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Abstract: This paper proposes a hybrid intelligent agent controller (HIAC) for manned aerial vehicles
(MAV)/unmanned aerial vehicles (UAV) formation under the leader–follower control strategy. Based
on the high-fidelity three-degrees-of-freedom (DOF) dynamic model of UAV, this method decoupled
multiple-input-multiple-output (MIMO) systems into multiple single-input-single-output (SISO)
systems. Then, it innovatively combined the deep deterministic policy gradient (DDPG) and the
double deep Q network (DDQN) to construct a hybrid reinforcement learning-agent model, which
was used to generate onboard desired state commands. Finally, we adopted the dynamic inversion
control law and the first-order lag filter to improve the actual flight-control process. Under the
working conditions of a continuous S-shaped large overload maneuver for the MAV, the simulations
verified that the UAV can achieve accurate tracking for the complex trajectory of the MAV. Compared
with the traditional linear quadratic regulator (LQR) and DDPG, the HIAC has better control efficiency
and precision.

Keywords: MAV/UAV; formation control; hybrid reinforcement learning; hybrid intelligent agent

1. Introduction

Aiming at increasingly fast-paced and high-intensity air combat, the use of MAVs as
combat operations leaders with a certain number of UAVs as wingers to form a hybrid
formation of UAV/MAV has become the development trend for future air confrontations.
Among them, the two-aircraft formation consisting of an MAV and a UAV is one of the
most typical combat styles. In MAV/UAV formations, the unmanned system must be
able to share information and carry out cooperative operations with the manned systems
across systematic boundaries [1]. The Fast Lightweight Autonomy (FLA) Program by
the Defense Advanced Research Projects Agency (DARPA) has developed an advanced
algorithm that enables an MAV or a UAV to operate autonomously without a human
operator, the Global Positioning System (GPS), or any data resources. DARPA’s Lifelong
Learning Machines (L2M) Project also aims to develop new machine learning methods
that enable unmanned systems to continuously adapt to new environments and remember
what they have learned [2]. Meanwhile, the U.S. Air Force’s Loyal Wingman Program
aims to enhance the autonomy of UAVs and improve their combat capabilities in complex
war environments [3]. Moreover, the recently proposed Skyborg program is working on
the combination of manned and unmanned combat aerial vehicles. Therefore, improving
the capability of autonomous flight control has become an important direction for the
development of future UAV technology.

One of the research hotspots of UAV autonomous control capability is the formation
flight-control problem [4]. In terms of the traditional design of the formation controller,
Ref. [5] proposed a sliding mode controller for MAV/UAV formation flights based on a
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layered architecture. However, it makes extensive simplifications on the strong nonlinear
dynamic model of MAV/UAVs, and was only validated by simulations for flat trajectories.
Ref. [6] considered sensor noise and developed a leader–follower formation PID controller
for multi-robots, which can achieve better performance in limiting position deviations.
Furthermore, Ref. [7] proposed a parallel approach control law for fixed-wing UAV for-
mations under the leader–follower strategy. Ref. [8] referred to an idea of multi-channel
decoupling that split the MIMO system into multiple SISO systems and used sliding mode
control to track the reference trajectory, which can be further applied to formation-control
problems. Refs. [9,10] proposed a consensus-based multiple aircraft cooperative formation
control method, but the consensus theory analysis was highly dependent on the linearized
dynamic model, which limited its further application in a complex nonlinear dynamic
system. Refs. [11,12] developed a formation controller where the commands were gen-
erated independently of the dynamic model, decreasing the control precision in extreme
working conditions. Refs. [13,14] considered the confrontation situation and adopted pre-
defined maneuver strategy collections, taking typical maneuvers as the basic units and
building a collection of maneuver strategies with free combinations of various basic units.
However, due to the model uncertainty and non-cooperative environment, this method
hardly dealt with complex working conditions. Therefore, the intelligent agent method has
become a novel research trend because of its weak model dependence and strong ability in
terms of strategy exploration. Refs. [15,16] adopted deep neural networks to learn aircraft-
maneuvering strategies and made progress in enhancing the autonomous maneuvering
capability of UAVs. However, UAV formation control is a high-dimensional dynamical
control problem with tightly coupled variables. When traditional neural networks learn
such complex behaviors, they cause problems such as low training efficiency and difficulty
in stable convergence [17]. Among the novel neural networks, the double deep Q network
(DDQN) algorithm has shown good performance in control problems with discrete action
sets by fitting the value functions of state actions through neural networks [18–20], but it
cannot be applied to control problems with continuous variables. Based on the determinis-
tic policy gradient (DPG) algorithm, DeepMind proposed the deep deterministic policy
gradient (DDPG) algorithm which is proven to perform well on many kinds of continuous
control problems [21–23]. However, in the field of aircraft control, the large variation in the
angle of attack commands will increase the load on the attitude control loop [24]. Mean-
while, when it comes to complex tasks with multiple continuous control variables problems,
DDPG has problems with unstable networks and low exploration efficiency [25–28]. For
the above dilemma, some scholars have turned to hybrid reinforcement learning methods
in recent years. By adding discrete “meta-actions” to continuous control problems, Ref. [29]
partially solved the reinforcement learning traps and improved exploration efficiency. The
experiments verified its superiority to the traditional continuous strategy algorithm in
some cases. [30] proposed the parametrized deep Q-network for the hybrid action space
without approximation or relaxation, which provides a reference for solving the hybrid
control problem.

