drones

Article

A Study of the Data Security Attack and Defense Pattern in a
Centralized UAV-Cloud Architecture

Gregorius Airlangga %*

check for
updates

Citation: Airlangga, G.; Liu, A. A
Study of the Data Security Attack
and Defense Pattern in a Centralized
UAV-Cloud Architecture. Drones
2023, 7, 289. https://doi.org/
10.3390/ drones7050289

Academic Editors: Khair Ayman
Al-Shamaileh and Naima Kaabouch

Received: 15 March 2023
Revised: 16 April 2023

Accepted: 18 April 2023
Published: 25 April 2023

Copyright: © 2023 by the authors.
Licensee MDPI, Basel, Switzerland.
This article is an open access article
distributed under the terms and
conditions of the Creative Commons
Attribution (CC BY) license (https://
creativecommons.org/licenses /by /
4.0/).

and Alan Liu 2

Information System Department, Atma Jaya Catholic University of Indonesia, Jakarta 12930, Indonesia
Electrical Engineering Department, National Chung Cheng University, Chiayi 621301, Taiwan;
aliu@ee.ccu.edu.tw

Correspondence: gregorius.airlangga@atmajaya.ac.id

Abstract: An unmanned aerial vehicle (UAV) is an autonomous flying robot that has attracted the
interest of several communities because of its capacity to increase the safety and productivity of labor.
In terms of software engineering, UAV system development is extremely difficult because the focus
is not only on functional requirement fulfillment, but also on nonfunctional requirements such as
security and safety, which play a crucial role in mission success. Consequently, architecture robustness
is very important, and one of the most common architectures developed is based on a centralized
pattern in which all UAVs are controlled from a central location. Even though this is a very important
problem, many developers must expend a great deal of effort to adapt and improve security. This is
because there are few practical perspectives of security development in the context of UAV system
development; therefore, the study of attack and defense patterns in centralized architecture is required
to fill this knowledge gap. This paper concentrates on enhancing the security aspect of UAV system
development by examining attack and defense patterns in centralized architectures. We contribute
to the field by identifying 26 attack variations, presenting corresponding countermeasures from a
software analyst’s standpoint, and supplying a node.js code template for developers to strengthen
their systems’ security. Our comprehensive analysis evaluates the proposed defense strategies in
terms of time and space complexity, ensuring their effectiveness. By providing a focused and in-depth
perspective on security patterns, our research offers crucial guidance for communities and developers
working on UAV-based systems, facilitating the development of more secure and robust solutions.

Keywords: security; drone; UAV; Multi-UAV; Pattern Language; defense pattern; UML; class diagram;
software architecture; centralized; quality attributes

1. Introduction

Unmanned aerial vehicles (UAVs), more generally known as drones, have gained
popularity in recent years due to their versatility in a variety of applications, including
surveillance, delivery, and search and rescue missions [1]. Currently, as the use of UAVs
expands, safety and security issues are also growing [2]. UAVs pose risks such as crashes,
interference with other aircraft, and cyberattacks that can lead to data theft or illegal control
of the UAV [3]. The complexity of unmanned aerial vehicles necessitates a high level of
software and hardware integration to enable their autonomous operation, flight dynamics,
payload integration, real-time communication, and navigation. The dynamic contexts in
which these systems operate can also contribute to their complexity [4]. In order to ensure
the security, dependability, and efficacy of UAVs for their intended usage in cloud settings,
it is essential to build and deploy a solid security strategy [5].

In the UAV—cloud deployment, decentralized and centralized architecture can be used
to meet the aims of unmanned aerial vehicles [6]. A decentralized architecture may be more
flexible; however, coordinating the actions of several UAVs might lead to accidents and
conflicts [7]. In contrast, As potrayed in Figure 1, centralized design offers a high level of

Drones 2023, 7, 289. https:/ /doi.org/10.3390/ drones7050289

https:/ /www.mdpi.com/journal /drones

https://doi.org/10.3390/drones7050289
https://doi.org/10.3390/drones7050289
https://creativecommons.org/
https://creativecommons.org/licenses/by/4.0/
https://creativecommons.org/licenses/by/4.0/
https://www.mdpi.com/journal/drones
https://www.mdpi.com
https://orcid.org/0000-0001-8162-6942
https://orcid.org/0000-0002-8884-6662
https://doi.org/10.3390/drones7050289
https://www.mdpi.com/journal/drones
https://www.mdpi.com/article/10.3390/drones7050289?type=check_update&version=3

Drones 2023, 7, 289

2 of 102

system control and coordination, but it is prone to single points of failure [8]. It is essential
to remember that centralized design is still susceptible to security concerns that can at
any time interrupt the entire system. Many researchers have proposed several approaches
in order to mitigate this problem; however, from a practical point of view, there is little
practical work concerning the analysis of attack and defense patterns of UAV systems. It is
also compounded by the fact that many UAV developers do not have special knowledge
related to the security problems in UAVs. Therefore, a practical analysis related to attack
and defense security patterns for UAV—cloud architecture is urgently needed in order to
respond to the data security risks posed by UAVs [9]. These attack patterns are utilized by
attackers to exploit system vulnerabilities, whereas the defense patterns are employed to
prevent or minimize the impacts of these attacks [10].

Request/Response

Request/Response

Figure 1. Centralized architecture of a multi-UAV system.

Our research will undertake an analysis of data security concerns in UAV—cloud
architecture and provide protection methods to counteract these threats. We will identify
potential vulnerabilities in the system that could be exploited by attackers and recommend
mitigation strategies for these flaws. Our goal is to develop a defense architecture that is
easily reusable, cohesive, loosely coupled, and, most importantly, has a high data security
rate. Complexity analysis will be used to evaluate the efficacy of the suggested protection
mechanisms against the detected attack patterns since the performance of the solution is a
very important consideration for best security practice; higher performance can lead to a
higher security rate and complicate the attacker’s effort to destroy the entire system. In
addition, we also provide a holistic pattern related to attack and defense in the context
of drones, because developing a complete security architecture for UAVs operating in
cloud settings is essential for improving the safety, dependability, and effectiveness of
UAVs for their intended applications. The sections provided for this study include the

Drones 2023, 7, 289

3 0f 102

introduction, related work, defensive and attack patterns, analysis of complexity, and
conclusion. Through this research, we intend to develop an all-encompassing strategy for
addressing the data security vulnerabilities posed by UAVs in cloud environments.

2. Related Work

Unmanned aerial vehicles (UAVs) have been an emerging field of research and devel-
opment due to their versatile applications such as surveillance, delivery, and search and
rescue missions. With the increasing usage of UAVs, there is a growing concern for their
safety and security. Potential risks include collisions, interference with other aircraft, and
cyberattacks that can result in data theft or unauthorized control of the UAV. These concerns
have led to a surge in research on the security and safety of UAVs. One of the earliest works
in the field of UAV security was published in [11,12]. The paper presents an overview of
the challenges and issues in securing UAVs, including the need for secure communication,
data storage, and mission-critical decision making. The authors proposed models and
recommendations for UAV security that include secure communication protocols, secure
UAV control, and secure data storage.

In [13], which identified the security and privacy challenges of UAV communication
in flying ad hoc networks, the authors presented a comprehensive survey of the existing
security mechanisms, including authentication, confidentiality, integrity, and availability
of data, and identified the limitations of these mechanisms. Similarly, the authors of [14]
presented a survey of existing research on UAV security, including various types of attacks,
vulnerabilities, and countermeasures. The authors highlighted the importance of securing
UAVs against cyberattacks, such as jamming, eavesdropping, and spoofing.

In recent years, researchers have focused on the security of UAVs in cloud environ-
ments. In [15,16], they discussed the security challenges and threats for UAVs in cloud en-
vironments. The authors presented a comprehensive review of the state-of-the-art solutions
for addressing these challenges and identified future research directions. Different from
that, one of the unique aspects of our research is the emphasis on attack and defense pat-
terns in UAV—cloud architecture. While existing research has identified the challenges and
vulnerabilities of UAV security, our proposed attack and defense patterns provide a more
practical and applicable approach to addressing these issues. These patterns are designed
to help prevent and mitigate the effects of attacks, making them an essential component of
a comprehensive security architecture for UAVs operating in cloud environments.

Furthermore, our research places a significant focus on the evaluation of the effec-
tiveness of these defense mechanisms against the identified attack patterns. By using
complexity analysis, we aim to provide a thorough assessment of the proposed defense
mechanisms’ capabilities and limitations. This will help validate the effectiveness of the
proposed architecture in addressing the data security threats associated with UAVs. In
conclusion, the research on the security and safety of UAVs has gained significant attention
in recent years. The proposed research aims to provide a comprehensive approach to
addressing the data security threats associated with UAVs in cloud environments. The
proposed attack and defense patterns and the evaluation of their effectiveness will enable
UAV developers and system analysts to develop a more robust security architecture that
can help ensure the safety, dependability, and efficacy of UAVs for their intended uses.

3. Attack and Defense Pattern

Our explanation is based on a software engineering point of view, which is related to
the UML diagram and software architecture knowledge base. We use a Javascript-based on-
line tool to draw the diagrams, and in order to explain the pattern, we modify some guides
from the best practice of the PLOP community [17-19]. The modification is conducted
due to the fact that our discussions are more specific to the threat category compared to
global. The pattern explanation consists of several sections such as definition, sequence
diagram, and defense mechanism using the node.js programming language. The use of the
node.js programming language is to help communities implement defense mechanisms in

Drones 2023, 7, 289

4 0f 102

cloud architecture; in addition, node.js is one of the most popular programming languages
that runs in the cloud, and with some tweaking effort, the solution can also work in other
Javascript environments.

3.1. Black Hole Attack
3.1.1. Definition

Consider the directed graph G = (V, E), where V is the set of nodes and E is the set of
directed edges connecting nodes. Each node v has its own IP address, shown by IP(v). Let
S(V) represent the network of UAV nodes and C(V) represent the cloud server. A black hole
attack is a sort of denial of service attack in which a malicious node presents itself as having
the quickest path to the cloud server C(V), forcing other nodes to route their data via v. The
malicious node v subsequently discards or disregards the incoming packets, interfering
with the connection between the UAVs and the cloud server [20].

To protect against a black hole attack, a new route that bypasses the malicious node
must be constructed. This may be accomplished by utilizing path planning such as Dijk-
stra’s, breadth first search, or the A* method to calculate the shortest path between the source
and destination nodes. Let P = (p1, p2,..., pm) represent the shortest path from a UAV
node s to the cloud server c. If the malicious node v is present in P, a new route P’ can be
constructed by concatenating the nodes before v with those after v. To prevent the attacker
node from discarding or ignoring incoming packets, it is necessary to restrict its traffic. This
may be accomplished by adding a rule to the firewall that drops all traffic originating from
IP address IP (v).

M is the set of malicious nodes in the network, and g is a function that converts the
size of M to a severity grade depending on the number of UAVs impacted, the type of data
lost, and the mission criticality. To reduce the impact of black hole attacks on the UAV
network, it is crucial to implement the necessary security measures to prevent and mitigate
them. This may include frequent security audits, firewall setups, and intrusion detection
systems to identify and respond to threats in real time.

3.1.2. Sequence Diagram

The sequence diagram in Figure 2 depicts a communication between UAV nodes
(participant S) and the cloud server (participant C), with the possibility of malicious node
interference (participant V). The S— C: Request message indicates that the UAV nodes
submit a request to the cloud server at the beginning of the sequence. As stated by the
C— S: Response message, the cloud server responds with a response message.

If a malicious node is available in the network, however, it may launch a black hole
attack by pretending to have the quickest path to the cloud server. When UAV nodes
submit a request to the malicious node (shown by S -> V: Request), the malicious node will
not answer (marked by V -> S: No Response). When the UAV nodes submit a request to
the cloud server (marked by S -> C: Request), the cloud server will answer with C -> S: No
Response. The design contains an alt block to depict the alternate sequence flow dependent
on the presence or absence of a malicious node. The Malicious Node Attack block is run if a
malicious node is detected.

3.1.3. Defense Class Diagram

As shown in Figure 3, the class diagram depicts a network defense mechanism against
black hole assaults. The system comprises several classes that collaborate to achieve this
objective. The PathPlanning class, which offers methods for determining the shortest path
between two nodes in a graph, is the core of the system. It has one private field, graph,
which is an instance of the Graph class. The Graph class encapsulates a graph consisting
of nodes and edges. The nodes and edges private fields are arrays of Node and Edge objects,
respectively. The class includes methods for adding nodes and edges to the graph and
retrieving the graph’s nodes and edges. A Node object represents a graph node with a unique

Drones 2023, 7, 289

5 of 102

identification, or id. The Edge class represents an edge between two nodes in a graph using
the from, to, and weight private variables.

UAV Nodes Cloud Server Malicious Node
Request
Response
alt [Malicious Node
Attack]
Request

No Response

Request

No Response

Request

Response

UAV Nodes Cloud Server Malicious Node

Figure 2. Black hole sequence diagram.

BlackholeDefense

~Dijkstra: PathPlanning
-peap: Peapsession

-exec

+defend()

contains uses s e
[A4 \
{ '
¥ PeapSession ¥ -
PathPlanning Packet uav
#interface
~graph: Graph -payload: Payload -addresses: Address[]
- =aevice: Device
contains” uses contains contains
’ \ |
v [
Graph |
-niodes: Node[] ¥
Payload
-edges: Edgel] ¥ 0 Address
Device
uses -payload
+addHode(node: Node) -addr: string
+addEdge(edge: Edge) +toString() : string
+gatNodes() : Node[] |
A +getEdges() s Edeel] | |
/ . /
/
/ N /
contains uses’
¥ g
Edge e
| Path
§ from: Node
contains | -nodes: Node[)
to: Node
\ +getNodes() : Node[] ~weight: number
l
contains uses yd
"y

—y| Node [

Figure 3. Black hole defense class diagram.

The PcapSession class defines a network session that enables the system to inject and
receive packets from the network. It contains the protected fields interface and device,
where device is an instance of the Device class. The UAV class represents an unmanned
aerial vehicle (UAV) as a network client, and its private field addresses are an array of
Addpress objects. The Address class represents a network address, with the addr field being
private. The BlackholeDefense class contains techniques for protecting against black hole

Drones 2023, 7, 289

6 of 102

assaults and is the primary class of the system. Private fields include Dijkstra as example
of path planning method, and developers can consider other methods such as A*, artificial
potential field, genetic algorithm, etc. In addition, the methods of pcap and exec are added; exec
is a reference to a system command execution library, pcap is a reference to a network packet
capturing library, and Dijkstra is an instance of the PathPlanning class. The Packet class
represents a network packet, and its private payload field is an instance of the Payload class.

The Payload class represents a network packet’s payload and contains a private field
named payload. It offers the toString function for stringifying the payload. Path is a class
that depicts a path across a network, and its nodes field is an array of Node objects. It
contains one public method, getNodes, for retrieving the path’s nodes. Lastly, the graphic
illustrates the class connections using arrows. PathPlanning, for instance, is related to Graph,
Node, and Edge. Graph has connections with Node, Edge, etc.

Below is the potential scenario for implementing a defense mechanism against black
hole attacks:

1. Initialization: Create instances of the Graph, PathPlanning, and BlackholeDefense classes.
Populate the Graph object with the network topology, including nodes and edges. Then,
it may also need to create instances of the PcapSession class for monitoring network
traffic and instances of the UAV class for representing network clients.

2. Monitor network traffic: The PcapSession class is responsible for capturing packets
from the network. By using the pcap library, the system captures network traffic and
passes it to the BlackholeDefense class for analysis to detect potential black hole attacks.

3. Analyze packets: The BlackholeDefense class processes captured packets and uses the
Packet and Payload classes to extract relevant information. The Payload class’s toString
method can be used to convert the payload into a string for further analysis.

4. Detect black hole attacks: The BlackholeDefense class leverages the PathPlanning class
(with the Dijkstra algorithm or other methods) to find the shortest paths between
nodes in the network. By comparing the actual network traffic and path information
from the PathPlanning class, the defense mechanism can detect inconsistencies or
suspicious activities that may indicate a black hole attack.

5. Alert and respond: If a black hole attack is detected, the defense mechanism can alert
administrators or other network clients. It can also initiate countermeasures, such
as updating routing tables to bypass the compromised node, isolating the malicious
node, or informing other nodes about the attack.

