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Abstract: Rapidly completing the exploration and construction of unknown environments is an
important task of a UAV cluster. However, the formulation of an online autonomous exploration
strategy based on a real-time detection map is still a problem that needs to be discussed and op-
timized. In this paper, we propose a distributed unknown environment exploration framework
for a UAV cluster that comprehensively considers the path and terminal state gain, which is called
the Distributed Next-Best-Path and Terminal (DNBPT) method. This method calculates the gain
by comprehensively calculating the new exploration grid brought by the exploration path and the
guidance of the terminal state to the unexplored area to guide the UAV’s next decision. We propose
a suitable multistep selective sampling method and an improved Discrete Binary Particle Swarm
Optimization algorithm for path optimization. The simulation results show that the DNBPT can
realize rapid exploration under high coverage conditions in multiple scenes.

Keywords: exploration of unknown environment; UAV cluster; sampling and optimization; distributed
path planning; particle swarm optimization

1. Introduction

At present, unmanned aerial vehicles (UAVs) are widely used to perform tasks in
various environments, especially in complex and unknown scenes. One of the typical tasks
is to explore an unknown environment, which is widely used for search [1,2], rescue [3,4],
and dangerous area reconnaissance [5]. Unknown environment exploration means that
UAVs or a UAV cluster can make decisions on their own actions in real-time by relying
on their detection equipment under the condition that there is no prior environmental
information to achieve a fully independent construction of highly saturated environmental
information. Compared with other missions, unknown environment exploration lacks
prior map information. It is crucial to set the autonomous strategy of the exploration action
to complete the environmental construction of the whole region as soon as possible. The
coordination in the cluster and avoidance of repeated exploration must also be considered.

The traditional exploration of unknown environments adopts the ploughing method
for complete coverage path planning [6], but it only aims at specific conditions [7] with-
out obstacles in the environment. When encountering obstacles, the ploughing method
adopts a simple wall-following strategy [8] to avoid sudden obstacles in the path, which
also has great limitations. Yamauchi initiated a frontier-based exploration strategy [9]
and extended it to multiple robots [10], which is considered to be an important classical
method for unknown environment exploration. The frontier is defined as the boundary
between the unexplored grid and the explored grid while excluding the explored obstacle
grid. The frontier-based method obtains exploration information by navigating the robot
to the frontier grid. Many of the most advanced methods are based on frontier-based
exploration [11–13]. Ref. [14] developed a frontier-selection strategy that minimizes the
change in velocity necessary to reach it to achieve the high-speed movement of quadrotors.
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Ref. [15] proposed a hierarchical planning framework based on frontier information (FIS),
enabling a UAV cluster to quickly explore indoor environments.

The sampling-based method is another particularly effective method for exploration.
The central idea is to calculate the information gain of the sampled state and select the best
one to execute, which can adapt to various gain calculation forms and has strong flexibility.
The sampling-based method is also combined well with the frontier-based method. For
example, the SRT [16] algorithm drives the motion update of the robot through sampling in
the sensor safety space and the selection of random exploration angles. The Next-Best-View
(NBV) [17,18] is an exploration method introduced from 3D reconstruction and has become
a widely used sample-based exploration method. Authors in [19] proposed the Reced-
ing Horizon Next-Best-View, combining NBV with a path planning algorithm similar to
RRT [20] and RRT* [21], and obtained a fine effect in indoor exploration and reconstruction
mapping. Authors in [22] proposed a UFO exploration method. Based on the rapidly up-
dated map format called the UFO Map, the maximum information gain was not considered
but adopted the nearest point with the information gain as the exploration decision, which
achieved the effect of rapid exploration at a small cost of computing resources. In addition,
exploration methods based on machine learning are also considered to have great potential,
and many scholars are conducting relevant research [23–25]. However, its engineering
applications for unknown environment exploration are still relatively few, and it performs
poorly in the generalization ability to different environments, which still needs further
exploration and research [26,27].

For large scenes, such as in underground garages or large factories, to ensure that
the task can be completed quickly, the cluster is generally used. For the exploration of
the environment of a robot cluster, the distributed cluster structure is considered to be
better in this scenario [28]. It can not only avoid excessive pressure on central computing
resources but also flexibly handle the impact of poor communication in the cluster or
sudden failures [29–31] to minimize efficiency loss. However, for distributed clusters,
designing the exploration strategy of each platform to avoid repeated exploration and
complete the exploration quickly under the premise of cluster collision avoidance is still a
difficult problem.