Based on the above analysis, it is obvious that the formation controller must be able to
better adapt to complex flight conditions in future confrontation situations, e.g., continuous
large overload maneuvers for the MAV, etc. Therefore, inspired by [29], we propose
a hybrid reinforcement intelligent agent controller based on the decoupling of multi-
channels, which can effectively solve the problem of formation-tracking under continuous
maneuvering conditions. It should be emphasized that when designing controllers based
on artificial intelligent methods, especially when the reinforcement learning controller
is directly applied to the generation of underlying flight-control commands, the lack of
flight dynamic constraints can easily bring about problems. Due to the lack of dynamic
constraints, the attitude control system cannot quickly track the commands, leading to
flight instability. Therefore, this paper introduced the dynamic inversion controller and the
first-order lag filter to the hybrid reinforcement learning agent to enhance the smoothness
and executability of control commands.
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In summary, the main contributions of this paper are as follows:
(1) A hybrid intelligent agent was designed based on the novel concept of “meta-

action” to further enhance formation control performance. The hybrid intelligent agent
combined DDPG and DDQN according to the specific formation control targets;

(2) The framework of the HIAC was developed that combined the dynamic inversion
controller and the first-order lag filter with the hybrid intelligent agent to effectively
overcome the common drawbacks of reinforcement learning;

(3) The superiority of the HIAC method was validated with experiments of nominal
conditions. Monte Carlo simulations with different initial conditions were then conducted
to verify the adaptability of the HIAC.

The organization of this paper is as follows: Section 2 establishes the UAV dynamic
model and formation-control targets. Section 3 designs the novel formation controller HIAC
based on the DDPG/DDQN hybrid intelligent agent. The dynamic inversion controller
and first-order lag filter are introduced to the framework of the HIAC as well. Section 4
conducts the experiments of nominal conditions and 100 Monte Carlo simulations with
varying initial conditions. Finally, we summarize the research conclusion of this paper in
Section 5.

2. Mathematical Modeling
2.1. UAV Dynamic Model

The main concern in dual aircraft formation flights is the real-time position, velocity,
and attitude of the two aircraft, so it is necessary to establish a dynamic model of the UAV
according to the forces on the mass as shown in Figure 1. To simplify the problem, the
constraints flight envelope is ignored.
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Figure 1. The forces on the center of gravity of the aircraft.

In the ground inertial coordinate system o− xyz, V is the UAV flight velocity. γ and
ψ are the flight path angle and flight azimuth angle, respectively. The flight adopts the
Bank-To-Turn (BTT), which is considered to have no sideslip. α is the attack angle, and
σ is the bank angle. The engine thrust and drag of the aircraft are denoted by T and
D, respectively. n is the normal overload of the UAV in the velocity coordinate system
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o− xVyVzV . Ignoring the wind disturbance in the flight, the three-degrees-of-freedom of
the dynamic model for the UAV is established as follows [31–33]:

H =



.
x = V cos γ sin ψ
.
y = V cos γ cos ψ
.
z = V sin γ
.

V = (T − D)/m− g sin γ
.
γ = g(n cos σ− cos γ)/V
.
ψ = −gn sin σ/(V cos γ)

, (1)

where m is the weight of the aircraft, which is considered constant in this paper, and g is
the local gravity.

The engine thrust T can be denoted by

T = ηTmax, (2)

where η is the throttle manipulator, and its range is defined as [0, 1]. Tmax is the maximum
thrust that the engine can achieve.

The air drag D consists of the parasite drag and the induced drag, which can be
expressed as follows [31]:

D = CDP ρV2S/2 + 2CDI n
2m2g2/

(
ρV2S

)
, (3)

where S is the reference area of the UAV. CDP is the parasite drag coefficient. CDI is the
induced drag coefficient. ρ is the atmospheric density, which varies with the altitude of the
aircraft in the stratosphere. It is calculated by [34]

ρ = ρ0 · e−z/z0 , (4)

where ρ0 = 1.225 kg/m3 and z0 = 6700 m.

2.2. Formation Control Targets

In this paper, the formation control target of the UAV was determined based on the
leader–follower formation strategy. Taking a typical dual aircraft formation flight as an
example, the formation configuration of the MAV/UAV was designed as shown in Figure 2.
Since the reference trajectory of the MAV as the leader aircraft is known, the flight velocity,
attitude, and position can be obtained from the sensors mounted within the MAV. The
winger aircraft can receive real-time flight data from the MAV through the onboard data
chain and complete the trajectory tracking and formation control autonomously. During
the flight, it is required that the UAV and MAV keep a specific formation throughout the
whole flight, as shown in Figure 2.
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2.2.1. Flight Velocity Control Targets

The MAV and UAV keep the same formation flight velocity. The reference velocity of
the MAV is VL, and the UAV velocity is VW , then the velocity deviation ∆V is

∆V = |VL −VW |. (5)