6. Adapt and learn: In more advanced defense mechanisms, machine learning tech-
niques can be applied to improve the detection and response capabilities. By learning
from past attack patterns and continuously updating the detection algorithms, the
defense system can become more effective in countering black hole attacks.

3.2. Collision Network
3.2.1. Definition

Let G = (V, E) be an undirected graph that represents a collision network with n
UAVs, where V is the set of n UAVs and E is the set of links between them. Each UAV is
capable of transmitting and receiving data packets over the network, and a collision occurs
when two or more devices transmit data packets simultaneously, leading to data loss or
corruption. To prevent or resolve collisions, the devices can employ carrier sensing and
collision detection approaches.

Carrier sensing requires each UAV to sense the network before transmitting data,
which can be achieved by monitoring the network for existing traffic. The carrier sensing
time for UAVi, denoted as c;, represents the time it takes for UAVi to detect the availability of
the network. If the network is busy, device i defers its transmission until the network is clear.
The transmission time for UAVi, denoted as t;, is calculated as t; = max(c;, tit+ d ji), where j
€ V,j #1,d;; is the propagation delay between UAVi and UAV], t; is the transmission time
of UAVj, and the maximum operation ensures that UAVi defers its transmission until the
network is available [21].

Drones 2023, 7, 289

7 of 102

Collision detection is employed when multiple UAVs attempt to transmit data simul-
taneously, which may lead to a collision. In this case, each UAV monitors the network for
potential collisions, and if a collision is detected, the device waits for a random backoff
time before retransmitting its data packet. The backoff time for UAVi, denoted as b;, is a
random variable chosen from a uniform distribution with range [0, CW;], where CW; is
the contention window size of UAVi. The retransmission time for UAVi, denoted as t;, is
calculated as t; =t + dﬁ + b;, where j € V,j # i, and the retransmission is scheduled to
occur after the propagation delay and backoff time have elapsed.

3.2.2. Sequence Diagram

As depicted in Figure 4, two UAVs transmit data packets to the cloud in this sequence
diagram. After requesting a route, the cloud responds with the requested path, and the
UAVs begin transmitting data packets. The cloud acknowledges each data packet (ACK).
Nevertheless, one of the data packets is lost owing to a collision in the network and
does not reach its destination. When it does not receive an ACK packet from the cloud,
the defense class diagram of the UAV understands this and retransmits the lost packet.
The retransmitted packet successfully reaches the cloud, and the ACK signal is received,
indicating that the packet was sent successfully.

Cloud UAV1 Uavz
Request Route
<
Route Response
...................................... >
Request Route
Route Response
,,, >
loop [Sending Data Packets]
Data Packet
ACK Packet
>
Data Packet
<
Collision
.. x
Data Packet
Collision
Data Packet
ACK Packet
Re-transmit Data Packet
ACK Packet
Cloud uAv1 UAv2

Figure 4. Collision network problem.

3.2.3. Defense Class Diagram

As depicted in Figure 5, the first class is called EventEmitter. This class represents
an event emitter, which is an object that can emit named events and execute associated
listeners. It has three methods: addListener() to register a listener for an event, removeLis-
tener() to remove a previously registered listener, and emit() to trigger an event with a set of
arguments. The second class is NetworkInterface, which extends EventEmitter. It has two
private properties: name, to store the name of the network interface, and sessions, which is
an object to store the active sessions on this interface. Furthermore, it has two methods:
addSession(session), to add a new session to the interface, and sendPacket(packet, src, dst), to

Drones 2023, 7, 289

8 of 102

send a packet to a specified source and destination. When a packet is received on any of its
sessions, it emits the packet event with the session and the decoded packet as arguments.

The third class is CollisionDetector, which has private properties to manage its internal
state. This class also has an inferface property to store the network interface that is associated
with it, an address property to store its own address on the network, a packet property to
store a buffer that will be sent to the network, an intervalld property to store the ID of the
timer that is used to send packets at regular intervals, a busy property to indicate whether
the network is busy, and a backoff property to store a value that is used in an exponential
backoff algorithm. Then this class also has two methods: start() to start the timer and
send packets, and stop() to stop the timer. Finally, the diagram shows the inheritance
relationships between the classes using the —| > notation. Lastly, the NetworkInterface class
inherits from EventEmitter, and CollisionDetector has a relationship with NetworkInterface,
which means it uses an instance of NetworkInterface as a private property.

CollisionDetector

-interface: Networkinterface
-address: string

-packet: object

-intervalld: number

-busy: boolean

-backoff: number

+start()
+stop()

uses
A 4
Networkinterface
-name: string

-sessions: object

+addSession(session: object)

+sendPacket(packet: object, src: string, dst: string)

inherits
V]

s
EventEmitter

+addListener(event: string, listener: function)
+removelListener(event: string, listener: function)

+emit{event: string, ...args: any[])
Figure 5. Collision defense class diagram.

Below is a detailed explanation about the mechanism process of using a collision
network defense class diagram, the classes and their roles are explained in more detail
to better understand how the system defends against collision network problems in a
UAV—cloud communication setup.

1. Initialization: In this phase, the system administrator initializes and configures the
network environment. Then, it creates an instance of the NetworkInterface class, speci-
fying the network interface to be monitored. Subsequently, it creates a CollisionDetector
instance, associating it with the NetworkInterface instance. The system administrator
can also set additional parameters or fine-tune the detection mechanism as needed.

2. Monitoring and event management: The CollisionDetector continuously monitors
the network interface by leveraging the EventEmitter capabilities inherited from the
NetworklInterface class. The system listens for packet events emitted by the NetworkIn-
terface, which occur when the interface receives packets from its sessions. As packets
are received and decoded, the system triggers the packet event with the session and
decoded packet information as arguments.

Drones 2023, 7, 289

9 of 102

3. Traffic analysis and collision detection: Upon receiving packets, the CollisionDetector
analyzes the packet information to detect potential collisions. It examines various
packet attributes, such as source, destination, and traffic patterns, to determine if a
collision has occurred or is likely to occur. If a potential collision is identified, the
system may trigger additional events or raise alerts to notify administrators and
initiate mitigation procedures.

4. Adaptive collision detection algorithm: To improve collision detection accuracy, the
CollisionDetector may employ adaptive algorithms that adjust based on network condi-
tions and traffic patterns. These algorithms may incorporate historical data, machine
learning techniques, or other advanced methods to optimize collision detection and
minimize false positives.

5. Exponential backoff algorithm and traffic management: In response to detected
collisions or busy network conditions, the CollisionDetector uses an exponential backoff
algorithm to manage packet retransmissions. The algorithm introduces a random
delay before retransmitting packets, with the delay increasing exponentially after each
failed attempt. This approach helps alleviate network congestion and reduces the
likelihood of further collisions.

6. Real-time collision mitigation: Upon detecting a collision, the CollisionDetector can
take real-time mitigation actions. These may include blocking malicious users, ad-
justing network parameters, or implementing traffic-shaping techniques to prevent
future collisions. The system may also notify network administrators, allowing them
to take further action if necessary.

7. Datalogging and reporting: Throughout the monitoring process, the CollisionDetector
can log relevant data, such as packet information, detected collisions, and mitigation
actions. These data can be used for auditing, reporting, and further analysis to
improve the defense mechanism and maintain network stability.

8. Continuous monitoring and optimization: The CollisionDetector persistently moni-
tors the network interface, adapting its algorithms and adjusting its backoff mechanism
as needed. This continuous process ensures that the system remains resilient against
collision attacks while optimizing network performance.

The primary function of the CollisionDetector class is to monitor network traffic using
the associated NetworkInterface instance. It listens for the packet event emitted by the
NetworkInterface to track received packets. The CollisionDetector class is responsible for
managing potential network collisions by adjusting packet transmission rates based on
network conditions. This is performed using the busy property and the exponential backoff
algorithm. By slowing down transmission rates when the network is busy, the system
reduces the likelihood of collisions.

3.3. Data Tampering
3.3.1. Definition

Let D be a dataset consisting of #n records stored in a cloud-based UAV system. Each
record in D contains sensitive information, such as photographs or location data, which
may be manipulated by an adversary. The goal is to design a secure system that minimizes
the risk of data manipulation in the UAV—cloud system. To achieve this, the several
measures can be taken, such as authentication, access control, data backups, and anomaly
detection [22]. Authentication is a mechanism to implement a robust filtering system that
ensures that only authorized users can access the data. Let A be the set of authorized users
who have the necessary credentials to access the system. The authentication system can
be represented by the function f,,;, : U x P — {0,1}, where U is the set of all possible
usernames and P is the set of all possible passwords. The function returns 1 if the given
username and password combination is valid and 0 otherwise.

Access control has a goal to restrict access to the data to those who require it for their
responsibilities. Let R be the set of roles in the system management and let U, be the set
of users assigned to each role r in R. The access control system can be represented by the

Drones 2023, 7, 289

10 of 102

function fyecess : U x R — {0,1}, which returns 1 if the given user u has access to
the data for their assigned role r and 0 otherwise. In addition, to mitigate the worst-case
situation when data are already affected, the data backup mechanism must be conducted.

Data backup is a process to create frequent backups of the data to safeguard against
data tampering. Let B be the set of backup copies of the data. The backup system can be
represented by the function fysckp : D — B, which creates a backup copy of the dataset
D. In order to prevent the data tampering problem, anomaly detection can be conducted.
Anomaly detection is a process to monitor the system for unusual activity to detect and
prevent data tampering. Let M be the set of all system monitoring measures, such as
intrusion detection systems, log analysis tools, and machine learning algorithms. The
anomaly detection system can be represented by the function f,omary : M x D — {0,1},
which returns 1 if the system monitoring measures detect any unusual activity in the dataset
D and 0 otherwise.

Therefore, the solution of data tampering can then be formulated as follows: Find a set
of functions { fuum, faccess, foackup, fanomly} that maximizes the security of the UAV-cloud
system while minimizing the risk of data manipulation. The solution should ensure that
only authorized users can access the data, access to the data is restricted to those who
require it, frequent backups are created to safeguard against data tampering, and unusual
activity is detected and prevented. The solution should also be cost-effective and scalable
for large datasets.

3.3.2. Sequence Diagram

As depicted in Figure 6, in this sequence diagram, two unmanned aerial vehicles
transmit data to the cloud for storage. Cloud computing accepts and stores data. Yet, the
cloud also acknowledges a malicious data transmission sent by an attacker. The attacker
then tampers with the cloud-stored data, perhaps altering them for their own objectives.
When UAV1 requests information from the cloud, it receives altered information, resulting
in an incorrect response. This emphasizes the severity of data tampering in a UAV-cloud
system and the significance of avoiding it.

UAVY Cloud UAv2 Attacker

Data Transmission
-
Data Storage
loop [sending Data]

Data Transmission
-«
Data Storage

Data Transmission
JE—
Data Storage

Malicious Data Transmission

ACK

Tampered Data
Tampered Data

Request Data

Error Response
-

UAV1 Cloud uAv2 attacker

Figure 6. Data tampering.

3.3.3. Defense Class Diagram

As shown in Figure 7, the defense pattern class diagram of data tampering attack
has the crypto module that can be used for defending purposes since it provides several

Drones 2023, 7, 289

11 of 102

functions to encrypt data, such as calculating the SHA-256 hash of a message. The @tex-
tile/hub module provides a client to access the Textile Hub API, as well as the Client and
PrivateKey classes used to authenticate the client. The DataTamperingDefense class contains
the defend AgainstDataTampering(), addToLedger(), and detectTampering() methods, which are
used to defend against data tampering attacks. The DataTamperingDefense class interacts
with the crypto module and the @textile/hub module to calculate hashes and store data in
the distributed ledger. The defend AgainstDataTampering() method calls the detect Tampering()
method to check if the provided data have been tampered with.

If tampering has occurred, the method calls the addToLedger() method to add the tam-
pered data to the distributed ledger. The detectTampering() method uses the calculateHash()
function to calculate the hash of the provided data and compares it to the hash included
with the data. If the hashes do not match, the data have been tampered with. The ad-
dToLedger() method uses the @fextile/hub module to obtain a thread and push the provided
data to the distributed ledger. If an error occurs, the method logs the error to the console.

cryptoTextileHubDataDefense

crypto: cryptoTextileHubDataDefense
textile: cryptoTextileHubDataDefense
dataDefense: cryptoTextileHubDataDefense

use/ uses uses
textile l

. dataDefense
+ Client
t
Sl + PrivateKey . i
+defendAgainstDataTampering()
+calculateHash() +withKeyInfo() +addToLedger()
+getThread() +detectTampering()
+push()

Figure 7. Defense data tampering class diagram.

Based on the class diagram in Figure 7 for defending against data tampering attacks,
here is a potential scenario for implementing the defense mechanism:

1. Initialization: Instantiate and configure the DataTamperingDefense class, which will be
responsible for managing the defense against data tampering attacks. Additionally, set
up the necessary cryptographic module for hashing (e.g., SHA-256) and the @textile/hub
module to interact with the Textile Hub APIL. Ensure that proper authentication and
secure connections are established for the @textile/hub module.

2. Data preparation and hashing: Before transmitting or storing data, use the crypto-
graphic module to calculate a secure hash of the data, which serves as their unique
fingerprint. Depending on the sensitivity of the data, we can choose to implement
additional security measures such as digital signatures, encryption, or message au-
thentication codes (MACs) to further enhance data integrity and confidentiality.

3. Secure data transmission and storage: Transfer the data with their associated hash to
the intended recipient or store them securely in a database or distributed ledger, using
secure communication protocols such as TLS/SSL. Ensure proper access controls,
encryption, and other security measures are in place to protect the data and their hash
during transmission and storage.

Drones 2023, 7, 289

12 of 102

4. Data integrity verification: When the data are retrieved or received, the DataTamper-
ingDefense class’s defend AgainstDataTampering() method should be invoked to verify
the data’s integrity. This method internally calls the detect Tampering() function, which
recalculates the hash of the received data using the same cryptographic hashing algo-
rithm and compares it to the original hash attached to the data. If the hashes do not
match, the data have been tampered with.

5. Tampering detection and response: If data tampering is detected, the defend Against-
DataTampering() method initiates the addToLedger() function to create an immutable
record of the tampering attempt. This function uses the @textile/hub module to store
the tampered data, their original hash, and any relevant metadata (e.g., timestamps,
source/destination information) in a distributed ledger such as Textile Hub. The ledger
should employ consensus algorithms and redundancy to ensure that the data stored
cannot be altered or deleted by malicious actors.

6. Alerting and incident response: In case of a data tampering attempt, the defense
mechanism can trigger alerts or notifications to inform administrators, relevant stake-
holders, or other systems about the incident. This can initiate a coordinated response,
including further investigation, containment, and recovery measures. Depending on
the nature of the tampering and the affected data, responses may include revoking
compromised keys or certificates, patching vulnerabilities, updating security policies,
or taking legal action.

7. Continuous monitoring, learning, and adaptation: Regularly monitor the system
for new instances of data tampering and adapt the defense mechanism as needed.
This may involve updating hashing algorithms, adjusting detection thresholds, or
incorporating additional security measures to further protect data integrity. Conduct
regular security audits, threat modeling, and penetration testing to identify and
address potential weaknesses in the system. Additionally, stay informed about the
latest tampering techniques, attack patterns, and best practices in data security to
continuously improve the defense mechanism.

3.4. Deauthentication
3.4.1. Definition

Let U and C denote the UAV and cloud-based system, respectively, which utilize a
wireless communication channel for data exchange. Consider a deauthentication attack, D,
initiated by an attacker, which sends n deauthentication frames to U and/or C with the aim
of disconnecting U from C. The objective of the attacker is to disrupt the communication
between U and C by successfully disconnecting U from C for a duration of ¢. The likelihood
of a successful deauthentication attack is dependent on the signal strength of the attacker,
the distance between the attacker and U/C, and the specific implementation of the wireless
communication protocol. We denote the probability of a successful deauthentication attack
by S, where S is a function of the signal strength, distance, and communication protocol
used, given by S(signal strength, distance, communication protocol) = P(success). The attacker
can optimize the probability of success by selecting values of signal strength and distance
that maximize S and by exploiting potential vulnerabilities or weaknesses in U and C’s
implementation. The primary goal of the attacker is to disrupt the UAV—cloud system
and deny authorized users access to the system, or to gain unauthorized access to the
system [23].