The above method seems to simply consider the state of the next step to calculate its
gain, but the impact of its motion process on the exploration is considered to be negligible,
especially when the sensor is limited by the field of view (FOV) or is in the area near the
obstacle, and at the same time, dynamics should be considered to increase the efficiency.
Therefore, this paper proposes a distributed exploration framework for unknown environ-
ments considering the path and terminal gain. In this framework, multiple exploration
paths are obtained by considering the dynamic constraints of the state sequence, and the
optimal path is obtained by using optimization methods. The evaluation factors include the
energy loss of dynamics, the growth of map exploration in the path process, the benefits of
the terminal state to the next exploration, and collision avoidance in the cluster. The paths
are planned for a period of time in the future and take the frontmost path to implement
until the exploration coverage of the entire cluster meets the requirements. To ensure
the efficiency of online planning, a multistep selective optimal sampling method, a gain
calculation method of path exploration, and an efficient improved Discrete Binary Particle
Swarm Optimization (BPSO) algorithm are given. The results show the effectiveness and
superiority of the algorithm in the exploration of unknown environments of a UAV cluster
in multiple scenes.

The contributions of this paper are as follows:

1. A Distributed Next-Best-Path and Terminal framework for real-time path planning
for UAV cluster unknown environment exploration.

2. A multistep selective sampling method for the initial generation of the exploration
path with the calculation method of progress and terminal gain.

3. An improved Discrete Binary Particle Swarm Optimization algorithm to generate the
best exploration path.
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The remainder of this paper is organized as follows: Section 2 describes the problem of
unknown environment exploration and introduces our distributed unknown environment
exploration framework and the construction of the specific model. Section 3 discusses
the multistep selective sampling method we propose and the improved BPSO algorithm
of the optimal path solution. Section 4 presents the simulation to verify the algorithm
performance. Section 5 gives a summary and introduces further work.

2. Framework and Model Establishment
2.1. System Framework

In an unknown environment, the UAV cluster detects and builds the map using its own
sensors and independently plans the next path or action according to the real-time built
map. In the exploration process, UAVs intercept the global map separately at the ground
station and generate a local map for prediction and planning, while the new environmental
data obtained in the movement are sent to the ground station for the global map update.
The map is in the form of a grid map. Each grid has three states: unknown, known free,
and known obstacle. Position and attitude messages can be obtained for planning cluster
collision avoidance through communication.

For each individual in the UAV cluster, the critical factors for the decision behavior
include two aspects: the new situation of the possible exploration map after the path is
executed and the advantage of the terminal of the path for the next exploration action.
Among them, the map change comes from the increment in the grid in the unknown state
to the known state, which is calculated by the fast approximate method mentioned below.
Considering the tendency of the terminal state to the unexplored area and referring to the
generation method of the frontier, the frontier closest to the current position is generated
from the map before the path is executed, and the terminal state closer to the frontier
after the path is executed is considered the better terminal. Other factors that must be
considered in cluster exploration include path obstacle conflict, path energy loss, and
collision avoidance in the cluster, as shown on the right side of Figure 1.
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The left side of Figure 1 shows the DNBPT framework we propose. We set a prediction
horizon as the time domain for each plan and plan the series paths of the UAV with a fixed
length. We take a multistep sampling and preferential growth method, sample in a limited
state space, and inversely calculate the dynamic path through the terminal state to obtain
the path and terminal state. Considering the factors mentioned above to evaluate, we
select a certain number of action sequences with high evaluation. Due to the nonoptimal
solution by limited sampling, the series of paths obtained is used as the initial solution
of the improved BPSO algorithm to further optimize and finally obtain the optimal path
and terminal sequence. The controller responds to the first step of the optimal sequence to
address sudden obstacles or other situations in the actual movement. In this framework,
UAVs can join or leave the exploration mission freely without causing disorder in the
whole system.

2.2. Exploration Model in Unknown Environments

The dynamics of the UAV have the property of differential flatness [32]. In the planning
process, the flat output s =

[
px, py, pz, ϕ

]T is used as the planning quantity to reduce the
planning dimension and improve the timeliness. px, py, pz is the position of the UAV and ϕ
is the yaw angle.