The MAV and UAV keep the same flight path angle in formation flight. The MAV
flight path angle is γL, and the UAV flight path angle is γW , then the flight path angle
deviation ∆γ is

∆γ = |γL − γW |. (6)

The MAV and UAV keep the same flight azimuth angle in formation flight. The flight
azimuth angle of the MAV is ψL, and the flight azimuth angle of the UAV is ψW , then the
deviation of the flight azimuth angle ∆ψ is

∆ψ = |ψL − ψW |. (7)

The flight velocity and attitudes of the UAV should be consistent with the MAV within
an allowable error

∆V ≤ V∆max, ∆γ ≤ γ∆max, ∆ψ ≤ ψ∆max, (8)

where V∆max, γ∆max, ψ∆max represent the error thresholds of the velocity, flight path angle,
and flight azimuth angle of the UAV, respectively.

2.2.2. Flight Distance Control Targets

The UAV is located around the MAV and maintains the specified formation distance.
∆D denote the distance between the MAV and the UAV in the ground inertial coordinate
system. ∆Dx, ∆Dy and ∆Dz denote the spatial distance of ∆D as follows:

∆D =
√

∆Dx2 + ∆Dy2 + ∆Dz2. (9)

Summarily, the UAV should keep a distance larger than the safe flight distance from
the MAV, which is as follows:

D∆min ≤ ∆D ≤ D∆max, (10)

where D∆min and D∆max represent the thresholds of the safe distance.

3. Design of the HIAC

The HIAC first adopted a DDPG/DDQN hybrid reinforcement learning method to
train the agent model to generate the tracking commands. Then, we further designed a
dynamic inversion controller and a first-order lag filter to construct an improved formation
flight controller. Overall, the HIAC consists of three parts, i.e., desired state command
solver, dynamic inversion controller, and first-order lag filter. The framework of the HIAC
is shown in Figure 3.
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In order to track the MAV, the HIAC adopted the current deviation between the states
of the UAV and the states of the MAV, i.e., ∆V, ∆γ and ∆ψ as inputs, and outputs the
control commands of the thrust, normal overload, and bank angle, i.e., η, n and σ. The
main difference of the HIAC from other traditional controllers is that to further enhance
the control accuracy, the HIAC adopted a hybrid intelligent agent as the desired command
solver to generate the desired commands, Vc, γc and ψc. Then, these commands were sent
to the dynamic inversion controller to generate the control commands, ηc, nc and σc. Finally,
the first-order lag filter further smoothed ηc, nc and σc to improve the executability of these
commands. The three parts will be introduced in detail as the order of the information flow.

3.1. Desired Command Solver

Learning from the idea of “meta-action”, we partially discretized the control variables
in the continuous control problems and developed a continuous–discrete mixed action
space according to the characteristics of these control variables. Based on this process, we
constructed a hybrid intelligent agent based on DDPG and DDQN to control V, γ, ψ and D
of the UAV.

3.1.1. Framework of Hybrid Intelligent Agent Based on DDPG/DDQN

Based on the traditional Q-Learning algorithm, DDQN uses the neural network to fit
the value function. It adopts discrete action sets to define the strategy and evaluates the Q
value of the generated strategy through the Critic network. Compared with the traditional
DQN algorithm [18–20], DDQN decouples the action selection strategy of the Q value and
the calculation of the Q value and solves the problem of overestimation of the Q value
compared with the traditional methods.

DDPG adopts the Actor–Critic network based on DQN and uses continuous action sets
to define the control strategy. The model consists of the Actor–Critic network, where the
Critic evaluates the actions generated by the Actor, and the Actor feeds back the evaluation
results to the Critic for policy optimization [23]. More proofs and conclusions of the DDQN
and DDPG can be found in [18,23], respectively.

However, the DDQN and DDPG suffer from different drawbacks when applied in
practical engineering. Although the DDQN is easier to converge when compared with
DDPG, it can only deal with discrete and low-dimensional action spaces. However, most
of the practical targets, especially physical control targets, have continuous and high-
dimensional action spaces. Moreover, even though the continuous space can be transferred
into the discrete space, DDQN will generate high high-dimensional action space in this
process and finally cause quite low computational efficiency. Meanwhile, although DDPG
can solve the problem of continuous and high-dimensional action spaces, it is more likely
to diverge than DDQN. Therefore, learning from “meta-action”, we proposed a hybrid
intelligent agent combining the DDQN and DDPG according to their complementary
characteristics. Considering the value range and the control precision of V, γ and ψ,
we adopted the idea of multi-channel decoupling to perform partial discretization of
the action space. For the velocity control agent Vc, the DDPG was used to generate the
set of continuous state commands. Because the value range of Vc is larger than γc and
ψc, discretizing the continuous action space with high precision will lead to dimension
explosion. Meanwhile, for the angle control agents γc and ψc, the DDQN is used to generate
the set of discretized state commands. Combining the DDQN and DDPG can improve the
capability of convergence when these two agents are trained together.