3.4.2. Sequence Diagram

In the sequence diagram, as depicted in Figure 8, two UAVs are linked to the cloud
and transfer data for storage to the cloud. The cloud recognizes the delivery of data by
transmitting an acknowledgment packet (ACK) to each UAV, but an adversary sends a deau-
thentication packet to both UAVs, severing their connection to the cloud. Both UAV1 and
UAV?2 receive incorrect answers when requesting data from the cloud. This demonstrates
the severity of a deauth attack in a UAV—cloud system and the significance of preventing it.

Drones 2023, 7, 289

To avoid deauth attacks in a UAV—cloud system, the system must employ robust security
features, including encryption, secure authentication systems, and access control. In ad-
dition, the system should watch for illegal deauth packets and take appropriate action to
avoid their disruption. This may involve deploying intrusion detection systems or routinely
monitoring system logs for indicators of an assault.

UAv1 Cloud UAVZ

Request Connection
e —
Connection Response
loop [Sending Data]

Data Transmission
_—

ACK

Data Transmission
«

ACK

Deauthentication Packet

I ——

Request Data
e —

Error Response

Request Data
—
Error Response
................................ x
UAV1 Cloud uAvz

Figure 8. Deauth sequence diagram.

3.4.3. Defense Class Diagram

In Figure 9, Wifilnterface is a class that represents a Wi-Fi interface. It has a name
property, which is passed in as an argument to the constructor, and it can be used to block
an MAC address and start a packet capture session. It also inherits from EventEmitter, which
means that it can emit events. DeauthDetector is a class that represents a deauthentication
detector. It takes a Wifilnterface and a target MAC address as arguments in the constructor,
and it listens for packets on the Wi-Fi interface. When it detects a deauthentication attack

Deauthentication Packet

against the target, it emits a deauth event.

DeauthDefender

-wifilnterface: Wifilnterface
-targethac: string
~deauthDetector: DeauthDetector

~constructor{wifiinterface: Wifilnterface, targetMac: string)
+blockAttacker(mac: string)

uses
v \

DeauthDetector |

-wifilnterface: Wifilnterface |
~targetMac: string |

~constructor(wifilnterface: Wifiinterface, targetMac: string)

uses

Wifilnterface
-name: string

+constructor(name: string) |
+blockMmac(mac: string)

~startCaptureSession() |

inher_its
Q z/

EventEmitter

<addListener(event: string, listener: function)

+removeListener(event: string, listener: function)

+emit(event: string, ...args: any[])

Figure 9. Deauth class diagram.

Drones 2023, 7, 289

14 of 102

DeauthDefender is a class that represents a deauthentication defender. It takes a Wifiln-

terface and a target MAC address as arguments in the constructor, and it creates a DeauthDe-
tector to listen for deauthentication attacks. When a deauthentication attack is detected, it
blocks the MAC address that is responsible for the attack. Finally, EventEmitter is a built-in
node.js class that allows objects to emit events and register listeners for those events. Both
Wifilnterface and DeauthDetector inherit from EventEmitter so that they can emit and listen
for events.

Based on the defense class diagram for deauth attacks, the following scenario illustrates

how the defense mechanism operates:

1.

Initialization: During the initialization phase, a Wifilnterface instance is created to
represent the Wi-Fi interface for the network being monitored. The name property
is set to uniquely identify the interface, and the object is responsible for capturing
packets, blocking MAC addresses, and managing other network activities. At this
stage, the underlying network card may be set to promiscuous mode or monitor mode
to allow packet capture of all traffic on the Wi-Fi network.

DeauthDetector setup: A DeauthDetector instance is created and initialized with the
Wifilnterface instance and a target MAC address as arguments. The DeauthDetector is
responsible for monitoring packets on the Wi-Fi interface and detecting deauthenti-
cation attacks against the specified target device. To achieve this, the DeauthDetector
analyzes packets captured by the Wifilnterface, specifically looking for 802.11 man-
agement frames, such as deauthentication or disassociation frames, that indicate a
potential attack.

DeauthDefender activation: A DeauthDefender instance is created and initialized
with the Wifilnterface instance and the target MAC address as arguments. The Deau-
thDefender leverages the DeauthDetector instance to monitor deauthentication attacks
against the target device and takes action when an attack is detected. This class
coordinates the overall defense mechanism and communicates with other system
components, such as intrusion detection systems, firewalls, or network administrators,
as needed.

Deauthentication attack detection: The DeauthDetector continuously analyzes pack-
ets captured by the Wifilnterface, looking for patterns or anomalies indicative of a
deauthentication attack, such as a high number of deauthentication frames sent to
the target device within a short period. When the DeauthDetector identifies an attack
pattern, it emits a deauth event containing information about the attack, such as the
attacker’s MAC address, the targeted device, and the timestamp of the attack.
Deauth event handling: The DeauthDefender listens for the deauth event emitted by
the DeauthDetector. Upon receiving the deauth event, the DeauthDefender processes the
event data and determines the appropriate response based on the attack severity, the
attacker’s identity, and the system’s security policies.

Attack mitigation: After analyzing the deauth event, the DeauthDefender takes appro-
priate action to mitigate the attack. This can include blocking the attacker’s MAC
address using the Wifilnterface instance, alerting network administrators, updating
firewall rules, or even implementing dynamic channel switching or frequency hop-
ping to evade the attack. In some cases, the DeauthDefender may also collect evidence
of the attack for forensic analysis and reporting purposes.

Ongoing monitoring and defense: The DeauthDefender continuously monitors for
deauthentication attacks, allowing it to detect and mitigate new threats in real time.
The Wifilnterface, DeauthDetector, and DeauthDefender instances work together in a
coordinated manner to ensure that the target device remains protected from deauthen-
tication attacks. This ongoing process allows the system to adapt to evolving threats
and maintain a robust security posture in the face of changing attack techniques
and tools.

Drones 2023, 7, 289

15 of 102

3.5. DDoS and Slowloris
3.5.1. Definition

LetU = {uq, up, ..., uy} bethesetof n UAVs,and let S = {sq1, sp, ..., Sy} be the
set of m cloud servers. Let R = {rq, 12, ..., 1} be the set of k resources that each u; needs
to access, such as data storage or processing capabilities. Let T = {t1, t, ..., t;} be the
set of] types of legitimate traffic that each web server s; needs to handle. A DoS attack D is
a binary function D(S, t) — > {0, 1} that maps each cloud server s; and type of traffic t;
to a binary value indicating whether a DoS attack is occurring. If D(S, t) = 1, then a DoS
attack is occurring on server s; with respect to traffic type ¢;. Similarly, a Slowloris attack L
is a binary function L(S, t) — > {0, 1} that maps each cloud server s; and type of traffic ¢,
to a binary value indicating whether a Slowloris attack is occurring. If L(S, t) = 1, thena
Slowloris attack is occurring on server s; with respect to traffic type ¢;.

The impact of a DoS attack on the cloud server can be expressed: For each u;, if there
exist a server s; and resource r; such that D(s]-, t) = 1 and r; is required by u;, then
the UAV is unable to access that resource, resulting in delays or complete failures in UAV
operations. This can be expressed mathematically, as presented in Equation (1).

ds;j € S,rp € R, t € T: D(sj, t) = 1 A rpisrequired by u; — ~ access(ry, u;) 1)

v v

where “3” represents “there exists”, “€” represents “belongs to”, “A” represents “logical
AND”, and “.” represents “not”. The impact of a Slowloris attack on the web server can be
expressed as follows: For each u;, if there exist a server s; and type of traffic t; such that
L(sj, t;) = 1and the traffic type t; is required by u;, then the server becomes overwhelmed
with incomplete HTTP requests [24], preventing it from handling legitimate traffic. This
can be expressed mathematically, as shown in Equation (2).

dsj € S, t; € T : L(sj, t;) = 1 A tjis required by u; — ~ handle(t;, s;))

3.5.2. Sequence Diagram

As shown in Figure 10, two UAVs are connected to the cloud in this sequence diagram,
and they transfer data to the cloud for storage. The cloud recognizes the delivery of data by
transmitting an acknowledge packet (ACK) to each UAV, but an attacker floods the cloud
with traffic and initiates a Slowloris attack, preventing the processing of legal traffic. Both
UAV1 and UAV?2 receive incorrect answers when requesting data from the cloud. This
demonstrates the severity of a DDoS or Slowloris attack on a UAV—cloud system and the
significance of avoiding it.

uavt Cloud uav2 Attacker

toop [Sending Data]

Request Data
I
Error Respanse

uAv1 Cloud uAV2 Attacker

Figure 10. DDoS and Slowloris attack.

Drones 2023, 7, 289

16 of 102

To avoid DDoS and Slowloris attacks in a UAV—cloud system, robust security mech-
anisms, including rate restriction, traffic filtering, and monitoring for anomalous traffic
patterns, should be included. In addition, the system must be able to scale up or down to
accommodate traffic spikes and prevent system overloads. Lastly, frequent security audits
and penetration testing can assist detection and resolve any system vulnerabilities prior to
their exploitation by attackers.

3.5.3. Defense Class Diagram

The class diagram in Figure 11 shows the relationships between the Defend AgainstD-
DoSAndSlowLoris class, the Net, NetServer, and NetSocket classes. DefendAgainstDDoSAnd-
SlowLoris is the main class that has the responsibility of defending against DDoS and
Slowloris attacks. It has private variables such as target, port, MAX_CONNECTIONS,
MAX_REQUESTS_PER_CONNECTION, requestData, and server. The class has a constructor
method that takes the target and port values as parameters, and a public method named de-
fendAgainstDDoSAndSlowLoris that starts the server and handles incoming client connections.

Net is a class that represents the node.js net module and provides a method named
createServer to create a new instance of NetServer. NetServer is a class that represents the
server object created by calling the net.createServer() method. It has methods such as listen,
on, and close to start the server, add event listeners, and close the server, respectively. NetSocket
is a class that represents a client connection to the server. It has methods such as on, write,
destroy, and end to handle incoming data, send data to the server, destroy the connection,
and end the connection, respectively. NetServer has many NetSocket instances, as shown by
the “has many” relationship arrow pointing from NetServer to NetSocket. NetServer creates
an instance of DefendAgainstDDoSAndSlowLoris, as shown by the “creates” relationship
arrow pointing from NetServer to Defend AgainstDDoSAndSlowLoris. NetSocket is used by
Defend AgainstDDoSAndSlowLoris to handle incoming client connections, as shown by the
“uses” relationship arrow pointing from NetSocket to Defend AgainstDDoSAndSlowLoris.

Net

+createServer() : : NetServer
provides
NetServer
+listen()
+on()
+close()
has many

|
| \
NetSocket

=on()
creates

swrite()
+destroy()
=end()

I \

\ uses

\ !

\ !
DefendAgainstDDoSAndSlowLoris

-target

-port

-MAX_CONNECTIONS
-MAX_REQUESTS_PER_CONNECTION
-requestData

-server

+constructor(target, port)
+defendAgainstDDoSAndSlowLoris()

Figure 11. Class diagram of Slowloris and DDoS.

Drones 2023, 7, 289

17 of 102

Based on the defense class diagram for DDoS and Slowloris attacks, the following
defense mechanism scenario can be described:

1. Initialization: Instantiate the DefendAgainstDDoSAndSlowLoris class by providing
target and port parameters to the constructor. The constructor initializes the server
with the given target and port, setting up internal data structures such as requestData
to track client connections and their request patterns. It also configures limits such
as MAX_CONNECTIONS and MAX_REQUESTS_PER_CONNECTION to prevent
abuse.

2. Start defense: Invoke the defendAgainstDDoSAndSlowLoris method to launch the
defense mechanism. This method creates the server using the Net class’s createServer
method, binding the server to the specified target and port. It registers event listeners
for incoming connections, invoking a callback function to handle each new connection.

3. Handling connections: Upon detecting a new client connection, the NetServer class
generates a new NetSocket instance to manage the connection. This instance registers
event listeners for incoming data, connection closures, and errors. Simultaneously, the
DefendAgainstDDoSAndSlowLoris class processes each incoming connection, updating
its internal requestData structure to track the number of active connections and requests
per client.

4. Monitoring connections: The defense mechanism continuously assesses the request-
Data structure to evaluate the number of connections and requests from each client. If a
client surpasses the MAX_CONNECTIONS or MAX_REQUESTS_PER_CONNECTION
thresholds, the defense mechanism considers the connection suspicious, indicating a
potential DDoS or Slowloris attack.

5. Rate limiting and connection throttling: To defend against Slowloris attacks, the
defense mechanism may also implement rate limiting and connection throttling,
ensuring that clients can only open a limited number of connections within a specific
timeframe. This technique helps maintain server availability and prevents attackers
from monopolizing resources.

6. Connection termination and blacklisting: Upon identifying a suspicious client con-
nection, the NetSocket instance’s destroy or end method is invoked to forcefully
terminate or gracefully close the connection. In more advanced implementations,
the defense mechanism may also blacklist the IP address of the suspicious client,
preventing it from opening new connections for a specified duration.

7. Logging and alerting: The defense mechanism can incorporate logging and alerting
capabilities, allowing system administrators to monitor server activity and receive
notifications when potential attacks are detected. This feature enables prompt inter-
vention and further analysis, helping to maintain server stability and security.

8. Ongoing defense: The defense mechanism remains vigilant, continuously monitoring
and managing incoming connections to ensure the server’s accessibility for legitimate
clients while defending against DDoS and Slowloris attacks.

3.6. Flooding
3.6.1. Definition

Let N be the total number of devices that can be used for the flooding assault, let p;
be the probability that device i will be used in the flooding assault foriin {1, 2, ..., N}
and let the maximum traffic capacity that the cloud infrastructure can handle, t;, be the
traffic generated by device i in the cloud infrastructure for i in {1, 2, ..., N}. The
objective is to maximize the total amount of traffic generated by the flooding assault subject
to the maximum capacity of the cloud infrastructure, where we maximize function of
sum(p; = t;) for i in {1, 2, ..., N}. This is subject to the following: sum(p;) = 1
(exactly one device is used in the flooding assault), sum(p; * t;) > T (the total amount
of traffic generated by the devices in the flooding assault is greater than the maximum
traffic capacity that the cloud infrastructure can handle), p; >= 0 foriin {1, 2, ..., N}

Drones 2023, 7, 289

18 of 102

(the probability that each device is used in the flooding assault is non-negative), and
t; >= 0 foriin {1, 2, ..., N} (the traffic generated by each device is non-negative)

The first constraint ensures that exactly one device is used in the flooding assault. The
second constraint limits the total traffic generated by the devices to the maximum capacity
of the cloud infrastructure. The third and fourth constraints ensure that the probabilities
and traffic are non-negative. Note that this formulation assumes that the probability that
each device is used in the flooding assault is independent of the traffic generated by the
other devices [25].

3.6.2. Sequence Diagram

As shown in Figure 12, two UAVs are connected to the cloud in this sequence diagram,
and they transfer data to the cloud for storage. The cloud recognizes the delivery of data
by transmitting an acknowledge packet (ACK) to each UAV. Nevertheless, an adversary
overwhelms the cloud’s processing capabilities with traffic, rendering it unavailable. Both
UAV1 and UAV?2 receive incorrect answers when requesting data from the cloud. This
demonstrates the severity of a flooding assault in a UAV—cloud system and the significance
of avoiding it.

To prevent flooding assaults in a UAV—cloud system, the system should employ robust
security mechanisms such as rate limitation, traffic filtering, and monitoring for anomalous
traffic patterns. In addition, the system must be able to scale up or down to accommodate
traffic spikes and prevent system overloads. Lastly, frequent security audits and penetration
testing can assist detection and resolve any system vulnerabilities prior to their exploitation
by attackers.

UAv1 Cloud UAv2 Attacker

Request Connecticn
—_—

Connection Response

loop [Sending Data]

Flood with Traffic

Request Data
e ——

Error Response

Request Data
B T E—

Error Response

UAv1 Cloud UAv2 Attacker

Figure 12. Flood with traffic.

3.6.3. Defense Class Diagram

As depicted on the Figure 13, the class diagram shows the relationships between
five classes: FloodDetector, FloodDefender, pcap, Set, console, and Object. FloodDetector is a
class that has private instance variables interface, maxPacketsPerSecond, packetCounts, scores,
and blockedIPs, as well as a public constructor method constructor with interface: string,
maxPacketsPerSecond: number. It uses the pcap, Set, console, and Object classes to implement
its functionality. FloodDefender is a class that has private instance variables interface and
maxPacketsPerSecond, as well as a public constructor method constructor(interface: string,
maxPacketsPerSecond: number) and a public method defend(): void. It calls the FloodDetector

Drones 2023, 7, 289

19 of 102

class to create a new object and start detecting flooding attacks. pcap is a class that has a
public method, decode. packet(rawPacket: string): object, which decodes a raw packet from a
network interface.