The obtained detection area is fitted with the local grid map to obtain the index of the
grid map and bring it into the global map, as shown in Equation (1).

Grid(Mapnew) = Grid(explored) ∪ Grid(Mapold) (1)

Assume that k is the length of the prediction horizon and Sk = [s(t + 1|t), . . . , s(t + k|t)]
is the state sequence in the prediction horizon as the input of the predictive map update
and the evaluation function.

The UAV carries sensors with an observation field of view (FOV) to detect environ-
mental information. In this paper, the sensor mapping algorithm is not considered, and it
is assumed that the sensor can obtain the environment information within the angle range.
The sensor can be equivalent to a sector, and its detection range within the prediction
interval can identify the trajectory of the sensor’s sector area driven by the k segment
control for integration, as shown in Equation (2), where G(◦) represents the processing
program of the region on the grid map and Nincrease represents the number of new grids.

Nincrease =
k

∑
i=1

G
(∫ li+1

li
sector(FOV) dl

)
, FOV ∈ (0, π] (2)

Due to the complexity of the integral calculation and the grid form of the map, we
propose a simplification to predict the update of the map and calculate the number of new
detection grids, as shown in Figure 2. The sampling range and time interval are limited
to ensure that the state falls in the previous detection sector. For a state Si in the terminal
state sequence Sk, we connect the two points Pi−1 and Qi−1 of the previous sector and the
two points Pi and Qi of the current sector. A convex quadrilateral is formed, and each
convex quadrilateral is connected. The obtained convex quadrilateral is placed into the
local map to calculate the number of new exploration grids as the evaluation basis of the
path-terminal sequence, as shown in Equation (3).

Ñincrease = G

(
k

∑
i=1

Ai(Pi−1Qi−1PiQi)

)
(3)

This equivalent method improves the calculation efficiency to support online UAV planning.
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2.3. Construction of the Evaluation Function

In the process of exploring the unknown environment, the form of the solution is the
terminal state sequence of the predicted horizon and the path between the state transitions.
Its optimality evaluation includes two aspects: the path and the terminal state.

First, the path needs to be checked for obstacle conflicts, and it is necessary to ensure
that the planned path of the cluster will not collide with the obstacles that have been
explored. The path points in the process are extracted by interpolation, and the obstacle is
checked in the grid map. The results are accumulated for the evaluation function value, such
as Equation (4). Note that this is not applied in sampling but in the optimization algorithm.

J0 =

{
−100, collision

0, collision free
(4)

In the action space, under the constraint conditions, the average energy consumption
of the action sequence is smallest, as shown in Equation (5), where dim (u) is the dimension
of the action space.

J1 = 1−
∑k

i=1 ∑ uT
i diag

(
1

umax2

)
ui

k ·dim(u)
(5)

To ensure the continuity and smoothness of the front and back actions, it is necessary
to minimize the front and back deviation of each step in the action sequence, as shown in
Equation (6):

J2 = 1−
∑k

i=0 ∑l
j=0
‖uj+1−uj‖
‖uj+1‖

k
(6)

The exploration of unknown space during the UAV’s movement brings gain. The
calculation method of the number of new exploration grids is proposed above, and the
evaluation function is shown in Equation (7). Nre f erence refers to the number of exploration
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grids in the ideal state. The calculation method is shown in Equation (8), where r is the
sensor detection distance, d is the fixed maximum distance for sampling, and rev is the map
resolution (magnification).

J3 =
Ñincrease
Nre f erence

(7)

Nre f erence = 2krd sin
(

Fov
2

)
rev (8)

Because the environment is unknown, the exploration gain under different paths
may be similar. In the later stage of the exploration process, it may occur that the UAV’s
surrounding environment has been completely explored. It is easy to fall into the local
optimum, causing invalid and repeated paths. Therefore, the guidance of other factors is
needed to enable the UAV to move in the direction that the gain may increase. The rating
function of this part is shown as Equation (9):

J4 = 1− e
1− ‖s0−sr‖
‖sk−sr‖ (9)

where sk is the state at moment k, s0 is the initial state, and sr is the reference guidance state.
We use frontier coordinates and straight orientation as references in this paper, and the
frontier is rapidly generated through the edge detection of OpenCV.