The framework of the desired commands solver was designed as shown in Figure 4.
It includes three agents which process the variation of the state commands Vc, γc and
ψc, respectively. Based on the decoupling principles between different agents, each agent
calculates the action AV , Aγ and Aψ, and updates the desired state commands respectively.
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The outputs are executed by the flight-control system of the UAV and fed back the rewards
of each agent. The total reward function R∑ is expressed by

R∑ = R(D,V)
∑ + R(γ)

∑ + R(ψ)
∑ , (11)

where R(D,V)
∑ , R(γ)

∑ and R(ψ)
∑ are components of R∑ in each agent.
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To construct an intelligent agent based on the DDPG/DDQN hybrid reinforcement
learning network, it was necessary to transform the trajectory tracking problem into a
Markov decision process, which mainly includes three parts, i.e., the state space, the action
space, and the reward function.

3.1.2. State Space S

According to the targets of formation flight control, the state space S is designed as
follows:

S = [∆V, ∆D, ∆
.

V, ∆γ,
∫

∆γdt, ∆
.
γ, ∆ψ,

∫
∆ψdt ,∆

.
ψ], (12)

where ∆D equals

∆D = ∆D0 +
∫

∆Vdt, (13)

where ∆D0 is the flight distance deviation between the MAV and the UAV at the initial
epoch. The integral items ∆V, ∆γ and ∆ψ are the cumulative deviation from the initial
epoch till the current epoch. ∆

.
V, ∆

.
γ and ∆

.
ψ is the deviation rate of the velocity, flight

azimuth angle, and flight path angle.

3.1.3. Action Space A

The action space A is defined as follows:

A =
[
AV , Aγ, Aψ

]
, (14)

where the action AV denotes the correction value of the UAV velocity commands ∆Vc, the
action Aγ denotes the correction value of the UAV flight path angle commands ∆γc, and
the action Aψ denotes the correction value of the UAV flight azimuth angle commands
∆ψc, i.e., {

∆Vc = AV , ∆γc = Aγ, ∆ψc = Aψ

|∆Vc| ≤ λVcmaxc, |∆γc| ≤ λγcmax, |∆ψc| ≤ λψcmax,
(15)
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where λVcmax, λγcmax and λψcmax are the maximum of corrections, respectively. AV is used
to generate the set of continuous velocity commands. Aγ, Aψ is used to generate the set
of discretized angle commands. Specifically, the discretization can be further expressed
as follows:

|Ωγc | = 2dλγcmax/∂γce+ 1∣∣Ωψc

∣∣ = 2
⌈
λψcmax/∂ψc

⌉
+ 1

(16)

Ωγc = {Aγ|0,±∂γc,±2∂γc, · · · ,±(|Ωγc | − 1)∂γc/2,±λγcmax}
Ωψc =

{
Aψ

∣∣0,±∂ψc,±2∂ψc, · · · ,±
(∣∣Ωψc

∣∣− 1
)
∂ψc/2,±λψcmax

}
.

(17)

Then, the update of desired state commands is
Vc ← Vc + ∆Vc
γc ← γc + ∆γc
ψc ← ψc + ∆ψc.

(18)

3.1.4. Reward Function R∑

According to the formation control targets of UAVs, the reward function R∑ was
designed as follows:

R∑ = RP + RN + RC (19)

where RP is the reward sub-function, which gives a positive response when the flight state
of the UAV meets the control targets. RN is the penalty sub-function, which gives a negative
response when the flight states exceed the allowable error of the control target. RC is the
command limiting function, which can limit the values of the control commands ηc, nc, σc.
More specifically, RC can smooth the variation of the control commands to finally reduce
energy consumption.

RP is calculated by
RP = 10×

(
ε2

D + ε2
V + ε2

γ + ε2
ψ

)
(20)

where εD, εV , εγ, and εψ are reward coefficients, which are defined as follows

εD =

{
1, D∆min ≤ ∆D ≤ D∆max

0, ∆D < D∆min or ∆D > D∆max
,

εV =

{
1− ∆V/V∆max, ∆V ≤ V∆max

0, ∆V > V∆max
,

εγ =

{
1− ∆γ/γ∆max, ∆γ < γ∆max

0, ∆γ ≥ γ∆max
,

εψ =

{
1− ∆ψ/ψ∆max, ∆ψ < ψ∆max

0, ∆ψ ≥ ψ∆max
.

(21)

RN is calculated by

RN = −100×
(

e2
D + e2

V + e2
γ + e2

ψ

)
(22)
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where eD, eV , eγ, and eψ are penalty coefficients, which are defined as follows:

eD =

{
1, ∆D < D∆min or ∆D > D∆max

0, D∆min ≤ ∆D ≤ D∆max
,

eV =


1, ∆V > 2V∆max

∆V/V∆max − 1, V∆max ≤ ∆V ≤ 2V∆max

0, ∆V < V∆max

,

eγ =


1, ∆γ > 2γ∆max

∆γ/γ∆max − 1, γ∆max ≤ ∆γ ≤ 2γ∆max

0, ∆γ < γ∆max

,

eψ =


1, ∆ψ > 2ψ∆max

∆ψ/ψ∆max − 1, ψ∆max ≤ ∆ψ ≤ 2ψ∆max

0, ∆ψ < ψ∆max

.