Set is a class that has a private instance variable items and public methods constructor(),
add(item: any): void, and has(item: any): Boolean. It is used by FloodDetector to keep track
of blocked IP addresses. console is a class that has a public method log(message: string):
void, which logs a message to the console. It is used by FloodDetector to log detected
flooding attacks. Object is a built-in JavaScript class that has a public method keys(obj:
object): Array<string>, which returns an array of the object’s keys. It is used by FloodDetector
to iterate over the packetCounts and scores objects. The arrows in the diagram show the
relationships between the classes. The FloodDetector class uses pcap, Set, console, and Object
classes, so it has four “uses” relationships with those classes. The FloodDefender class calls
the FloodDetector class, so it has a “call” relationship with it.

FloodDefender

-interface: string

-maxPacketsPerSecond: number

+constructor(interface: string, maxPacketsPerSecond: number)
+defend() : void

call

FloodDetector

-interface: string
-maxPacketsPerSecond: number
-packetCounts: object

-scores: object

-blockedIPs: Set

+constructor(interface: string, maxPacketsPerSecond: number)

use use use use
Set
pcap # items: object console Object
+constructor()
+decode.packet(rawPacket: string) : object +log(message: string) : void +keys(obj: object) : Array
+add(item: any) : void
+has(item: any) : boolean

Figure 13. Flood defender class diagram.

Based on the defense class diagram of a flooding attack, here is a detailed implementa-
tion of the defense process:

1. Initialization: Instantiate the FloodDefender class by providing the network interface
and maxPacketsPerSecond parameters to the constructor. This constructor initializes an
instance of the FloodDetector class, passing along the same parameters.

2. Start defense: Invoke the defend() method of the FloodDefender class. This method
starts the FloodDetector instance, which begins monitoring the network interface for
potential flooding attacks.

3. Packet capturing and decoding: The FloodDetector class uses the pcap class to capture
packets from the network interface. The pcap class decodes the packets and extracts
relevant information, such as the source IP addresses.

4. Track packet counts: For each IP address, the FloodDetector maintains packet counts
and scores in the packetCounts and scores objects. It updates these counts and scores
as new packets are processed.

5. Detect flooding attacks: The FloodDetector continuously evaluates packet counts and
scores for each IP address. If the number of packets received from an IP address
surpasses the maxPacketsPerSecond threshold, the FloodDetector considers it a potential
source of a flooding attack.

Drones 2023, 7, 289

20 of 102

6. Block malicious IP addresses: When an IP address is identified as a source of a
flooding attack, the FloodDetector adds it to the blockedIPs Set. This Set keeps track of
blocked IP addresses, preventing further traffic from these addresses.

7. Logging: The FloodDetector uses the console class to log detected flooding attacks. It
logs relevant information, such as the source IP address and the detected packet rate.
System administrators can use this information to analyze the attack and take further
action if necessary.

8. Ongoing defense: The defense mechanism remains active, continuously monitoring
incoming packets and updating the packet counts and scores. It maintains a list
of blocked IP addresses in the blockedIPs Set, providing ongoing defense against
flooding attacks.

3.7. GPS Spoofing
3.7.1. Definition

LetP = (p1, p2, p3) be the true position of a GPS receiverin R%,and let S = (s, so, s3)
be the position that the GPS receiver thinks it is due to GPS spoofing. GPS spoofing is a
technique that involves transmitting false GPS signals to a receiver, leading it to provide
inaccurate position data. We can model this problem using the following mathematical
formulation: Find a function f : R — > R3such that f(P) = S and f is consistent with the
actual GPS signals in the area. This means that for eachi = 1, 2, 3, there exists a function
gi: R3 — > Rthat relates the spoofed GPS signal s; to the actual GPS signal a;, and the
function f satisfies f;(P) = g;(f(P)) for all i.

The problem of GPS spoofing can then be formulated as an optimization problem,
where the objective is to minimize the distance between the true position P and the spoofed
position S, subject to the constraint that the function f is consistent with the actual GPS
signals in the area. This can be expressed mathematically as follows: minimize ||[P —
S|| subject to f;(P) = gi(f(P)) foralli.

The optimal solution to this problem will depend on the specific objectives of the spoof-
ing, as well as the technical and ethical constraints that are imposed. For example, to limit
the extent of the spoofing, additional constraints can be added to the optimization problem,
such as a constraint that restricts the range of the spoofing device. To ensure that the
spoofing is used for legitimate purposes only, the optimization problem can be augmented
with a set of ethical or legal constraints that must be satisfied by the solution [26].

3.7.2. Sequence Diagram

The sequence diagram in Figure 14 depicts the process of GPS spoofing. At the
beginning, the attacker is continually spoofing the GPS signal and transmitting it to the
GPS module of the UAVs. Then, the GPS module delivers the updated position of the UAVs
to the cloud for processing based on the faked signal. At the same time, in a database, the
cloud saves location information. In the meantime, three valid satellites are transmitting
signals to the GPS module.

The first valid satellite transmits a signal to UAV1’s GPS module. The GPS module
transmits UAV1’s current location to the cloud, where it is stored in a database. The second
valid satellite transmits a signal to UAV2’s GPS module. The GPS module transmits UAV2’s
current location to the cloud, where it is stored in a database. The third genuine satellite
transmits signals to both UAV1 and UAV2, causing the GPS modules on both UAVs to
receive the same location update. Both drones” GPS units transmit their individual positions
to the cloud, which saves them in a database. This graphic depicts, in further detail, the
GPS spoofing process in a multi-UAV-cloud system, where an attacker may alter the GPS
signals to control the location of the UAVs and disrupt the system’s regular operation.

Drones 2023, 7, 289

21 of 102

Attacker UAV1 GPS UAVZ GBS Cloud Database sat 1 Sat2 sat3
loop [Spoofing GFS signal]
Spoofed signal
—_—
Spaofed signal
Signal
Signal
Signal
Signal
UAV1 location
UAV2 location
——

Store UAV1 location
_— »

Store UAVZ location

Attacker UAV1 GRS UAVZ GPS Cloud Database sat 1 satz sat 3

Figure 14. GPS spoofing sequence diagram.

3.7.3. Defense Class Diagram

As depicted on the Figure 15, the class diagram represents the relationships be-
tween four classes: GpsSpoofingDetector, GpsSpoofingDefender, Position, and NetworkInterface.
GpsSpoofingDetector is responsible for detecting GPS spoofing by receiving GPS signals and
analyzing them to determine if there is any indication of spoofing. It contains private in-
stance variables lastPosition and lastTime which keep track of the last GPS position and time
received by the detector. The isValidPosition method checks whether a given GPS position is
valid or not, and the checkForGpsSpoofing method analyzes the position to detect spoofing.
If spoofing is detected, the blockSpoofing method is called, which uses a NetworkInterface to
block the connection from the IP address of the spoofing device. Finally, the getDistance
method calculates the distance between two GPS positions.

GpsSpoofingDefender

- interface: Networkinterface

- allowedDistance: number

+defend() : void

creates

GpsSpoofingDetector \

- lastPosition: Position
- lastTime: Date ‘

+isValidPosition(position: Position) : boolean =2

+checkForGpsSpeofing(position: Pesition) : void

+blockSpoofing() : void

+getDistance(lat1: number, lon1: number, lat2: number, lon2: number) : number

contains uses
|

v

Position

- latitude: number

- longitude: number

- speed: number

NetworkInterface

- altitude: number

- heading: by
eacing: numoer +block() : void

- time: Date

- variation: number

- satellites: number

- hdop: number

Figure 15. GPS spoofing detector class diagram.

Drones 2023, 7, 289

22 of 102

GpsSpoofingDefender creates a GpsSpoofingDetector object and uses it to defend against
GPS spoofing. It has private instance variables interface, which is a NetworkInterface object
used to block the connection in case of GPS spoofing, and allowedDistance, which is the
maximum allowed distance between the current and previous GPS positions. Position is a
simple class that represents a GPS position with private instance variables latitude, longitude,
speed, altitude, heading, time, variation, satellites, and hdop.

NetworklInterface is a class that represents a network interface and has a public method
block, which blocks the connection from a specific IP address. The arrows in the class dia-
gram represent the relationships between the classes. The GpsSpoofingDetector class contains
a Position object, and uses a NetworkInterface object to block the connection. The GpsSpoof-
ingDefender class creates a GpsSpoofingDetector object and uses a NetworkInterface object to
block the connection. The —> and “uses” arrows indicate containment and dependency
relationships, respectively.

Based on the defense class diagram of a GPS spoofing attack, here is a detailed
implementation of the defense process:

1. Initialization: GpsSpoofingDefender initializes the defense system by creating an
instance of GpsSpoofingDetector and providing it with a NetworkInterface object. This
NetworkInterface object is responsible for network communication, enabling the block-
ing of connections from potential spoofing devices. The GpsSpoofingDefender also
sets an allowedDistance threshold that acts as a safety measure to identify suspicious
changes in GPS positions.

2. Monitoring: The GpsSpoofingDetector is responsible for monitoring incoming GPS
signals continuously. This class analyzes these signals by comparing the received GPS
positions with the previously recorded positions. It verifies the validity of the GPS
signals by evaluating factors such as position changes, speed, heading, altitude, and
time stamps. Moreover, it checks the number of satellites, variation, and the horizontal
dilution of precision (hdop) values to determine the accuracy and reliability of the
GPS signals.

3. Detection process: As part of the detection process, the GpsSpoofingDetector calcu-
lates the distance between consecutive GPS positions using the getDistance method. If
the distance exceeds the allowedDistance threshold set by the GpsSpoofingDefender, the
system raises an alarm or takes other defensive actions, such as switching to an alter-
native positioning system or alerting the user about the possible GPS spoofing attack.

4. Take action: If the GpsSpoofingDetector identifies a GPS spoofing attack, it proceeds to
mitigate the attack by blocking the connection from the IP address of the suspected
spoofing device. This is achieved by invoking the blockSpoofing method, which in turn
calls the block method of the NetworkInterface object.

5. GPS data management: The Position class is used to store and manage GPS position
data, making it easier to analyze and process the received signals for detecting GPS
spoofing. It maintains information about latitude, longitude, speed, altitude, heading,
time, variation, satellites, and hdop values, providing a comprehensive data structure
for the analysis process.

6. Monitor log: Throughout the defense process, the GpsSpoofingDefender and GpsSpoof-
ingDetector may log relevant information or events using a logging mechanism, such
as the console class. This logged information can be useful for further analysis, system
audits, or incident response actions.

3.8. Telemetry Spoofing
3.8.1. Definition

Let D be a set of telemetry data collected from a UAV—cloud system, and let D’ be
the set of spoofed telemetry data. The goal of the attacker is to generate a sequence of
spoofed data points d}, d), ..., d7. that can be inserted into the telemetry data stream
without being detected, and that achieve a specific attack objective. Formally, let X be the
set of features that describe the telemetry data, such as the UAV’s location, altitude, airspeed,

Drones 2023, 7, 289

23 of 102

and sensor readings. Let Y be the set of possible spoofed data points that can be generated
by the attacker, and let f : X — Y be a function that maps telemetry data to spoofed
data points.

The attacker’s objective is to choose a sequence of inputs x1, xp, ..., x7 that maximize
a given objective function Rr(1, y2, ..., yr), where y; = f(x;) is the corresponding
spoofed data point. The objective function Rt can be designed to reflect different attack
goals, such as causing the UAV to deviate from its intended path, collide with another
object, or perform unauthorized actions. To generate the spoofed data points, the attacker
can use a variety of techniques, such as statistical modeling, machine learning, or signal
processing. The spoofing algorithm can be trained on a dataset of telemetry data and
corresponding spoofed data points, using supervised or unsupervised learning techniques.
The training data can be generated through simulation or by collecting real telemetry data
from a UAV—cloud system.

To evaluate the performance of the spoofing algorithm, the attacker can use metrics
such as success rate, attack effectiveness, and computational complexity. Success rate
is the percentage of spoofed data points that are accepted by the system without being
detected, while attack effectiveness measures the impact of the attack on the UAV—-cloud
system’s performance. Computational complexity is the amount of computational or energy
resources needed to generate the spoofed data points, which is important in resource-
constrained environments [27].

The problem of generating spoofed telemetry data can be formulated as an optimiza-
tion problem: maximize Rt(y1, y2, ..., yr) subjecttoyy = f(x¢) fort = 1,2, ..., T
D' C Y - P(Detect = 1|D U D') < ¢ where ¢is a given threshold on the probability
of detection, and P(Detect = 1| D U D) is the probability of detection given the entire
set of telemetry data. The optimization problem can be solved using techniques such as
convex optimization, dynamic programming, or reinforcement learning, depending on the
complexity of the spoofing algorithm and the attack objective.

3.8.2. Sequence Diagram

Figure 16 shows the process of the telemetry spoofing problem; the adversary delivers
forged telemetry data to the UAV, which subsequently transmits it to the cloud. The cloud
verifies the data, determines that it is faked, and requests that the UAV verify the data. The
UAV confirms that the telemetry data has been faked and then transmits a report to the
cloud. Lastly, the cloud notifies the attacker with the spoofed telemetry.

Attacker uAv Cloud Telemetry

Send Spoofed Telemetry Data

Forward Telemetry Data

Validate Telemetry Data

Telemetry Data is Spoofed

Verify Telemetry Data is Spoofed

Alert about Telemetry Spoofing

Attacker UAV Cloud Telemetry

Figure 16. Telemetry spoofing problem sequence diagram.

3.8.3. Defense Class Diagram

In Figure 17, the TelemetrySpoofingDetector and TelemetrySpoofingDefender classes are
shown as main classes, while the Stats class is an internal class. The TelemetrySpoofingDetector

Drones 2023, 7, 289

24 of 102

has a composition relationship with the Stats class, as it uses an instance of Stats to store
the calculated mean and standard deviation of altitude data. The TelemetrySpoofingDefender
class has a composition relationship with the TelemetrySpoofingDetector class, as it holds an
instance of TelemetrySpoofingDetector and delegates the start and stop methods to it.

TelemetrySpoofingDefender
-detector

+start()

+stop()

¢

has

TelemetrySpoofingDetector

-dataWindow

+addDataPeint(data)
+start()

+stop()

¢+

has

Stats

-sum
-sumOfSquares

-count

+addValue(value)
+getStats()

Figure 17. Telemetry spoofing defender class diagram.

Based on the defense class diagram of the telemetry spoofing attack, the defense

mechanism can be explained as follows:

1.

Initialization: An instance of the TelemetrySpoofingDefender class is created. During
the instantiating process, the TelemetrySpoofingDefender constructs an instance of the
TelemetrySpoofingDetector class, which is responsible for analyzing incoming telemetry
data. The TelemetrySpoofingDetector, in turn, creates an instance of the Stats class to
maintain and calculate essential statistical values related to the altitude data (e.g.,
mean and standard deviation).

Telemetry data collection: As the UAV receives telemetry data, it is passed to the
TelemetrySpoofingDetector object using the addDataPoint method. The TelemetrySpoofin-
gDetector maintains a dataWindow, which stores the collected telemetry data points
over a sliding window of time or a fixed number of data points. This dataWindow
allows for continuous analysis of the incoming telemetry data.

Detection process initiation: The TelemetrySpoofingDefender initiates the detection
process by calling the start method on the TelemetrySpoofingDetector object. This sets
up a continuous loop or an event-driven mechanism that analyzes the collected
telemetry data at regular intervals or upon receiving new data points.

Statistical analysis: As part of the detection process, the TelemetrySpoofingDetector
analyzes the collected telemetry data. It leverages the Stats object to compute the
mean and standard deviation of the altitude data in the dataWindow. These statistical
values are then used to assess the normalcy of the incoming telemetry data.
Anomaly detection: The TelemetrySpoofingDetector compares the computed mean
and standard deviation values with predefined acceptable thresholds, which can be
determined based on historical data, domain knowledge, or other techniques. If these

Drones 2023, 7, 289

25 of 102

statistical values are found to be beyond the acceptable limits, it indicates the presence
of a telemetry spoofing attack.