To improve the exploration efficiency of the cluster, the UAVs should be distributed as
far as possible. Therefore, the evaluation function is designed for the terminal state, as in
Equation (10), where rs is the set safety distance and n is the number of UAVs in the cluster.

J5 = ∑
rs

(n− 1)·‖srobot
(

px, py
)
− sother

(
px, py

)
‖

(10)

Based on the above evaluation factors, the total evaluation functions used in selective
sampling and improved BPSO, respectively, are designed as Equations (11) and (12), respectively:

Jsampling =
5

∑
j=1

ωj Jj (11)

JiBPSO = J0 +
5

∑
j=1

ωj Jj (12)

where ωjε[0, 1] is the weight value, which can be adjusted according to the actual situation,
while ∑5

j=1 ωj = 1.

3. Method and Algorithm
3.1. Multistep Selective Sampling Algorithm

To make UAVs better adapt to unknown environments, planning is often performed
in multiple steps. Planning the multipath within a certain planning horizon and executing
the first segment of the optimal path are needed. In the calculation process, the number
of samples will increase exponentially with the increase in the number of segments in the
planning horizon, and the calculation cost is unaffordable. Therefore, we design a multistep
selective sampling method. During each round of sampling, we sample the sequence with
high current evaluation in the next step. The pseudocode of Algorithm 1 shows more
details of the multistep selective sampling method.

An empty set X saves path and terminal sequences with lengths less than k, and an
empty set F saves sequences with lengths equal to k. In the sampling space under the
constraint conditions, m terminal states are randomly taken to be composed on the initial
state as the initial sequence, and then the loop begins while the sequence gradually grows.
In each loop, the best n solutions in the set X are selected for the next step of sampling.
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Each solution also takes m states randomly in the updated sampling space based on the
current state to make the sequence grow and update these sequences in X . The sequence
with a length of k is placed in F and will not be selected again for the next sampling. When
the evaluation value of the n th better sequence in F is greater than the best evaluation
value of the sequence in X , the sampling process is finished.

After multistep selective sampling, n path and terminal state sequences are obtained
as the basis of the next optimization algorithm.

Algorithm 1 Multistep selective sampling

Input: Grid Map, initial state x0, sample space U , other states xothers
Parameters: planning horizon k, number of samples m, n, safe distancers
Output: aggregate of terminal state sequence Xn

k with path
update U
X , F ← ∅
sampling random m in U , generate Xn

1 , X ← Xn
1

while X is not empty
select the best m sequences with length <k
update U
uniform sampling m in U based on the selected sequences Xn

i , i ∈ [1, k− 1]
Xn

i ·X
n
i+1

update the evalution value of Xn
i //according to the Equation (11)

if i < k then X ← Xn
i

else F ← Xn
k

if the nth best X in F better than the best X in X then
break

select the best n in X as output

3.2. Improved Discrete Binary Particle Swarm Optimization Algorithm

To select the optimal path from the generated multiple paths, we propose an optimal
path selection method based on improved BPSO. We propose a mutation strategy to
increase the diversity of the population, which can help the particle swarm jump out
of the local optimum trap. In addition, we introduce a contraction factor to ensure the
convergence performance of the algorithm [33], which controls the final convergence of
the system behavior and can effectively search different regions. This method can obtain
high-quality solutions.

The velocity and position update formulas of the particle swarm after introducing the
contraction factor is shown as Equations (13) and (14), respectively:

vt+1
id = λ

(
vt

id + c1r1
(

pbestt
id − xt

id
)
+ c2r2

(
gbestt

id − xt
id
))

(13)

xt+1
id = xt

id + vt+1
id (14)

where λ represents the shrinkage factor, as shown in Equation (15), t represents the current
iteration number, c1 and c2 are the learning factors [34–36], r1 and r2 are two random values
uniformly distributed in [0, 1], and pbestid and gbestid represent the individual optimal
position and the global optimal position of the particle, respectively.