(23)

RC is calculated by

RC = −0.2(|ηc|/ηmax + |nc|/nmax + |σc|/σmax). (24)

3.2. Dynamic Inversion Controller

To realize tracking of the commands of a given flight trajectory, the dynamic inversion
control law was designed as follows [35]

.
Vc = vV(Vc −V)

.
γc = vγ(γc − γ)
.
ψc = vψ(ψc − ψ)

(25)

where vV , vγ, and vψ denote the bandwidth of the controller, respectively. Vc, γc, ψc
denote the desired state commands of the flight velocity, the flight path angle, and the flight
azimuth angle, respectively.

Since the UAV commands follow the dynamic constraints by Equation (1), considering
Equations (1), (2), and (25) yields

Tc = ηcTmax = [D + mvV(Vc −V) + mg sin γ],

Nγ = vγV(γc − γ)/g + cos γ,

Nψ = vψV(ψc − ψ) cos γ/g,

(26)

where Nγ and Nψ denote the normal overload and lateral overload, respectively. The
throttle δc, normal overload nc and bank angle σc are selected as the control commands.
Then, the UAV control command was designed as follows:

F =


ηc = [D + mvV(Vc −V) + mg sin γ]/Tmax

nc =
√

Nγ
2 + Nψ

2

σc = arctan
(

Nψ/Nγ

) . (27)

Moreover, the control command must satisfy the constraints:

ηmin ≤ ηc ≤ ηmax, 0 ≤ nc ≤ nmax, |σc| ≤ σmax (28)
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where ηmin and ηmax is the minimum and maximum values of the throttle commands,
respectively. nmax is the maximum value of the normal overload, and σmax is the maximum
value of the bank angle.

3.3. First-Order Lag Filter

Considering the fact that the UAV cannot instantly complete the change of the engine
thrust, normal overload, and bank angle, a first-order lag filter model was constructed to
simulate the delayed variation processes of these three variables:

G =


.
η = (ηc − η)/τδ

.
n = (nc − n)/τn
.
σ = (σc − σ)/τσ

, (29)

where ηc, nc, σc represent the control commands of the throttle, normal overload, and bank
angle, respectively. τδ, τn, and τσ represent the response time of the UAV control system
accordingly.

Summarily, considering Equations (1), (27), and (29), the UAV flight process can be
presented by the control equations as follow:

F(Vc, γc, ψc)
T = [ηc, nc, σc]

T

G(ηc, nc, σc)
T =

[ .
η,

.
n,

.
σ
]T

H(η, n, σ)T = [V, γ, ψ]T

. (30)

Equation (30) reveals the calculation process from the desired control commands to
the actual control commands. It is clear that the premise to realize the formation flight is to
acquire the desired control commands of the UAV Vc, γc, ψc under the specific formation
strategy. Then, the ultimate flight trajectory can be obtained by the Runge–Kutta method.

4. Simulation Validation
4.1. Simulation Design

Based on the 3-DOF dynamic model in this paper, the MAV was designed to make a
complex maneuver and provide the reference trajectory and control commands, accordingly.
Under the leader–follower formation strategy, the UAV adopts the HIAC, DDPG, and LQR
to track the MAV and keep the dual aircraft formation, respectively. LQR is a commonly
used guidance method for tracking multi-state trajectories in aerospace engineering and it
has been validated by extensive flight tests [36,37]. Therefore, we compared the proposed
method with LQR and DDPG to verify its superiority in the following Sections 4.2 and 4.3.
The design of DDPG is described in Section 3.1.

First, the experiment of nominal conditions was conducted to analyze the superiority of
the proposed method in detail. Meanwhile, the initial values greatly affect the performance
of the reinforcement learning models. Therefore, the generalization ability of the model
was required to be fully verified. Then, 100 Monte Carlo experiments were conducted to
verify the adaptability of this method to different initial conditions.

The simulations were conducted by Matlab2021a and the 3-DOF dynamic model was
built by Simulink. The total simulation time was T, the simulation interval was ∆T, and
the specific experimental parameters are shown in Table 1.

The training methods of DDPG and DDQN refer to [18,23], respectively. Learning rate,
max episode, discount factor, and experience buffer length were set as the same for both
DDPG and DDQN. In addition, the batch size of DDPG was set to 256, and the batch size
of DDQN was set to 64. The specific parameters are shown in Table 2.
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Table 1. The experimental parameter settings.

Parameters Settings Parameters Settings

T (s) 50 ηmin 0
∆T (s) 0.1 ηmax 1

Tmax (lb) 25,600 nmax 6
m (kg) 14,470 σmax (rad) π/2

g (m/s2) 9.81 D∆max (m) 600
S (ft2) 400 D∆min (m) 100
CDP 0.02 V∆max (m/s) 50
CDI 0.1 ψ∆max (rad) 0.2

τδ (s) 0.6 γ∆max (rad) 0.2
τn (s) 0.5 λVcmax (m/s) 50
τσ (s) 0.5 λγcmax (rad) π/2
vV (s) 0.3 λψcmax (rad) π/2
vγ (s) 0.2 ∂γc (rad) π/180
vψ (s) 0.2 ∂ψc (rad) π/180

Table 2. The training parameters of DDPG/DDQN.