6. Triggering response mechanisms: Upon detecting a telemetry spoofing attack, the
TelemetrySpoofingDetector can trigger various response mechanisms to mitigate the
impact of the attack. These may include (i) alerting the UAV system operator to take
manual corrective actions, (ii) automatically adjusting the UAV’s control algorithm
to disregard the spoofed telemetry data and rely on alternative navigation sources,
(iii) initiating countermeasures to block or jam the source of the spoofed telemetry
signals, and (iv) activating redundant systems or failsafe modes to ensure the safe
operation of the UAV under attack.

7. Stopping the detection process: The TelemetrySpoofingDefender can halt the detection
process at any moment by calling the stop method on the TelemetrySpoofingDetector
object, which stops the continuous analysis loop or event-driven mechanism.

3.9. Gray Hole Attack
3.9.1. Definition

Let G = (V, E) be a directed graph representing the communication network between
UAVs and cloud servers, where V is the set of nodes representing UAVs and cloud servers,
and E is the set of directed edges representing the communication links between them. Let
t. be the current traffic rate on edge ¢ in E, and let ¢, be the maximum capacity of edge e.

Suppose there is a malicious actor who gains access to a network device and launches
a gray hole attack by selectively blocking or transmitting traffic on certain edges in E during
a time interval [0, T]. Let S(t) be the set of edges that the attacker selects for blocking or
transmitting traffic at time £, and let p(t) be the fraction of traffic that the attacker blocks
or transmits on the selected edges at time t. Then, the attacker can reduce the total traffic
rate on the network, causing congestion and disrupting legitimate traffic. The objective
is to maximize the disruption caused by the attack during the time interval [0, T], while
minimizing the detection probability of the attack.

We can formulate this as a dynamic optimization problem, as follows: Maximize:

fOT Zggts(t) (te(t) — p(t) = te(t)) Subject to t.(t) <= c,, forall ein E and t in [0, T]
Yeesr) p(t) * toyy <= a, foralltin [0, T] P(D(t)) <= B, foralltin[0, T], where t,
is the traffic rate on edge e at time ¢, S(t) is the set of edges selected by the attacker at time ¢,
o(t) is the fraction of traffic that the attacker blocks or transmits on the selected edges at
time ¢, a is the maximum total traffic reduction that the attacker can achieve at any time,
is the maximum detection probability of the attack at any time, and D(?) is the event that
the attack is detected at time .

The objective function maximizes the difference between the original traffic rate
and the adjusted traffic rate on each selected edge over the time interval [0, T]. The first
constraint ensures that the adjusted traffic rate does not exceed the capacity of each edge at
any time. The second constraint limits the maximum total traffic reduction that the attacker
can achieve at any time. The third constraint limits the maximum detection probability of
the attack at any time, which could depend on factors such as the quality of the detection
algorithm, the frequency of monitoring, and the noise level in the traffic data.

3.9.2. Sequence Diagram

As depicted in Figure 18, the adversary launches a gray hole assault against numerous
UAVs in the system. Both UAV1 and UAV?2 transmit incomplete data to the cloud, and
the cloud demands the missing information. This request is intercepted by the attacker,
who then transmits changed data to both UAV1 and UAV2. When both UAVs transmit the
altered data to the cloud, the cloud receives them, unaware that they have been altered,
providing the attacker unauthorized access to the system. Lastly, the attacker uploads the
altered data to the cloud.

Drones 2023, 7, 289 26 of 102

Attacker UAV1 UAV2 Cloud

Initiate Grayhole Attack

»
»

Initiate Grayhole Attack

Sends Partial Data

... >
Sends Partial Data
,, >
Request for Missing Data
e eiiieiaaaaaaaaa-amemeememmee—eeamans
Request for Missing Data
B e L e L L L L T PP P
Sends Modified Data
e
Sends Modified Data
4 ...
Sends Modified Data
Attacker UAV1 UAV2 Cloud

Figure 18. Gray hole sequence diagram.

3.9.3. Defense Class Diagram

In Figure 19, the GrayholeDetector class is responsible for detecting gray hole attacks on
a UAV by monitoring the data that are being sent and received over the network. It has a
networkInterface object, which is an instance of the NetworkInterface class, to listen for outgo-
ing and incoming data and add them to the outgoingDataQueue and incomingDataQueue,
respectively. It has a monitorInterval attribute to specify the time interval for monitoring
the data queues. It also has three methods: monitorDataQueues() to check for any patterns
in the data that may indicate a gray hole attack, detectGrayholePattern(dataQueue) to detect
patterns in the data, and blockGrayhole() to block the gray hole attacker’s IP address.

GrayholeDefender

-detector: GrayholeDetector

+start() : void
+stop() : void

contains

GrayholeDetector

-networkInterface: Networkinterface
-outgaingDataQueue: any[]
-incomingDataQueue: any[]

-monitorinterval: number

+monitorDataQueues() : void
+detectGrayholePattern(dataQueue: any[]) : boolean

+blockGrayhole() : void
uses

Networkinterface

+getlpAddress() : string

+listenForData() : void

Figure 19. Grayhole class diagram.

The GrayholeDefender class is responsible for starting and stopping the GrayholeDetector.
It has a detector attribute that is an instance of the GrayholeDetector class. It has two
methods: start() to start the GrayholeDetector and stop() to stop the GrayholeDetector. The

Drones 2023, 7, 289

27 of 102

NetworkInterface class is a mock class that provides the IP address of the network interface
and a method to listen for outgoing and incoming data. It is used to simulate network
traffic for testing purposes. The arrows in the diagram show the relationships between the
classes. The GrayholeDetector class uses an instance of the NetworkInterface class to listen
for outgoing and incoming data. The GrayholeDefender class contains an instance of the
GrayholeDetector class.

Based on the defense gray hole attack class diagram, the defense mechanism scenario
can be explained as follows:

1. Initialization: An instance of the GrayholeDefender class is created to manage the
defense process. The GrayholeDefender initializes its detector attribute by creating an
instance of the GrayholeDetector class. The GrayholeDetector initializes its networkIn-
terface object with an instance of the NetworkInterface class, which is responsible for
listening to incoming and outgoing network traffic, simulating a real-world environ-
ment for testing purposes.

2. Commencement of monitoring: The GrayholeDefender class invokes the start() method,
which signals the GrayholeDetector to commence monitoring the network traffic. Uti-
lizing its networklInterface object, the GrayholeDetector observes the network traffic,
collecting and storing outgoing and incoming data in the outgoingDataQueue and
incomingDataQueue, respectively. The GrayholeDetector employs a monitorlnterval at-
tribute to establish the frequency at which it checks the data queues for potential gray
hole attack patterns.

3. Data queue examination: The GrayholeDetector periodically examines the contents
of the outgoingDataQueue and incomingDataQueue based on the monitorinterval. It
processes the data, searching for irregularities, inconsistencies, or patterns that could
indicate the presence of a gray hole attack. The data analysis is performed by the
detectGrayholePattern(dataQueue) method, which scrutinizes the queued data to discern
any malicious activities.

4. Attack detection and confirmation: If the detectGrayholePattern() method identifies a
suspicious pattern or anomaly that suggests a gray hole attack, the GrayholeDetector
validates its findings before taking any further action. This validation step may
involve comparing the detected pattern against known gray hole attack signatures or
employing statistical analysis methods to ensure that the pattern is not a false positive.

5. Attacker blocking and reporting: Once the GrayholeDetector confirms the presence
of a gray hole attack, it calls the blockGrayhole() method. This method leverages the
networkInterface object to block the IP address of the gray hole attacker, effectively
neutralizing the threat. In addition to blocking the attacker, the GrayholeDetector may
also generate a report or alert containing details about the attack, such as the attacker’s
IP address, the timestamp of the attack, and the suspicious patterns observed. This
information can be shared with network administrators or security teams for further
investigation and potential improvements to the system’s defenses.

6. Monitoring termination and cleanup: If necessary, the GrayholeDefender class can call
the stop() method to cease the GrayholeDetector’s monitoring activities. This may be
useful in cases where the system is shutting down or when the network environment
has been deemed safe. The GrayholeDetector then performs any necessary cleanup,
such as deallocating memory or closing open connections.

3.10. Impersonation Attack
3.10.1. Definition

Let S be a set of sensitive data and resources involved in UAV—cloud systems. Let
A be the set of possible attackers who may attempt to gain unauthorized access to the
system through impersonation attacks. Let C be the set of cloud computing resources and
UAVs used in the system. The problem is minimizing the risk of impersonation attacks in
UAV-cloud systems while ensuring the security and integrity of the data being collected

Drones 2023, 7, 289

28 of 102

and transmitted. This can be achieved by implementing effective security measures that
prevent or detect impersonation attacks [28].

The objective function can be defined as minimize R, where R is the overall risk of
impersonation attacks in the UAV-cloud system. The risk of impersonation attacks can
be defined as a function of the probability of an attack occurring, the potential impact
of the attack on the system, and the sensitivity of the data and resources involved. This
can be mathematically formulated as R = P x [x S, where P is the probability of an
impersonation attack occurring, I is the potential impact of the attack on the system, and S
is the sensitivity of the data and resources involved.

3.10.2. Sequence Diagram

The scenario of attack is shown in Figure 20. The attacker intercepts the credentials
supplied to the authentication system by both UAV1 and UAV2. The attacker impersonates
UAV2 to UAV1 and vice versa, deceiving each UAV into believing it is talking with the
other. Each UAV transmits data to the cloud; however, the cloud requires identification
from each UAV. The cloud accepts the forged authentication and provides the attacker
unauthorized system access.

Attacker UAV1 UAvz Cloud Authentication

Send Credentials

Send Credentials

Authenticate Credentials

Authenticate Credentials
N S

Intercept Credentials

Impersonate UAV2
.

Impersonate UAV1

»>

Sends Data

Sends Data

Request Authentication

Send False Authentication

Attacker UAv1 UAvV2 Cloud Authentication

Figure 20. Impersonate sequence diagram.

3.10.3. Impersonation Class Diagram

As shown in Figure 21, it is the responsibility of the ImpersonationDetector class to
identify impersonation assaults. It contains several methods, such as a constructor that
initializes a dgram server to receive incoming telemetry data, a connectIToMongo() method to
connect to a MongoDB database to store telemetry data, a onMessage() method to handle
incoming telemetry data, a calculateStats() method to calculate statistics of telemetry data,
a verify AuthToken() method to check if an authentication token is valid, and a blockImper-
sonation(). It also has the onError() and close() methods, which are used to handle server
problems and end the service, respectively.

The class ImpersonationDefender is a wrapper for the class ImpersonationDetector. It has a
constructor that creates an instance of ImpersonationDetector, a start() method for starting the
server and connecting to MongoDB, and a stop() method for stopping the server and closing
the MongoDB connection. The ImpersonationDetector class depends on the MongoClient,
dgram, and jwt classes as external dependencies. The ImpersonationDetector class utilizes
MongoClient to connect to a MongoDB database, dgram to establish a UDP server to accept

Drones 2023, 7, 289

29 of 102

incoming telemetry data, and jwt to validate authentication tokens. As indicated by the
“uses” arrows in the figure, the ImpersonationDetector class depends on these other classes.

ImpersonationDefender

+ImpersonationDefender()
+start() : void
+stop() : void

contains

ImpersonationDetector

+ImpersonationDetector()
+connectToMongo() : void
+onMessage() : void
+calculateStats() : void
+verifyAuthToken() : beolean
+blocklmpersonation() : void
+onError() : void

+close() : void

/ | \

uses uses uses

Jf v v

MongoClient dgram jwt

Figure 21. Impersonation defense class diagram.

In the defense scenario based on the impersonation attack class diagram, the system

aims to protect against impersonation attacks by meticulously analyzing telemetry data,
verifying authentication tokens, and deploying a multilayered defense approach. The
process of implementation is as follows:

1.

Initialization: The ImpersonationDefender class initializes an instance of the Imperson-
ationDetector class, which is responsible for detecting impersonation attacks. During
this initialization, the ImpersonationDetector sets up a UDP server using the dgram
class to receive incoming telemetry data.

Store and analyze: The ImpersonationDetector class connects to a MongoDB database
using the MongoClient class to store and analyze telemetry data. This database stores
historical and real-time data, allowing the system to compare incoming data with
previously recorded patterns and identify anomalies.

Processing: When telemetry data are received, the onMessage() method in the Imper-
sonationDetector class processes the incoming data. This method parses the data and
extracts relevant information such as the sender’s IP address, device identifiers, and
authentication tokens.

Authentication: To ensure the authenticity of the received data, the verifyAuthToken()
method checks the authentication token using the jwt class. If the token is found to be
invalid or expired, the system may immediately block the sender’s IP address or flag
the event for further investigation.

Statistics measurement: The ImpersonationDetector class calculates various statistics
of the telemetry data, such as mean, standard deviation, and other relevant metrics,
using the calculateStats() method. By comparing these statistics to historical data or
predefined thresholds, the system can identify potential anomalies, which could be
indicative of an impersonation attack.

Take action: If the system detects an impersonation attack based on the calculated
statistics, invalid authentication tokens, or other suspicious patterns, the blockImper-

Drones 2023, 7, 289

30 of 102

sonation() method is called to block the attacker’s IP address, revoke authentication
tokens, or take other appropriate countermeasures to mitigate the attack.

7. Handle error: To maintain system stability and handle unexpected errors, the Imper-
sonationDetector class employs the onError() method. This method logs errors, restarts
the server if necessary, and informs system administrators of potential issues.

8. Emergency shutdown: The ImpersonationDetector can close the server connection and
database connection using the close() method, which gracefully shuts down the system
when needed.

9. Start and stop mechanism: The ImpersonationDefender class provides start() and stop()
methods to control the defense mechanism by starting the server, connecting to
the MongoDB database, or stopping the server and closing the database connection
as needed.

3.11. Insider Attack
3.11.1. Definition

Optimize the allocation of security resources in a UAV—cloud network to minimize
the risk of insider attacks while maintaining the continuity of the network’s operations.
The problem can be formulated as a constrained optimization problem, with the following
mathematical formulation: Let N be the set of nodes in the UAV—cloud network, and let S
be the set of available security resources. For each node i € N, let s; be the minimum level
of security resources required to prevent potential vulnerabilities [29].

The objective function is to minimize the risk of insider attacks, which can be formulated
as the sum of the probabilities of successful attacks on all nodes in N : minimize Y ;cn P,
where Pi is the probability of a successful insider attack on node i. The constraints are
as follows: the total budget for security resources must not exceed a given amount B :
Y.ses s < B where c; is the cost of security resource s.

Each node i must be assigned security resources that meet or exceed its minimum
security requirement: Y .5 z5; > ¢s;, Where z;; is a binary decision variable indicat-
ing whether security resource s is assigned to node z;; = 1 ornot (z; = 0). The
allocation of security resources must cover all potential attack vectors in the network:
YieN Lses Xsi Ljen, Cij € C attack_probability(i,j, c;j) > 1, where xg; is a binary decision
variable indicating whether security resource s is assigned to any node in the network
xsi = lornot(x;; = 0), and C is the set of possible attack types that an insider could
carry out. The function attack_probability(i, j, c;;) returns the probability of an attack of
type c;; being successful from node i to node j.

The allocation of security resources must not impact the performance or reliability of
the UAV—cloud network: Y ;cn Yses Xsi impact(i,s) < T,where impact(i,s) is a function
that measures the impact of assigning security resource s to node 7, and T is a threshold
value indicating the maximum allowable impact. The decision variables are the binary
variables z;; and x,;, which determine the allocation of security resources to each node and
across the network, respectively. The goal is to find the values of these decision variables
that minimize the objective function while satisfying all constraints.

3.11.2. Sequence Diagram

As shown in Figure 22, the insider obtains access to UAV1 and UAV?2 as well as the
cloud in this scenario. The insider alters the data being transmitted by UAV1 and then
transmits the modified data to the cloud. The insider additionally obtains sensitive data
from UAV2 by requesting and obtaining them straight from the cloud. These acts are
permissible due to the insider’s allowed access to the system, yet they are detrimental to
the business and may result in data breaches or other damage.

Drones 2023, 7, 289

31 of 102

Insider UAV1 UAV2 Cloud
Gain Access
Gain Access
Gain Access
Modify Data
Send Modified Data
... »>
Extract Sensitive Data
Request Data
................................ >
Send Sensitive Data
U Y S
Insider UAV1 UAV2 Cloud

Figure 22. Insider sequence diagram.