λ =
2∣∣∣∣2− (c1 + c2)−

√
(c1 + c2)

2 − 4 ∗ (c1 + c2)

∣∣∣∣ (15)

Our mutation strategy introduces the idea of the dMOPSO [37] algorithm, and age is
used to represent the number of times that the individual optimal position (pbest) of the
current particle has not been updated continuously in the loop. When the local optimal
position of the particle has not been updated for a long time, it means that the particle
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is likely to have fallen into the local optimal position, and it is necessary to perturb the
particle. The specific perturbation example is shown in Figure 3.
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The state of particles is converted into binary form. In each coordinate, a bit of the
position is randomly selected for the mutation operation. After the mutation operation,
the particle’s age is reset to 0. If the particle’s age does not reach the age threshold, only
the particle’s age is increased. The pseudocode of the mutation operation is shown in
Algorithm 2:

Algorithm 2 Mutation strategy

Input: Pop(swarm), Pbest, N(size of the population), Ta(threshold of age)
Output: NewPop(new swarm)
for i = 1 : N do

if age(Pi) > Ta then
Pi
′ ← Mutation(Pi)

Fitness← CalculateFitness(Pi) //according to the Equation (12)
if fitness(Pi

′) > fitness(Pi) then
Pi = Pi

′

age(Pi) ← 0
else

age(Pi)← age(Pi) + 1
end if

end for
return NewPop

The proposed improved BPSO algorithm is mainly divided into two stages. The first
stage is the initialization stage. We encode and initialize the particle swarm according to
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the input path information, randomly initialize the speed and the age of the initialization
particle, and finally calculate the fitness value of the particle. The second stage is the main
loop stage. When the particle’s age exceeds the age threshold, the mutation operation is
performed. The loop is finished when the termination condition is met. The final returned
Gbest is the optimal sequence of terminals with paths. The pseudocode of the Algorithm 3 is:

Algorithm 3 Improved DBPSO

Input: original Pop, size of the population N, maximal generation number maxgen
Output: Gbest (optimal sequence of terminal state with path)

P← InitializeParticles(N)
Age← InitializeAge(N)
Fitness← CalculateFitness(N)
While NCT (Number of current iterations) <= maxgen do

for i = 1 : N do
Gbest←SelectGbest(Pop)

Pop← Updateparticles(N) //according to the Equations (13)–(15)
NewPop ← Mutation(Pi)
Fitness← CalculateFitness(N) //according to the Equation (12)
Pop← NewPop

Gbest ← SelectGbest(Pop)
end for

end while
return Gbest

4. Simulation and Analysis
4.1. Simulation in Fixed-Obstacle Scenes

We design three indoor scenes with fixed obstacles of different sizes based on the
interior of the building, and the number of UAVs in each scene is different. Due to the
indoor scene, we assume that the UAV is flying at a fixed altitude. The sizes of the scene
are 20 m long and 50 m wide, 50 m long and 50 m wide, and 100 m long and 100 m wide,
respectively. The numbers of UAVs are 3, 4, and 5. For each scene, simulations of a fixed
initial state and a random initial state are carried out. The initial states of all scenes are
shown in Figures 4a, 5a, 6a, 7a, 8a and 9a. More detailed parameters about the scenes and
algorithm are shown in Tables 1 and 2.
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Figure 5. Simulation results of the random initial state in Scene I. (a) The initial state of the simulation
and the obstacle; (b) the situation at a certain moment (8.4 s) in the exploration process; (c) the
situation of exploration results.
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Figure 6. Simulation results of the fixed initial state in Scene II. (a) The initial state of the simulation
and the obstacle; (b) the situation at a certain moment (46.8 s) in the exploration process; (c) the
situation of exploration results.
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and the obstacle; (b) the situation at a certain moment (34.0 s) in the exploration process; (c) the
situation of exploration results.
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Table 1. Parameter setting for three scenes.

Scene I

Map Parameters: map size: 20 m × 50 m, resolution: 0.25 m × 0.25 m
Initialization

(
px, py, ϕ

)
*: UAV1:(4,0,90), UAV2:(10,0,90), UAV3:(16,0,90)

detection radius: 5 m, Fov: 104◦, rs: 3 m, max velocity: 2.5 m/s, end rate: 99.5%

Scene II

Map Parameters: map size: 50 m ×50 m, resolution: 0.4 m ×0.4 m
Initialization

(
px, py, ϕ

)
*: UAV1:(13,0,90), UAV2:(21,0,90), UAV3:(29,0,90), UAV4:(37,0,90)

detection radius: 5 m, Fov: 104◦, rs: 3 m, max velocity: 2.5 m/s, end rate: 99%

Scene III

Map Parameters: map size: 100 m ×100 m, resolution: 0.5 m ×0.5 m
Initialization

(
px, py, ϕ

)
*: UAV1:(34,0,90), UAV2:(42,0,90), UAV3:(50,0,90),

UAV4:(58,0,90), UAV5:(66,0,90)
detection radius: 5 m, Fov: 104◦, rs: 3 m, max velocity: 2.5 m/s, end rate: 99%

* Only for the fixed initial state.

