamau S, Makale F, Chacha D, Gadhia K, Akiri M. Optimum Flight Height for the Control of Desert Locusts Using Unmanned Aerial Vehicles (UAV). Drones. 2023; 7(4):233. https://doi.org/10.3390/drones7040233
Chicago/Turabian StyleOchieng’, Violet, Ivan Rwomushana, George Ong’amo, Paul Ndegwa, Solomon Kamau, Fernadis Makale, Duncan Chacha, Kush Gadhia, and Morris Akiri. 2023. "Optimum Flight Height for the Control of Desert Locusts Using Unmanned Aerial Vehicles (UAV)" Drones 7, no. 4: 233. https://doi.org/10.3390/drones7040233
APA StyleOchieng’, V., Rwomushana, I., Ong’amo, G., Ndegwa, P., Kamau, S., Makale, F., Chacha, D., Gadhia, K., & Akiri, M. (2023). Optimum Flight Height for the Control of Desert Locusts Using Unmanned Aerial Vehicles (UAV). Drones, 7(4), 233. https://doi.org/10.3390/drones7040233