3.11.3. Defense Class Diagram

As shown in Figure 23, the class diagram shows two main classes: InsiderDetector and
InsiderDefender. The InsiderDetector class is responsible for detecting insider attacks on a
UAV, and the InsiderDefender class is responsible for starting and stopping the InsiderDetector.
The InsiderDetector class has a few private properties: db, loginData, isModelTrained, and
model. It also has four public methods: connectToMongo, trainModel, onLoginAttempt,

and close.

InsiderDefender

-detector
-mongoUrl
-dbName
-collectionName

+start()

+stop()

¢

contains

InsiderDetector

-db
-loginData
-isModelTrained

-model

+connectToMongo()
+trainModel()
+onLoginAttempt()

+close()
/ \
u;};s u%es
MongoClient svm

Figure 23. Insider defense class diagram.

Drones 2023, 7, 289

32 of 102

The connectloMongo method connects to a MongoDB database and retrieves login
data from a specified collection. The trainModel method prepares training data from the
retrieved login data and trains a support vector machine (SVM) model using the node-svm
library. The onLoginAttempt method checks for insider threats by predicting the outcome of
a login attempt using the trained SVM model. If an unsuccessful login attempt is detected,
the takeAction method is called to block the user’s account. The close method closes the
MongoDB connection.

The InsiderDefender class has three private properties: detector, mongoUrl, dbName, and
collectionName. It has two public methods: start and stop. The start method creates a new
instance of the InsiderDetector class, connects to the MongoDB database, and trains the SVM
model. The stop method stops the InsiderDetector and closes the MongoDB connection. The
MongoClient and svm classes are external dependencies used by the InsiderDetector class.
The InsiderDetector class uses the MongoClient class to connect to the MongoDB database
and the sum class to train the SVM model.

The defense mechanism against insider attacks, as described in the class diagram,
operates in a comprehensive and systematic manner to identify and prevent potential
threats. This process can be broken down into several steps and elaborated upon, as follows:

1. Initialization: The InsiderDefender class is responsible for managing the overall
defense process. Upon initialization, it sets up the necessary configurations such as the
MongoDB connection URL, database name, and collection name. These configurations
are vital to ensuring the proper functioning of the defense mechanism.

2. Data collection and preprocessing: The InsiderDetector class, once instantiated by
the InsiderDefender, connects to the MongoDB database and retrieves historical login
data from the specified collection. These data serve as the foundation for training the
SVM model. The login data may include various features such as timestamps, user
IDs, IP addresses, and other relevant information that can help identify patterns in
user behavior.

3. Feature extraction and model training: The InsiderDetector class preprocesses the
collected data and extracts relevant features to create a dataset suitable for training
the SVM model. During this process, data normalization, feature scaling, and other
transformations may be applied to improve the model’s accuracy and performance.
Once the training dataset is prepared, the trainModel method is called to train the
SVM model using the node-svm library.

4. Real-time monitoring and prediction: With the trained SVM model, the InsiderDe-
tector class actively monitors login attempts in real time. For each login attempt, the
onLoginAttempt method extracts the same features used during the training phase
and feeds them into the SVM model. The model then predicts whether the login
attempt is legitimate or potentially malicious based on the learned patterns in the
historical data.

5. Threat detection and mitigation: If the SVM model predicts a malicious login at-
tempt, it triggers the takeAction method, which can involve various security measures
to block the user’s account and prevent unauthorized access. This step may also
include issuing alerts to security personnel, logging the event for further analysis, and
implementing additional security measures to safeguard the system.

6. Continuous improvement and adaptability: The InsiderDetector can periodically
update the SVM model by retraining it with new data, ensuring that the model stays
up to date with the latest trends and patterns in user behavior. This continuous
improvement process helps maintain the effectiveness of the defense mechanism
over time.

7. System shutdown and resource management: The InsiderDefender’s stop method can
be called when the defense process is no longer needed or when the system is shutting
down. This method ensures the proper termination of the InsiderDetector instance and
the release of resources, such as closing the MongoDB connection.

Drones 2023, 7, 289

33 of 102

3.12. Jamming Attack
3.12.1. Definition

Let S; be the genuine signal on a wireless communication channel at time ¢, and let N;
be the noise signal at time t. The total signal at time ¢ is then givenby X; = S; + N;. A
jamming attack occurs when an attacker transmits a signal J; on the same frequency as the
targeted channel, resulting in a jamming signal J;. The total signal at time ¢ in the presence
of ajamming attack is then givenby Y; = S; + J; + N;. The goal of a jamming attack is
to disrupt the normal operation of the wireless communication channel. This disruption
can be quantified by a disruption function D(Y}), which measures the degree to which the
jamming attack has disrupted the signal at time ¢. The attacker’s objective is to maximize
the disruption function, while the defender’s objective is to minimize it. Jamming attacks
can be directed at a single target, or they can be of a broader nature and impact a large
geographical area. The extent of the attack can be quantified by a geographic function
G(Y}), which measures the area over which the jamming attack is effective [30].

3.12.2. Sequence Diagram

As shown in Figure 24, the jammer provides a signal of interference to UAV1 while
it transmits data to the cloud. This interrupts the transport of data between UAV1 and
the cloud, preventing the cloud from receiving any data from UAV1. The jammer then
transmits a signal of interference to UAV2 when it is delivering data to the cloud, preventing
the cloud from receiving any data from UAV2. Due to the jamming assaults, both UAVs
are unable to send data to the cloud, and the cloud does not receive any data. This may
result in a delay in data transmission or the complete loss of data, causing serious harm to
the company.

Jammer UAV1 UAV2 Cloud

Send Jamming Signal

Send Data

A 4

Receive Data

Send Jamming Signal

2

Send Data

Receive Data

e

Unsuccessful Data Transfer

A

Unsuccessful Data Transfer

Jammer UAV1 UAV2 Cloud

Figure 24. Jamming sequence diagram.

3.12.3. Defense Class Diagram

As shown in Figure 25, the class diagram depicts the relationships and attributes of
the JammingDetector and JammingDefender classes, along with some related classes. The
JammingDetector class has several private attributes, including a server attribute of type
dgram.Socket and an mqttClient attribute of type mgqtt.Client. It has several public meth-
ods, including connectToCloudBroker(), onMessage(), calculateStats(), retrievelelemetryData(),
blockCommunication(), sendJammingAlert(), jamCommunication(), unblockCommunication(),
and close().

Drones 2023, 7, 289

34 of 102

The JammingDefender class has a private detector attribute of type JammingDetector,
and it has two public methods, start() and stop(). The class diagram also includes classes for
dgramSocket, mqttClient, and child_process, which are related to the JammingDetector class.
The dgramSocket and mgqttClient classes have public methods for communication with the
server and broker, respectively. The child_process class has a public method for executing
shell commands.

The relationships between classes are indicated by the arrows in the diagram. The
JammingDetector class has a composition relationship with the dgramSocket and mqttClient
classes, indicating that it owns instances of these classes. It also has a dependency rela-
tionship with the child_process class, indicating that it relies on this class to execute shell
commands. The JammingDetector class is associated with the JammingDefender class through
the detector attribute, which holds a reference to an instance of the JammingDetector class.
The JammingDefender class has an aggregation relationship with the JammingDetector class,
indicating that it holds a reference to an instance of the JammingDetector class. Finally,
the JammingDefender class has an association relationship with the JammingDetector class,
indicating that it interacts with the JammingDetector class to start and stop the jamming
detection process.

JammingDetector

- server : dgram.Socket

- mqttClient : mqtt.Client

+connectToCloudBroker() : : void

+onMessage (message: Buffer, remote: dgram.Remotelnfo) : : void
+calculateStats() : Number

+retrieveTelemetryData() : : Promise
+blockCommunication(ipAddress: string) : : void
+sendJammingAlert() : : void

+jamCommunication() : : void

+unblockCommunication() : : void

+close() : : void

[\ N ™

composition composition dependency association aggregation association

mqttClient JammingDefender

dgramSocket
I child_process

- detector : JammingDetector

+connect() : void

+on() : void
+send() : void +exec() : void +start() : : void

+emit() : void

+receive() : void +stop() : : void

Figure 25. Jamming class diagram.

The defense mechanism against jamming attacks in the class diagram consists of
several steps that involve the collaboration of the JammingDetector and JammingDefender
classes, as well as some related classes, such as dgramSocket, mqttClient, and child_process.
Here is a more detailed and comprehensive explanation of the defense mechanism:

1. Initialization and starting the defense process: The defense mechanism is initialized
and started by the JammingDefender class, which creates an instance of the JammingDe-
tector class. When the start() method of the JammingDefender class is called, it sets
up the JammingDetector instance to begin the detection and defense process against
jamming attacks.

2. Connecting to the cloud broker: The JammingDetector class establishes a connection
to the cloud broker by invoking the connectToCloudBroker() method. This connection en-
ables the JammingDetector to send and receive messages from an MQTT broker, which is
essential for monitoring the communication network and detecting jamming attacks.

Drones 2023, 7, 289

35 of 102

3. Listening for incoming messages: The JammingDetector class listens for incoming
messages from the MQTT broker by implementing the onMessage() method. This
method processes the received messages and extracts the relevant telemetry data,
which are used to analyze the communication network’s health and identify any
anomalies that may indicate a jamming attack.

4. Analyzing telemetry data: The JammingDetector class periodically analyzes the teleme-
try data by calling the calculateStats() method. This method computes various statistics
from the data, such as packet loss, latency, and signal strength, to identify potential
jamming attacks. If the calculated statistics show a significant deviation from the
expected values, it may suggest the presence of a jamming attack on the communica-
tion network.

5. Detecting jamming patterns: In addition to analyzing telemetry data, the JammingDe-
tector class also uses the detectGrayholePattern(dataQueue) method to detect patterns
in the data that may be indicative of a jamming attack. This method looks for spe-
cific patterns, such as a sudden increase in packet loss or a significant drop in signal
strength, to determine whether a jamming attack is in progress.

6. Responding to jamming attacks: If a jamming attack is detected, the JammingDetec-
tor class takes several actions to mitigate the attack and protect the communication
network. It blocks the communication of the suspected jammer by calling the block-
Communication() method, sends a jamming alert to the relevant authorities using the
sendJammingAlert() method, and jams the attacker’s communication by invoking the
jamCommunication() method. These actions help minimize the impact of the jamming
attack on the network and allow the system to continue operating despite the attack.

7. Restoring normal communication: Once the jamming attack has been mitigated, the
JammingDetector class can restore normal communication by calling the unblockCom-
munication() method. This method unblocks the previously blocked communication,
allowing the network to resume its normal operation.

8. Stopping the defense process: The JammingDefender class can stop the defense pro-
cess by calling its stop() method. This method stops the JammingDetector instance,
which in turn stops monitoring the communication network and releases the resources
associated with it.

9. Cleanup and closing connections: The JammingDetector class has a close() method that
can be used to close the server and MQTT client connections and release any resources
associated with them. This method ensures proper cleanup of the JammingDetector
instance when the defense mechanism is no longer needed.

3.13. Eavesdropping
3.13.1. Definition

An eavesdropping attack is a type of security threat in which an attacker secretly
intercepts and eavesdrops on a private communication. This type of attack can take several
forms, including wiretapping phone calls, intercepting wireless network communications,
and even eavesdropping on face-to-face conversations. Often, the goal of an eavesdrop-
ping attack is to obtain sensitive information or access to confidential data. Often, it is
difficult to identify eavesdropping attacks since they occur without the parties” knowledge.
Utilizing encrypted messaging or secure voice-over-IP (VoIP) services can lessen the risk
of eavesdropping attacks. In addition, the use of end-to-end encryption protects against
efforts to eavesdrop by guaranteeing that only the intended recipients can read or access
the sent data.

In the context of a UAV—cloud system, an eavesdropping attack aims to intercept
and decode confidential information exchanged between the unmanned aerial vehicles
(UAVs) and the cloud infrastructure. The attacker’s objective is to maximize the amount
of successfully intercepted and decoded information while overcoming the challenges
posed by encryption mechanisms, secure communication protocols, physical security
controls, and access restrictions. Here is a comprehensive narrative of the mathematical

Drones 2023, 7, 289

36 of 102

problem formulation from the attacker’s perspective. The attacker’s primary objective is to
maximize the amount of intercepted and decoded information (I*). This objective can be
represented mathematically as a function, Ix = g(I, U, C, Ej,,, Piyy), where I represents
the information exchanged between a set of UAVs (U) and the cloud infrastructure (C).
Einp and Py, denote the attacker’s knowledge of the inverse functions for encryption and
secure communication protocols, respectively.

In order to successfully carry out the eavesdropping attack, the attacker must over-
come several constraints: (i) the attacker must intercept the communication between the
UAVs and the cloud infrastructure. This constraint can be represented mathematically
as a function, f(U, C) = I, which indicates that the attacker’s ability to intercept the
communication depends on the properties of the UAVs and the cloud infrastructure. (ii)
The attacker must have the knowledge or capability to break the encryption and secure
communication protocols used in the UAV-cloud system. This constraint can be repre-
sented by two separate mathematical equations, E;,,,(E(I)) = Iand P,,(P(I)) = I,
where E(I) and P(I) are the encrypted and secure communication protocol-applied ver-
sions of the information, respectively. (iii) The attacker must also overcome the physical
security controls and access restrictions implemented within the UAV-cloud system. These
constraints can be represented by a set of mathematical equations, S;,,(S(U)) = U and
Sinv(S(C)) = C, which denote that the attacker needs to bypass the security measures
protecting the UAVs and the cloud infrastructure. Additionally, R;,,(R(U, C)) = U xC
represents the attacker’s ability to overcome access restrictions placed on the interactions
between UAVs and the cloud infrastructure.

Usage of physical security controls, such as securing doors and shielding computer
equipment, and installation of access restrictions, such as user identification and authoriza-
tion, can also help against eavesdropping attacks. In addition, it is vital to regularly assess
and revise security policies and processes to ensure they account for the most recent risks
and dangers [31].

3.13.2. Sequence Diagram

As shown in Figure 26, in this sequence diagram, the attacker starts the process of
network eavesdropping. They intercept and store data transmitted between UAVs and the
cloud. Next, the attacker examines the intercepted traffic, identifies user data, and requests
them from the cloud. They intercept and keep the user information. The attacker then uses
the intercepted data to transmit malicious orders to the drones across the network, forcing
the cloud to execute and respond to those commands. In the end, the attacker is successful
in attacking the system.

3.13.3. Defense Class Diagram

As shown in Figure 27, the class diagram describes a program that includes an Eaves-
droppingDefender class, which uses other classes such as mgttClient, mongodb, and crypto
to perform its tasks. The EavesdroppingDefender class has three private instance variables:
uavClient, cloudClient, and collection, which are instances of the mgttClient and mongodbCollec-
tion classes, respectively. The class includes a constructor method that creates instances of
the mqttClient class, subscribes to topics, and sets up message handlers. The onUAVMessage
and onCloudMessage methods handle incoming messages from the UAV and cloud brokers,
respectively. The encryptMessage and decryptMessage methods use the crypto class to perform
AES-256-CBC encryption and decryption. The storeDecryptedMessage and storeEncryptedMes-
sage methods store messages in the MongoDB database. The close method unsubscribes
from topics and ends the MQTT connections.

Drones 2023, 7, 289

37 of 102

Attacker Network UAvs Cloud

Start eavesdropping

Transmit data to Cloud

Intercept and store data

Forward UAY data to Cloud

Examine intercepted traffic

Request user data from Cloud

Send user data to Attacker

Intercept and store user data

Transmit malicious commands to UAVs

Forward malicious commands to UAVs

Send response to malicious commands

Forward UAV response to Cloud

Intercept response

Send intercepted response to Attacker

Attacker successfully attacks the system

—

Attacker Network UAvs Cloud

Figure 26. Eavesdropping sequence diagram.

The mgttClient class is used to connect to MQTT brokers, subscribe to and publish
messages on topics, and handle incoming messages. The mqttClientOptions class is used to
set options such as a username and password for connecting to a broker. The crypto class
provides methods for generating random bytes, creating ciphers and deciphers for encryp-
tion and decryption. The mongodb class provides a method for inserting documents into the
MongoDB database and a db method that returns an instance of the mongodbCollection class.
The arrows in the diagram indicate the relationships between the classes. The Eavesdrop-
pingDefender class uses instances of the mqttClient, mongodb, and crypto classes to perform its
tasks. The mqttClient class has an instance of the mqttClientOptions class. The mongodb class
connects to the MongoDB database and returns an instance of the mongodbCollection class.