Table 2. Parameter setting for three algorithms.

Parameters Value

predict horizon k = 5
sample num m = 10, n = 50

weight distribution ω1 = 0.1, ω2 = 0.1, ω3 = 0.5, ω4 = 0.2, ω5 = 0.1
learning factor c1, c2 = 1.46

threshold of age Ta = 3
population size N = 50

max number of generations maxgen = 100
simulation step t = 0.2 s
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1. Simulation in Scene I

Figure 4 shows the simulation results of three UAV explorations in Scene I, with fixed
initial UAV states to start. The exploration takes 36.8 s. It can be seen that the cluster can
realize well the exploration of the environment in a short time, and there are few repeated
paths, unless it is necessary to leave the impasse that is surrounded by obstacles. Figure 5
shows the results of random initial states, and the exploration takes 34.6 s. We can see that
the cluster can explore well in any initial state, with the same short time cost and fewer
repeated paths.

2. Simulation in Scene II

Figure 6 shows the simulation results of four UAV explorations in Scene II, with fixed
initial UAV states to start. The exploration takes 62.0 s. Figure 7 shows the results of
random initial states, and the exploration takes 63.2 s. In medium-size scenes, UAVs in the
cluster avoid repeated exploration in the same area through a distributed strategy. The
UAV can quickly return to exploring other areas after the exploration of corners or the
impasse. In the random initial state, the UAV’s performance is almost unaffected.

3. Simulation in Scene III

Figure 8 shows the simulation results of four UAV explorations in Scene III, with
fixed initial UAV states to start, and Figure 9 shows the situation of random initial states.
Exploration takes 190.0 s and 214.8 s, respectively.

With the expansion of the scale of the exploration scene and the increase in the
complexity of the internal structure, the difficulty of cluster exploration is also increasing,
and the UAVs show a complex movement. The random initial state brings uncertainty to
the exploration process. Under the above factors, whether the exploration efficiency can
be maintained is the key point of the exploration method. The proposed method can still
maintain the complete exploration of the area in large scenes, and there is less repeated
exploration. There may be a tendency for multiple UAVs to move in the same direction at
the end of the exploration. This is because we do not allow the UAV to be idle, to achieve
the fastest exploration speed. As the environment is unknown, it is difficult to define which
UAV can reach the unexplored area faster, so we keep every UAV in the cluster continuously
exploring until the area is fully explored. This ensures the shortest exploration time, but
may bring a waste of energy for engineering applications. It can be adjusted according to
the actual application, for example, using conditional judgments to make some UAVs idle.

4. Comparing the methods in three scenes

Due to the randomness of the environment exploration process, we conduct 100 simulations
for each situation (fixed initial state and random initial state in each scene) and count the
time cost of exploration and compare it with the two classical methods, as shown in Table 3.
The frontier-based method is a method with fixed results when the frontier generation,
map, and initial state are fixed. The NBV and DNBPT methods have some randomness in
the process for deeper exploration. The average exploration efficiency of a single UAV in
all scenes is also compared, as shown in Figure 10.

Compared with the frontier-based method and the NBV, the exploration efficiency
of the proposed method in each scene has a great advance. In Scene I, the exploration
efficiency is increased on average by approximately 85.7% and 34.4% with fixed initial states
and 71.4% and 33.1% with random initial states, respectively. In Scene II, the efficiency
is increased by approximately 107.0% and 36.0% with fixed initial states and 108.7% and
35.8% with random initial states, respectively. In Scene III, the efficiency is increased
by approximately 122.1% and 36.6% with fixed initial states and by 124.4% and 33.9%
with random initial states, respectively. For larger and more complex indoor scenes, the
improvement effect of the proposed method is more obvious.
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Table 3. Results and comparison of multiple simulation data samples in the fixed obstacle scenes.