Parameters Settings

Learning Rate 0.0001
Max Episode 25,000

Batch Size (DDPG) 256
Batch Size (DDQN) 64

Discount Factor 0.99
Experience Buffer Length 1 × 106

4.2. Basic Principles of LQR

The implementation of LQR mainly includes three parts: linearization of the motion
model, design of the tracking controller for the reference trajectory, and solution of the
feedback gain matrix.

By linearizing the dynamic model of the UAV in Equation (1) with small deviations,
the linear system can be obtained as follows:

.
X = AX + Bu. (31)

Equation (31) can be expressed by

δ
.
x

rδ
.
y

δ
.
z

δ
.

V
δ

.
γ

δ
.
ψ


=



A11 A12 A13 A14 A15 A16
A21 A22 A23 A24 A25 A26
A31 A32 A33 A34 A35 A36
A41 A42 A43 A44 A45 A46
A51 A52 A53 A54 A55 A56
A61 A62 A63 A64 A65 A66





δx
δy
δz
δV
δγ
δψ

+



B11 B12 B13
B21 B22 B23
B31 B32 B33
B41 B42 B43
B51 B52 B53
B61 B62 B63


 δη

δn
δσ

. (32)

Set the given MAV trajectory as the reference, the state space is defined as follows:

δx = xW − xL, δy = yW − yL, δz = zW − zL,

δV = VW −VL, δγ = γW − γL, δψ = ψW − ψL.
(33)

The control commands are defined as follows:

δη = η − ηL, δn = n− nL, δσ = σ− σL, (34)
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where A and B are the partial derivative coefficient matrix calculated according to the mo-
tion differential equation and the feature points of the reference trajectory. The calculation
results are as follows:

A11 = A12 = A13 = 0,

A14 = cos γ sin ψ, A15 = −V sin γ sin ψ, A16 = V cos γ cos ψ,

A21 = A22 = A23 = 0,

A24 = cos γ cos ψ, A25 = −V sin γ cos ψ, A26 = −V cos γ sin ψ,

A31 = A32 = A33 = A36 = 0,

A34 = sin γ, A35 = V cos γ,

A41 = A42 = A46 = 0, A43 = Dz/m,

A44 = DV/m, A45 = −g cos γ,

A51 = A52 = A53 = A56 = 0,

A54 = −g(n cos σ− cos γ)/V2, A55 = g sin γ/V,

A61 = A62 = A63 = A66 = 0,

A64 = g sin σn/
(
V2 cos γ

)
, A65 = −gn sin σ sin γ/

(
V cos2 γ

)
,

B11 = B12 = B13 = B21 = B22 = B23 = B31 = B32 = B33 = 0,

B41 = Tmax/m, B42 = B43 = 0,

B51 = −Dn/m, B52 = g cos σ/V, B53 = −gn sin σ,

B61 = 0, B62 = −g sin σ/(V cos γ), B63 = −gn cos σ/(V cos γ).

(35)

where Dz, DV and Dn are the partial derivatives of the drag D on the feature point of the
reference trajectory to the flight height z, velocity V and normal overload n respectively.
Define the optimal control performance index from t0 to t f as follows:

J = 0.5
∫ t f

t0

[
XT(t)QX(t) + uT(t)Ru(t)

]
dt, (36)

where Q and R are the weight matrices of state and control respectively. Q is positive semi-
definite and R is positive-definite. Then, there exists an optimal control law u∗ = −K∗X to
minimize the above performance index, and the feedback gain matrix K∗ is

K∗ =

Kη1 Kη2 Kη3 Kη4 Kη5 Kη6

Kn1 Kn2 Kn3 Kn4 Kn5 Kn6

Kσ1 Kσ2 Kσ3 Kσ4 Kσ5 Kσ6

, (37)

K∗ = −R−1BTP (38)

where P is the solution of the Riccati equation. It is calculated by

−PA− ATP + PBR−1BTP−Q = 0. (39)

Define Q and R as follows:

Q = diag[Q1, Q2, Q3, Q4, Q5, Q6],

R = diag[R1, R2, R3].
(40)
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To reflect the impact of the flight relative distance in the dual aircraft formation flight.
Set Q1 = Q2 = Q3 and define δD2 = ∆D2 = δx2 + δy2 + δz2, then

J = 0.5
∫ t f

t0

[(
Q1δD2 + Q4δV2 + Q5δγ2 + Q6δψ2)

+
(

R1δη2 + R2δn2 + R3δσ2)]dt.
(41)

According to Bryson Law [38], Q and R are set as follows:

Q1D2
∆max = Q4V2

∆max = Q5γ2
∆max = Q6ψ2

∆max

= R1η2
max = R2n2

max = R3σ2
max.

(42)

Set Q1 = 1, then other parameters can be obtained. According to u∗, the control
commands can be obtained:

η = ηL −
(
Kη1δx + Kη2δy + Kη3δz + Kη4δV + Kη5δγ + Kη6δψ

)
,

n = nL − (Kn1δx + Kn2δy + Kn3δz + Kn4δV + Kn5δγ + Kn6δψ),

σ = σL − (Kσ1δx + Kσ2δy + Kσ3δz + Kσ4δV + Kσ5δγ + Kσ6δψ).