EavesdroppingDefender

mattClient uavClient
mattclient cloudClient

mongodbCollection collection

+EavasdroppingDefender()
~onUAVMessage(topic: string, message: string)
~onCloudMessage(topic: string, message: string)
~encryptiessage(message: string) : string

| +decryptMessage(message: string) : string T
~async storeDecryptediessage(message: string) T~
~asyne storeEncryptediessage(message: string) R
B _ +close() .
— | ~
= uses \\uses
¥ \
magttClient J{ \
maqttClientOptions options v
mongods crypto
+connect(url: string, options?: mqtt.ClientOptions) : mqtt.Client
+subscribe(topic: string) +insertOne(document: object) : Promise +randomBytes(size: number) : Buffer
+publish{topic: string, message: string) +connect (url: string, callback: (err: Error, client: mongodb.Db) +createCipheriv(algorithm: string, key: string | Buffer, iv: string | Buffer) : crypto.Cipher
~on{event: string, callback: () => void) +db(name: string) : mongodbCollection ~createDecipheriv(algorithm: string, key: string | Buffer, iv: string | Buffer) : crypto.Decipher

~unsubscribe(topic: string)
~end()

Figure 27. Eavesdropping defense class diagram.

The class diagram depicts a defense mechanism against eavesdropping attacks within
a UAV—cloud system, using encryption, secure communication, and data storage techniques.
The primary class managing the secure communication is the EavesdroppingDefender class,
which collaborates with instances of mqttClient, mongodb, and crypto classes to safeguard
the data transmission and storage. Below is the implementation process:

Drones 2023, 7, 289

38 of 102

1. Initialization: The EqvesdroppingDefender class initiates the defense process by creat-
ing instances of mqttClient and subscribing to appropriate topics. The class sets up
message handlers through onlUAVMessage and onCloudMessage methods, which are re-
sponsible for managing incoming messages from the UAV and the cloud, respectively.

2. Encryption: Upon receiving a message from the UAV, the EavesdroppingDefender class
uses the encryptMessage method to apply AES-256-CBC encryption, provided by the
crypto class, to the message. The encrypted message is then securely transmitted to
the cloud through mgttClient, ensuring that potential eavesdropping attackers cannot
decipher the message content.

3. Decryption: Similarly, when the cloud sends a message, the EavesdroppingDefender
class intercepts it, decrypts the message using the decryptMessage method, and se-
curely stores the decrypted data in the MongoDB database with the storeDecryptedMes-
sage method.

4. Storing: Moreover, the EavesdroppingDefender class has storeEncryptedMessage and close
methods. The storeEncryptedMessage method allows for storing encrypted messages in
the MongoDB database, adding an extra layer of security. The close method takes care
of unsubscribing from topics and terminating the MQTT connections, reducing the
likelihood of eavesdropping attacks during inactive periods.

5. Handling incoming messages: The mqttClient class facilitates connecting to MQTT
brokers and handling incoming messages, while the mgttClientOptions class sets up
necessary options such as username and password for secure broker connections.
The crypto class offers various methods for generating random bytes and creating
ciphers and deciphers for encryption and decryption. The mongodb class enables the
insertion of documents into the MongoDB database and returns an instance of the
mongodbCollection class for additional database operations.

3.14. Poor Link Quality and High Latency
3.14.1. Definition

Poor link quality and excessive latency are two prevalent network connection concerns.
Poor connection quality can be caused by a number of causes, including physical distance
between devices, interference from other devices, environmental variables such as walls
or obstructions, or network hardware or software problems. Low link quality can lead to
sluggish data transfer, lost connections, and other performance problems.

In contrast, high latency refers to delays in the time it takes for data to be transferred
and received across network devices. This delay may be caused by physical distance,
network congestion, or other technical or software difficulties with the network. Excessive
latency can lead to sluggish reaction times, poor network performance, and other issues
that might negatively influence the user experience.

To reduce these challenges, it is essential to identify the underlying source of the
problem and take the necessary measures to remedy it. If the problem is caused by
interference or environmental conditions, for instance, it may be necessary to relocate
equipment or modify the network configuration in order to improve the connection. If
the problem is caused by network congestion, it may be essential to increase network
bandwidth or employ traffic management techniques to prioritize specific types of traffic.
Frequent monitoring and performance testing may also assist in identifying and resolving
any issues before they have an effect on the user experience [32].

3.14.2. Sequence Diagram

As shown in Figure 28, the attacker sends a large quantity of data to UAV1, causing
the data queue to become full. The UAV1 then transmits the data to the cloud, which
confirms its reception. The cloud then transmits the data to UAV2, which confirms receipt
of the data.

Due to the large volume of data being communicated, however, the communication
between UAV1 and the cloud is extremely delayed. The network reacts to UAV1’s request

Drones 2023, 7, 289

39 of 102

for extra bandwidth by raising the capacity. With the increased bandwidth, latency is
reduced, and UAV1 is able to transfer data to the cloud and UAV2 more effectively.

Attacker UAV1 UAv2 Cloud Network

Send high amount of data

Data queue overflows

Send data

Acknowledge .H

Send data

Acknowledge

Request for more\n bandwidth

High amount of data\n causes delays in communication

Response with\n increased bandwidth]’
e ae et an e et aeeeeaeaee e ee e e ase o eeaneaeeeansaeeeaReateeananee e anee e nee e s
Send data
Acknovledge T ‘
Send data
Acknowledge
Increased bandwidthin reduces latency
Attacker (G uav2 Cloud Network

Figure 28. High latency due to attacker.

3.14.3. Defense Class Diagram

The class diagram in Figure 29 depicts a system for monitoring and maintaining link
quality between an unmanned aerial vehicle (UAV) and a cloud-based server. The system
is designed to handle message transmission and reception, prioritize messages based on
their latency, compress messages to reduce bandwidth usage, and store latency data in a
MongoDB database.

Application

- linkQualitybefender: LinkQualityDefender
sstart() : void
+stop() : void

uses

v
LinkQualityDefender

uavClient: mqtt.Client
cloudClient: mqtt.Client
- collection: mongodb.Collection

latencyAwarescheduler: LatencyAwarescheduler

~constructor()

__| +onUAVMessage(topic: string, message: mqtt.Message) : void

| +onCloudMessags(topic: string, message: mqtt.Message) : void
_— ~storeLatency(latency: number) : Promise
— ~close() : void N~
_— 7/ N \
s~ uses uses
v [\ \
LatencyAwareScheduler “ ‘I ‘
- uavClient: matt.Client \
- cloudclient: matt.Client J “
- UavTopic: string
- cloudTopic: string
MongoDB Zlib

~cloudQueue:(message: any, latency: number) B
-uavQueue:{message: any, latency: number) ~connect{url: string, options?: object) : Promise ~deflateSync(data: any) : Buffer
~constructor(uavClient: mqtt.Client, cloudClient: mqtt.Client, uavTopic: string, cloudTopic: string) |
~addUAVMessage message: any, latency: number) : void |
~addCloudiessage(message: any, latency: number) : void /
~sendUAVMessages() : void /
+sendCloudMessages() : void /

B -

—> Matt —
~connect url: string, optionsZ: object) : matt.Client

Figure 29. Latency and link quality defender.

Drones 2023, 7, 289

40 of 102

The defense mechanisms in the class diagram focus on monitoring and maintaining
link quality between an unmanned aerial vehicle (UAV) and a cloud-based server by man-
aging message latency, preserving communication quality, and ensuring system reliability.
Below is the implementation process explanation of the class diagram:

1. Latency-based message scheduling and prioritization: The LatencyAwareScheduler
class plays a crucial role in managing the communication between the UAV and the
cloud by scheduling messages based on their latency. It maintains separate message
queues for both the UAV and the cloud to prioritize messages with lower latency. By
performing this, the system ensures that critical information is transmitted in a timely
manner, even when faced with network congestion or other potential issues affecting
communication quality.

2. Continuous monitoring and assessment of link quality: The LinkQualityDefender
class is responsible for handling incoming messages from the UAV and cloud, manag-
ing MQTT clients, and storing latency data in a MongoDB database. By continuously
monitoring the latency of messages and the overall quality of the communication link,
the system can detect potential communication issues, such as network congestion,
interference, or even attacks targeting the link. As a result, the system can respond
proactively to maintain or improve the link quality by taking appropriate actions, such
as adjusting message priorities, rescheduling transmissions, or even triggering alerts.

3. Efficient message compression for improved transmission: The Z/ib class is used
by the LinkQualityDefender class to compress messages before transmission. By com-
pressing the data, the system effectively reduces the size of messages, improving
transmission efficiency and reducing the chances of communication delays or packet
loss. This efficiency is particularly important for maintaining high-quality communi-
cation in scenarios where network bandwidth is limited or under attack.

4. Resilient and reliable communication through MQTT: The Mgtt class represents
the MQTT client library used by both the LinkQualityDefender and LatencyAwareSched-
uler classes. MQTT is a lightweight messaging protocol designed specifically for
situations where low-bandwidth, high-latency, or unreliable networks are expected.
By employing MQTT as the communication protocol, the system ensures that the
communication link between the UAV and the cloud remains robust and reliable,
even in challenging network conditions or under attack.

5. Centralized control and management of defense mechanisms: The Application
class provides a central interface for starting and stopping the LinkQualityDefender
instance. This centralized control simplifies the management and monitoring of the
system’s performance and allows operators to easily enable or disable the defense
mechanisms as needed. This adaptability is crucial in ensuring that the system can
respond effectively to a wide range of threats or communication challenges.

3.15. Man-In-The-Middle Attack
3.15.1. Definition

An attacker intercepts and modifies communication between two parties in a man-in-
the-middle (MITM) cyberattack. In a conventional man-in-the-middle (MITM) assault, the
attacker inserts themselves between the two parties and relays messages, making it look as
though the communication is coming straight from the targeted party. The attacker can then
use this position to obtain access to sensitive information or influence the connection. They
may, for instance, steal login passwords, reroute financial transactions to their own accounts,
or alter the substance of transmitted communications. MITM attacks can be executed in a
number of ways, including by intercepting communication over an unprotected wireless
network, by breaking into network infrastructure or servers, or by utilizing phishing or
other social engineering techniques to deceive users into downloading malware on their
devices [33].

Drones 2023, 7, 289

41 of 102

3.15.2. Sequence Diagram

As shown in Figure 30, the attacker is employing a man-in-the-middle assault to
intercept communications between UAVs and the ground control station. The adversary
sends a faked beacon message to both UAVs, which causes them to associate with the
adversary’s false access point. The attacker then sends a faked probe request and obtains a
probe response. The attacker sends a faked probe response to both UAVs, which causes
them to associate with his phony access point.

After the UAVs are linked with the adversary’s bogus access point, the adversary
intercepts the telemetry data transmitted from UAV1 to the ground control station. The
attacker then transmits a faked order to the ground control station, which is subsequently
performed by the station and transmitted to UAV1. UAV1 then carries out the instruction.

Attacker a1 UAv2 Cloud GroundControlStation

Send spoofed beacon message
- O

Receives the beacon message
and associates with the attacker

Send spoofed beacon message

Receives the beacon message
and associates with the attacker

Send spoofed probe request

Sends probe response
to attacker

Send spoofed probe response
- -
Associates with the attacker's
fake aceess point

Send spoofed probe response

Associates with the attacker's
fake access point

Send telemetry data

Man-in-the-middle
attack intercepts telemetry data

Send spoofed command

Executes attacker's command

Send command

Executes the command

Attacker U1 usv? Cloud GreundControlStation

Figure 30. Man-in-the-middle attack.

3.15.3. Defense Class Diagram

As shown in Figure 31, the class diagram illustrates the connection between the
Defender, mqtt.Client, and mongodb.Collection classes. The Defender class is the primary class
that represents an object’s defensive capabilities. It contains the uavClient, cloudClient, and
collection instance variables. These instances of the mgqtt.Client and mongodb.Collection classes
are used to connect to MQTT brokers and the MongoDB database, respectively. This class
defines the MAX LATENCY, HMAC SECRET, and IV LENGTH constants.

This class also represents the MQTT client that connects to MQTT brokers. subscribe(),
publish(), on(), unsubscribe(), and end are its five public methods.These methods are used,
respectively, to subscribe to topics, publish messages, add event listeners, unsubscribe
from topics, and close the connection to the broker. In support of amore comprehensive
defensive mechanism, we also represent the MongoDB collection used to hold latency
data. It possesses a single public method, insertOne(), which is used to add a document to
the collection.

Many public methods of the Defender class describe the behavior of the object. The
constructor() function initializes and subscribes to the corresponding topics for the uavClient,
cloudClient, and collection instances. The onlUAVMessage() and onCloudMessage() methods
are event listeners for UAV and cloud messages, respectively. They encrypt and decrypt
messages, validate HMAC signatures, distribute messages, and store latency statistics in the
MongoDB collection. Message encryption, HMIAC signature formation and verification, and

Drones 2023, 7, 289

42 of 102

decryption are handled by the encryptMessage(), createHmac(), verifyHmac(), and decryptMes-
sage() functions. The storeLatency() function stores latency data in a MongoDB collection.
The close() function is used to unsubscribe from topics and disconnect from MQTT brokers.

Defender

-uavClient: mqttClient
-cloudClient: mqttClient
-collection: mongodb. Collection
+MAX_LATENCY: number
+HMAC_SECRET: string
+IV_LENGTH: number

+constructor()

+onUAVMessage(topic: string, message: string)
+onCloudMessage(topic: string, message: string)
+encryptMessage(message: string) : Buffer
+createHmac(data: Buffer) : string
+verifyHmac(data: Buffer, hmac: string) : boolean
+decryptMessage (encryptedMsg: Buffer) : string
+storeLatency(latency: number) : Promise

+close() : void

instance uavClient instance cloudClient

mgqttClient

-options: object

+subscribe(topic: string) : void
+publish(topic: string, message: string) : void
+on(event: string, listener: Function) : void
+unsubscribe(topic: string) : void

+end() : void

use collection

1

mongodbCollection

+insertOne(document: object) : Promise

Figure 31. MITM defense class diagram.

The defense mechanisms are designed to protect the communication between the UAV

and the cloud server from unauthorized interception and tampering. Here is an explanation
of the defense scenarios based on the class diagram:

1.

Initializing the Defender class: When the system starts, the Defender class is initialized,
and its constructor method is responsible for creating instances of the mgtt.Client and
mongodb.Collection classes. The instances are used to connect to MQTT brokers and
the MongoDB database, respectively.

Secure MQTT communication setup: The mqtt.Client class establishes secure con-
nections to the MQTT brokers using security features such as TLS/SSL and user-
name/password authentication. This ensures that the communication channel be-
tween the UAV and the cloud server is protected against unauthorized access and
MITM attacks.

Subscribing to topics and handling messages: Once secure connections are estab-
lished, the Defender class subscribes to the relevant topics using the mgtt.Client in-
stances. The onUAVMessage() and onCloudMessage() methods are set as event listeners
for incoming messages from the UAV and cloud brokers, respectively.

Encrypting and decrypting messages: When a message is sent between the UAV and
the cloud server, the Defender class uses the encryptMessage() method to encrypt the
message using strong encryption techniques (e.g., AES-256-CBC). This ensures that
the contents of the message are protected and unreadable to potential attackers. Upon
receiving a message, the Defender class uses the decryptMessage() method to decrypt
and process the message securely.

Ensuring message integrity and authenticity: Before sending an encrypted message,
the Defender class generates an HMAC signature using the createHmac() method. The
HMAC signature is added to the message to ensure its integrity and authenticity.
When a message is received, the Defender class uses the verifyHmac() method to verify

Drones 2023, 7, 289

43 of 102

the HMAC signature, confirming that the message has not been tampered with and
originates from a trusted source.

6. Handling and distributing messages: Once the message is decrypted and its HMAC
signature is verified, the Defender class processes the message and distributes it to the
appropriate components in the system.

7. Monitoring and storing latency data: Throughout the communication process, the
Defender class uses the storeLatency() method to collect and store latency data in the
MongoDB collection. This continuous monitoring of latency helps detect potential
communication anomalies or suspicious patterns that may indicate a MITM attack or
other network issues.