Exploration Time (s)

Initial Method Mean Best Worst Std

Scene I

Fixed
Proposed 32.6 26.4 38.8 3.0

Frontier-based 61.2 - - -
NBV 44.3 36.8 62.6 6.0

Random
Proposed 35.9 30.4 42.0 3.1

Frontier-based 61.6 39.2 75.6 6.6
NBV 47.8 39.6 68.6 6.9

Scene II

Fixed
Proposed 65.9 60.8 76.4 4.0

Frontier-based 136.4 - - -
NBV 89.5 74.2 107.0 6.7

Random
Proposed 70.5 61.6 80.8 4.6

Frontier-based 147.1 95.2 185.6 16.9
NBV 95.7 80.8 112.4 7.4

Scene III

Fixed
Proposed 205.4 188.2 221.0 8.9

Frontier-based 456.2 - - -
NBV 280.5 247.4 302.6 14.7

Random
Proposed 211.9 193.2 249.2 10.0

Frontier-based 475.5 296.2 700.4 43.1
NBV 283.9 251.8 305.8 14.6
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In the simulation process of algorithm comparison, it is found that the frontier-based
method has a good effect in the early stage of exploration. However, in the end stage, due
to its greedy strategy that tends to the nearest point, many omissions in the early stage need
to be explored in reverse, resulting in a waste of efficiency. This becomes more obvious
with increasing exploration rate requirements. The NBV method can carry out deeper
exploration locally, but it loses the directional guidance of the global environment and
produces repeated meaningless paths. The proposed method combines the advantages of
the two methods, including deep local exploration and global guidance, to improve the
exploration efficiency of UAV clusters and reduce repetitive paths.

This proves the effectiveness and superiority of the method in complex indoor scenes.
In addition, the proposed method shows a stabler exploration efficiency in uncertain scenes
and can complete the exploration quickly in any initial state.
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4.2. Simulation in Random-Obstacle Scenes

To explore the applicability of our method in other scenes, we design a random
obstacle scene for simulation. We simulate scenes with dense small obstacles such as trees,
where obstacles are randomly generated and their size is limited, as shown in Figure 11. We
also design the situations of a fixed initial state and a random initial state. The scene size is
set to be 100 m long and 30 m wide, and four UAVs form a cluster. The number of obstacles
in the scene is 40, and the maximum side length of obstacles is 3 m. The simulation is also
designed for constant-altitude flight. The initial state

(
px, py, ϕ

)
of the UAV in fixed scenes

is (0, 3, 0), (0, 11, 0), (0, 19, 0), and (0, 27, 0). The terminal condition for exploration is that
the map exploration rate reaches 99%.
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Figure 11. Scene with randomly dense small obstacles. (a) The situation of the fixed initial UAV
states; (b) the situation of random initial UAV states.

Similarly, we conduct 100 simulations for a fixed initial state and a random initial state
and compare them with other algorithms. The simulation results of once in each scene
are shown in Figures 12 and 13, and the statistical data are shown in Table 4. Under the
condition of fixed initial states, the cluster can complete the exploration with few repeated
backtrackings and a high rate of coverage while crossing the obstacle area. The random
initial state has an impact on the exploration, leading to more possible backtrack and
repetitions, but it can still be handled well for reduction.
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Table 4. Results and comparison of multiple simulation data samples in random obstacle scene.

Exploration Time (s)

Initial Method Mean Best Worst Std

Fixed
Proposed 73.7 60.0 82.8 6.1

Frontier-based 101.3 90.2 131.4 9.7
NBV 92.4 82.8 109.2 9.0

Random
Proposed 74.8 64.8 86.4 6.2

Frontier-based 104.8 91.4 138.8 10.9
NBV 93.3 80.4 114.6 8.3

Regarding the exploration of areas with dense small obstacles, compared with the
frontier-based method and NBV, the exploration efficiency is increased on average by
approximately 37.4% and 25.2% with fixed initial states and 40.1% and 24.8% with random
initial states, respectively. The comparison proves the good performance in the environment
with dense small obstacles.

5. Conclusions

In this paper, we propose a DNBPT method for UAV clusters to explore unknown
environments. The gain is calculated by comprehensively considering the contribution
of the path process and the terminal state to the exploration, and the optimal path is
evaluated and selected by multistep optimal sampling and the improved BPSO algorithm.
The simulation results show that this method has advantages in different types and sizes
of scenes. In addition, this method has strong generality and can be transplanted to other
robot platforms.

Author Contributions: Conceptualization, Y.W. and X.L.; methodology, Y.W. and X.L.; software,
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