(43)

Since the feedback gains obtained at different feature points of the reference trajectory
are different, the monotonic flights can be selected as an independent variable, and the feed-
back gain coefficient of the offline design can be interpolated to obtain the corresponding
control commands.

4.3. Experiment of Nominal Conditions

In the experiment of nominal conditions, the initial position of the MAV was xL0 = 0
m, yL0 = 0 m, zL0 = 10, 000 m, VL0 = 400 m/s, γL0 = π/6, ψL0 = 0. The initial position of
the UAV was xW0 = 100 m, yW0 = 100 m, zW0 = 10, 000 m, VW0 = 400 m/s, γW0 = π/6,
ψW0 = 0.

The formation flight trajectories of MAV and UAV of the three methods are shown
in Figure 5. The MAV is designed to make continuous S-shaped large maneuver with a
maximum overload of about 4 g at 1 s, 11 s, 29 s and 41 s, respectively. Figure 5 indicates
that the LQR, DDPG, and HIAC can realize the stable tracking of the given trajectory of the
MAV under large, overloaded maneuvers and reach the target of the designed formation.
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Figure 6a–c shows the control commands of the UAV, i.e., the thrust, the normal
overload, and the bank angle, generated by the LQR, DDPG and HIAC, respectively,
with reference commands of the MAV. Figure 7a–c shows the errors between the control
commands of the LQR, DDPG, and HIAC and the reference commands of the MAV. Figure 6
illustrates that there are four peaks in the curves of the control commands due to the four
large, overloaded maneuvers. Moreover, compared with the LQR and DDPG, the trend
of the control commands of the HIAC can be better consistent with the MAV in thrust,
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normal overload, and bank angle. Especially in the control of the normal overload, the
HIAC has mitigated the sharp change of the commands generated by the reinforcement
learning controller to a certain extent. It can provide more smooth and executable control
commands under large maneuvers. However, during the large maneuver of the MAV, in
order to track the reference commands, it inevitably generates a certain amount of extra
adjustment for the thrust, overload, and bank angle for the three methods.
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the bank angle are presented in (a–c), respectively.
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Figure 7. The errors between the control commands of the LQR, DDPG, HIAC and the reference
commands of the MAV. The errors of the thrust, the thrust, the normal overload, and the bank angle
are presented in (a–c), respectively.

Figure 8 shows the change of the three controlled states of the UAV, i.e., the velocity,
the flight path angle, and the flight azimuth angle, generated by LQR, DDPG and HIAC.
Figure 9 shows the deviation of the three controlled states and the relative distance. It can
be seen from Figure 8 that the change trend of the controlled state of the HIAC is basically
the same as that of the MAV, and the formation maintenance performance is obviously
better than that of the LQR and DDPG. Especially, the HIAC can keep up with most of
the fluctuations of the MAV in the flight velocity and the flight azimuth angle. Moreover,
Figure 9 shows that compared with the LQR and DDPG, the control precision of the HIAC
has been significantly improved, and the control deviation can rapidly decrease to nearly
0 under the large maneuver. Figure 9d indicates that the HIAC successfully limits the
formation distance within the safe distance between 100 m and 600 m while LQR and
DDPG fail. The LQR continuously accumulates distance deviation due to the velocity
deviation during the flight, and ultimately, the formation distance reveals a divergent trend.
Meanwhile, although the relative distance of the DDPG gradually converges, it still extends
beyond the safe distance at the end of the flight.



Drones 2023, 7, 282 15 of 19

Drones 2023, 7, x FOR PEER REVIEW 15 of 19 
 

fail. The LQR continuously accumulates distance deviation due to the velocity deviation 

during the flight, and ultimately, the formation distance reveals a divergent trend. Mean-

while, although the relative distance of the DDPG gradually converges, it still extends 

beyond the safe distance at the end of the flight. 

   
(a) (b) (c) 

Figure 8. The change of the three controlled state of the UAV generated by the LQR, DDPG and 

HIAC. The results of the velocity, the flight path angle, and the flight azimuth angle are presented 

in a–c, respectively. 

  
(a) (b) 

  
(c) (d) 

Figure 9. The deviation of  the velocity, the flight path angle, the flight azimuth angle and the rela-

tive distance are presented in a–d, respectively 

Table 3 presents the root mean square (RMS) errors and maximum errors of the four 

controlled states of the LQR, DDPG and HIAC. It is clear that both the RMS error and 

maximum error of the HIAC are smaller than those of the LQR and DDPG. Moreover, the 

HIAC has a reduction of 5.81%, 70.44%, and 64.95%, respectively, in the RMS error of the 

velocity, flight path angle and flight azimuth angle compared with the LQR, and has a 

reduction of 60.35%, 55.32% and 69.47% in the maximum error of velocity, flight path an-

gle and flight azimuth angle, respectively, compared with the LQR. The HIAC has a re-

duction of 36.10%, 35.85% and 51.61%, respectively, in the RMS error of velocity, flight 

path angle and flight azimuth angle compared with the DDPG, and has a reduction of 
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Table 3 presents the root mean square (RMS) errors and maximum errors of the four
controlled states of the LQR, DDPG and HIAC. It is clear that both the RMS error and
maximum error of the HIAC are smaller than those of the LQR and DDPG. Moreover, the
HIAC has a reduction of 5.81%, 70.44%, and 64.95%, respectively, in the RMS error of the
velocity, flight path angle and flight azimuth angle compared with the LQR, and has a
reduction of 60.35%, 55.32% and 69.47% in the maximum error of velocity, flight path angle
and flight azimuth angle, respectively, compared with the LQR. The HIAC has a reduction
of 36.10%, 35.85% and 51.61%, respectively, in the RMS error of velocity, flight path angle
and flight azimuth angle compared with the DDPG, and has a reduction of 54.43%, 31.57%
and 55.01% in the maximum error of velocity, flight path angle and flight azimuth angle,
respectively, compared with the DDPG.
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Table 3. RMS and maximum errors of the four states of the LQR, DDPG, and HIAC in nominal
conditions.

Controller Velocity
(m/s)

Flight Path
Angle (rad)

Flight Azimuth
Angle (rad)

Relative Distance (m)
Safe Distance [100, 600]

LQR
RMS 5.6957 0.4737 0.6202 516.7072
Max. 15.3307 0.8027 0.7833 710.2799

DDPG
RMS 8.3953 0.2183 0.4493 444.1190
Max. 13.3379 0.5241 0.5315 610.6078

HIAC
RMS 5.3647 0.1401 0.2174 460.0709
Max. 6.0780 0.3586 0.2391 552.1845

In summary, the proposed HIAC significantly improves the state control performance
and guarantees that the flight distance stays within a safe distance as well.

4.4. Monte Carlo Experiments

In order to further test how the HIAC adapts to various initial conditions, 100 Monte
Carlo simulations were carried out by adding random deviations to the nominal conditions.

The initial position of the MAV is xL0 = 0 m, yL0 = 0 m, zL0 = 10, 000 m, VL0 = 400 m/s,
γL0 = π/6, ψL0 = 0. The baseline of initial values of the UAV is xW0 = 100 m, yW0 = 100 m,
zW0 = 10, 000 m, VW0 = 400 m/s, γW0 = π/6, ψW0 = 0. Then, random deviations which
follow the uniform distributions were added to these six baselines, respectively. The specific
values of the deviations are presented in Table 4.

Table 4. Uniform distribution of deviations for the six initial values.

Numbers of Monte
Carlo Simulations X (m) Y (m) Z (m) Velocity (m/s) Flight Path

Angle (rad)
Flight Azimuth

Angle (rad)

100 [−50, 550] [−50, 550] [−1000, 1000] [−100, 100] [−π/18, π/18] [−π/18, π/18]

Figure 10 is the scatterplot of the Monte Carlo simulation results of the velocity errors,
flight path angle error, flight azimuth angle, and relative distance for the LQR, DDPG and
HIAC. For each evaluation index, the horizontal axis is the RMS error, and the vertical
axis is the maximum error. It can be seen that the HIAC can fulfill the control target in the
magnitude of velocity. Meanwhile, because the training threshold is set quite strictly in
order to achieve better control performance, the maximum error and RMS error of the flight
path angle and flight azimuth angle may extend out of the threshold when the extreme
deviations are added to the initial values. However, the HIAC can still present a satisfactory
control accuracy of the angle compared with the DDPG and LQR. Moreover, in terms of the
safety distance, the HIAC can stay within a safe distance of 100 m to 600 m from the MAV,
which reaches the distance control target. However, the DDPG and LQR gradually extend
out of the safe distance as the initial values vary. Statistically, compared with LQR and
DDPG, the HIAC has smaller values in both the RMS error and maximum error of these
four evaluation indices. In summary, the performance of the HIAC in formation control is
better than that of the other two methods, which is consistent with the simulation results
under nominal conditions. It is believed that the HIAC has significant adaptability to the
varying initial conditions.
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5. Conclusions

In this study, a novel HIAC method was proposed, which is able to enhance the
smoothness and executability of control commands and improve the control performance
of the MAV/UAV flight formation. First, based on the idea of “meta-action” in hybrid
reinforcement learning, the formation control was modeled as a continuous–discrete space
control problem. Then, we proposed the framework of the HIAC, and the hybrid intelligent
agent model based on the DDPG/DDQN was designed through multi-channel decoupling.
Finally, we carried out simulations of nominal conditions and 100 Monte Carlo simulations
in varying initial conditions. The simulation results showed that, compared with the
traditional LQR and DDPG, the HIAC has better performance of high control precision and
rapid convergence. Meanwhile, the adaptability of HIAC to the varying initial conditions
was verified as well.

For further practical applications, HIAC can gradually support practical scenarios
such as formation military operations and terrain surveys. In particular, two aspects should
be considered when applying HIAC. The first is the reliability of the method. HIAC should
be preliminarily trained with a large number of ground tests before the real flights, to
ensure that intelligent control gradually takes authority over traditional flight-control
methods. The second is the portability of the method. At present, the method supports
the deployment of reinforcement learning on hardware such as DSP, and FPGA, and can
realize airborne portability and the online training of agent models.
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