8. Closing the MQTT connections: When the communication process is completed,
or the system needs to be shut down, the Defender class uses the close() method to
unsubscribe from topics and disconnect from the MQTT brokers securely.

3.16. Modification Attack
3.16.1. Definition

A modification attack is a sort of cyberattack in which an attacker modifies or corrupts
data during transmission over a network. This can be accomplished by intercepting and
altering data packets or by inserting malicious malware into a network. Often, the objective
of a modification attack is to disrupt or undermine the integrity of sent data and obtain
unauthorized access to sensitive data. This is especially dangerous when the manipulated
data are utilized for vital purposes, such as in financial transactions or industrial control
systems. Modification attacks can be executed in a variety of methods, such as via inter-
cepting communication across unprotected networks, exploiting weaknesses in network
architecture or software, or employing social engineering techniques to persuade users into
downloading malware on their devices [34] .

3.16.2. Sequence Diagram

As shown in Figure 32, this sequence diagram illustrates a modification assault mech-
anism scenario in the context of a multi-UAV—cloud system. The graphic depicts two
possible scenarios: when the hacker alters the communication and when he intercepts it. In
the first scenario, the hacker transmits a request for a message to UAV1. UAV1 requests a
message from the cloud, and the cloud answers with the requested message. The message
is returned to UAV1 and is subsequently forwarded to the hacker. The hacker edits the
message and transmits it to UAV1 again. The amended message is transmitted by UAV1
and acknowledged by the cloud. The acknowledgment is then transmitted back to UAV1
before being relayed to the hacker.

In the second scenario, the hacker intercepts the transmission by transmitting a re-
quest for a message to UAV1. UAV1 requests a message from the cloud, and the cloud
answers with the requested message. The message is returned to UAV1 and is subsequently
forwarded to the hacker. Moreover, the hacker sends a communication request to UAV?2.
UAV?2 transmits the message request to the cloud, which then returns the message. The
message is returned to UAV2 and is subsequently forwarded to the hacker. The hacker
edits the message and transmits it to UAV1 again. The amended message is transmitted by
UAV1 and acknowledged by the cloud. The acknowledgment is then transmitted back to
UAV1 before being relayed to the hacker.

3.16.3. Defense Class Diagram

As shown in Figure 33, the class diagram is a visual representation of the classes, their
attributes, and their relationships in the code provided. In this case, the class diagram
describes the class structure of the ModificationDefender module, as well as the relationships
between this class and other modules it uses. The ModificationDefender class is the central
class of the module; it handles the main functionality of detecting and preventing modifica-
tion attacks on data transmitted over a UAV—cloud network. This class has several private

Drones 2023, 7, 289

properties, including uavClient and cloudClient, which are instances of the mgtt.Client class
used to connect to the MQTT brokers on the UAV and cloud sides, respectively. It also
has a collection property, which is an instance of the mongodb.Collection class used to store
latency data in the MongoDB database. Additionally, the ModificationDefender class has a
private lastHash property, which is used to store the hash of the last received message to

check for modification attacks.

Hacker uant

Request message

-

Forward message

Send modified message

Forward acknowledgment

Request message (52)

Forward message

-—

Cloud

Request message

_—»

Respond wiith message

Forward modified message
—_—

Acknowledge receipt

_—

Request message

Respond with message

Request message

uavz

Reguest message

Respond with message

I |

Forvard message

Send modified message (52)

Forward modified message

Acknowledge receipt

-—

Forward acknowledgment

D —

Hacker uavt

Cloud

Figure 32. Sequence diagram of modification attack.

creates

mgqttClient

ModificationDefender

-mqttClient uavClient

-mqttClient cloudClient

-mongodbCollection collection

-lastHash

+onUAVMessage(topic, message)

+onCloudMessage(topic, message)

+checkForModification(message)

+createHash(data)
+storeLatency(latency)

+close()

+connect(url)

+subscribe (topic)
+on(event, handler)
+publish(topic, message)
+unsubscribe(topic)
+end()

uses

mongodbCollection

+insertOne(document)

uses

crypto

+createHash(algorithm)

+update(data)

+digest(encoding)

Figure 33. Modification defender class diagram.

The ModificationDefender class has several public methods, including onlAVMessage,
onCloudMessage, checkForModification, createHash, storeLatency, and close. These methods
are used to handle incoming messages from the UAV and cloud sides, check for message

Drones 2023, 7, 289

45 of 102

modification, create message hashes, store latency data, and close the MQTT connections
when needed. The class diagram also includes three external modules that are used by the
ModificationDefender class: mqtt, mongodb, and crypto. The mqtt module provides the Client
class, which is used to establish MQTT connections with the brokers. The mongodb module
provides the Collection class, which is used to store latency data in the MongoDB database.
The crypto module provides various cryptographic functions used by the ModificationDefender
class to create and verify HMAC signatures, encrypt and decrypt messages, and create
message hashes.

The defense mechanism scenario for the modification attack can be explained sequen-
tially as follows:

1. Initialization: The system initializes the defense mechanism by creating an instance of
the ModificationDefender class. During this process, the system establishes connections
to the MQTT brokers for UAV and cloud communication using the uavClient and
cloudClient properties. Additionally, the system connects to the MongoDB database
using the collection property to store latency data.

2. Subscription: Upon instantiating, the ModificationDefender class subscribes to the
relevant MQTT topics for both the UAV and the cloud. The class sets up event
listeners for incoming messages from the UAV and the cloud by implementing the
onUAVMessage and onCloudMessage methods, respectively.

3. Event listener: When a message is received from the UAV or the cloud, the corre-
sponding event listener (onUAVMessage for UAV messages or onCloudMessage for
cloud messages) is triggered. These methods decrypt the incoming messages, verify
their HMAC signatures, and pass the decrypted messages to the checkForModification
method for further examination.

4. Modification checking: The checkForModification method compares the hash of the
incoming message with the stored lastHash property to determine if the message
has been modified during transmission. If the checkForModification method detects
a modification, it initiates an appropriate response. This might include discarding
the altered message, notifying the system administrator of a potential breach, or
implementing additional countermeasures to protect the system from future attacks.
Otherwise, if the method does not detect any modifications, the message is considered
valid, and the process proceeds to the next step.

5. Hash creation: Upon validation, the createHash method generates a new hash for
the message. This new hash is then stored in the lastHash property, overwriting the
previous value for subsequent message comparisons.

6. Latency logging: The storeLatency method logs latency data related to the message
transmission in the MongoDB database, utilizing the collection property. This informa-
tion can be analyzed later to identify potential bottlenecks in the system or to optimize
the performance of the UAV—cloud communication system.

7. Monitoring and validating: The ModificationDefender class continuously monitors
and validates messages transmitted between the UAV and the cloud, ensuring the
integrity of the communication system and detecting potential modification attacks.

8. Encryption and unsubscribe: The encryption and HMAC signature generation pro-
cess is conducted before transmitting the message to its destination, ensuring the
message’s integrity and authenticity during transmission. When the defense mecha-
nism is no longer needed or must be terminated, then the close method is called. This
method unsubscribes the ModificationDefender instance from the MQTT topics and
disconnects from the MQTT brokers, effectively ending the message monitoring and
validation process.

3.17. Replay Attack
3.17.1. Definition

Let P(success) denote the probability that an attacker is able to successfully intercept
and replay the communication between a UAV and the cloud server. Then, we can model

Drones 2023, 7, 289

46 of 102

this probability as P(success) = P(interception) * P(replay) % P(accept), where
P(interception) is the probability that the attacker is able to intercept the communication,
P(replay) is the probability that the attacker is able to replay the intercepted communication,
and P(accept) is the probability that the cloud server accepts the replayed communication.

To mitigate the risk of a replay attack, the security developer can focus on reducing
each of these probabilities. For example, encryption and authentication protocols to reduce
the probability of interception and replay can be used. In addition, strict validation checks
on the cloud server to reduce the probability of acceptance of a replayed communication
also can be implemented. In addition, we can also consider the potential consequences of a
successful replay attack by mathematical formulation: Let C denote the potential cost or
harm caused by a successful attack. Then, a model of the expected cost of a replay attack
can be written as E(C) = P(success) * C. This formulation helps us to quantify the
potential impact of a replay attack and can guide our efforts to implement effective security
measures to prevent such attacks [35].

3.17.2. Sequence Diagram

As depicted in Figure 34, there are four participants depicted in the diagram: a hacker,
a cloud, and two UAVs (UAV1 and UAV2). The graphic begins with a hacker intercepting a
communication transmitted to the cloud by UAV1. The communication contains data that
the hacker intends to transmit to the cloud again. The hacker sends a request for a message
to both UAV2 and the cloud. After receiving the message request, the cloud transmits the
message to UAV2. The message is received by UAV2 and is transmitted back to the cloud.
The cloud returns the message to UAV1, which then forwards it to the hacker.

The hacker has now successfully transmitted the message to the cloud. The message is
a repetition of the original message, not a fresh one. This can result in a variety of security
risks, including unwanted access and data corruption. Of importance in this situation is
a protection system that inhibits replay assaults. Using timestamping or nonce values to
verify that each communication is unique and cannot be replayed is one possible method.

Hacker Cloud UAV1 UAV2
alt [Hacker intercepts message]

Message Request

>
>

Message Request
+

Message

Message Request

v

Message Request

Message

Message
M s s sesassses
Replay Message
Replay Message
-—
Replay Message
,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,, >
Replay Message
B S
Hacker Cloud UAV1 UAV2

Figure 34. Sequence diagram of replay attack.

Drones 2023, 7, 289

47 of 102

3.17.3. Defense Class Diagram

As shown in Figure 35, the ReplayDefender class uses instances of the mgtt.Client and

mongodb.Collection classes to handle the communication with the MQTT brokers and the
MongoDB database, respectively. The uavClient and cloudClient fields in the ReplayDefender
class are instances of the mgtt.Client class, and the collection field is an instance of the
mongodb.Collection class. Furthermore, the ReplayDefender class has a number of methods
that use the mgqtt.Client and mongodb.Collection classes, such as connect(), subscribe(), on(),
insertOne(), findOne(), updateOne(), deleteOne(), and end(). These methods allow the ReplayDe-
fender class to communicate with the MQTT brokers and the MongoDB database to perform
the necessary tasks to detect and prevent replay attacks.

+connect(url: string, options?: object, callback?: function) : mqttClient
+subscribe(topic: string, options?: object, callback?: function) : mqttClient
+on(event: string, callback: function) : mqttClient

+unsubscribe(topic: string, callback?: function) : mqttClient

ReplayDefender

- uavClient: mqttClient

- cloudClient: mqttClient

- collection: mongodbCollection
- head: number

- tail: number

-window: (Array)

+checkForReplay(msg: (hmac: string, timestamp: number, message: string) : : boolean
+addToHistory(msg: (hmac: string, timestamp: number, message: string) : : void
+createHmac(data: string) : string

+verifyHmac(data: string, hmac: string) : boolean

+encryptMessage(message: string) : string

+decryptMessage(encrypted: string) : string

+storeDetection() : Promise

+close() : void

use’ use
\

v

mqttClient
mongodbCollection

+insertOne(document: object, options?: object, callback?: function) : Promise

+findOne(query?: object, projection?: object, options?: object, callback?: function) : Promise

+updateOne (filter: object, update: object, options?: object, callback?: function) : Promise

+deleteOne(filter: object, options?: object, callback?: function) : Promise

+end(force?: boolean, callback?: function) : void

Figure 35. Replay defender class diagram.

Below is a more detailed explanation of the defense mechanism against replay attacks

based on the replay defender class diagram:

1.

Initialization: The ReplayDefender class is initialized, creating an instance that connects
to the MQTT brokers for UAV and cloud communication through the uavClient and
cloudClient properties. Additionally, the collection property is used to connect to the
MongoDB database for storing and managing message data.

Subscription: The ReplayDefender subscribes to relevant MQTT topics for both the
UAV and the cloud, setting up event listeners for incoming messages from both sides.
This is achieved by calling the subscribe() method on the uavClient and cloudClient in-
stances.

Message listener: When a message is received from the UAV or the cloud, the event
listeners trigger the on() method. This method processes the incoming message and
checks for potential replay attacks: (i) The on() method calls the findOne() method to
search for the received message in the MongoDB database. This checks if the message
has been previously recorded. (ii) If the findOne() method returns a result, the message
has been previously recorded, indicating a replay attack. The defense mechanism
can initiate an appropriate response, such as discarding the message or notifying the
system administrator. (iii) If the findOne() method does not return any results, the
message is considered new and valid. The process moves to the next step.

Insert into database: The insertOne() method adds the new, valid message to the
MongoDB database. The message is stored with a timestamp or a unique identifier,
which helps differentiate it from future messages and detect potential replay attacks.
Monitoring: With continuous monitoring, the ReplayDefender class validates messages
transmitted between the UAV and the cloud. If a message is identified as a replay, the

Drones 2023, 7, 289

48 of 102

updateOne() or deleteOne() methods can be employed to manage the recorded messages
in the MongoDB database, keeping the record updated and optimized.

6. Detects and prevents: The ReplayDefender class detects and prevents replay attacks in
the communication system by continuously validating messages transmitted between
the UAV and the cloud, ensuring the security and reliability of the communication sys-
tem.

7. Unsubscription: When the defense mechanism is no longer needed, the close() method
is called. This method unsubscribes the ReplayDefender instance from the MQTT topics
and disconnects from the MQTT brokers, effectively ending the message monitoring
and validation process.

3.18. Rushing Cyberattack
3.18.1. Definition

A rushing cyber assault is a form of cyberattack in which the attacker tries to obtain
access to a target’s network or system before the victim can identify or respond to the attack.
This sort of attack can take a variety of forms, including brute force assaults, phishing, and
malware, and frequently exploits known vulnerabilities or social engineering techniques to
obtain early access. A rushing cyber assault is particularly harmful since it might allow the
attacker to acquire a foothold in the victim’s network before being recognized, making it
more challenging to limit and remedy the attack.

3.18.2. Sequence Diagram

As shown in Figure 36, the sequence diagram depicts the processes of a cyber assault
in a multi-UAV—cloud environment. A hacker, a cloud, two UAVs, a server, and the attacker
are among the participants in the diagram. Beginning the procedure, the hacker registers
numerous UAVs with the cloud. The cloud returns the UAV IDs in response. The attacker
then connects to UAV1, requests data, obtains the requested data, and disconnects. This
method is repeated for every UAV.

The attacker then demands target data from the server, which the server provides. The
attacker then uploads malicious material to the cloud. The attacker then iterates through
each UAV once again, connects to UAV2, and uploads fabricated data to the cloud. As
soon as the server detects the target, the attacker disconnects every UAV from the cloud.
This sequence diagram depicts the process for a rush cyber assault in the setting of a
multi-UAV—cloud.

Hacker Cloud uavt uavz Server

alt [Hacker launches rush attack]

Register multiple UAVS

loop [for each UAV]

Connect to UAY

Request data

Request target data

Target data

loop [for each Uav]

Connect to UAV

Publish fake data

Target detected

Disconnect UAVs
—_—

Hacker Cloud uAvt uAvz Server

Figure 36. Sequence diagram rush attack.

Drones 2023, 7, 289

49 of 102

3.18.3. Defense Class Diagram

As shown in Figure 37, the RushDefender class represents the main logic of the sys-
tem. It has several private properties, including uavClient, cloudClient, serverClient, uavs,
collection, window, head, and tail. It also has several public methods, including onUAVMes-
sage(topic, message), onCloudMessage(topic, message), onServerMessage(topic, message), defend(),
publishAlert(target, timestamp), disconnectUavs(), and close(). In addition, it has several
private helper methods, including isTargeting(uav, target), encryptMessage(message), cre-
ateHmac(message), addToHistory(message), checkForReplay(message), verifyHmac(encryptedMsg,
hmac), decryptMessage(encryptedMsg), and disconnectUAV (uav). The RushDefender class uses
the Mgtt and MongoCollection classes, which are represented by the dashed lines that connect
the RushDefender class to the other classes.

RushDefender

- vavClient

- cloudClient
- serverClient
- uavs

- collection

- window

- head

- tail

+onUAVMessage(topic, message)
+onCloudMessage(topic, message)
+onServerMessage(topic, message)
+defend()

+publishAlert(target, timestamp)
+disconnectUavs()

+close()

-isTargeting(uav, target)
-encryptMessage(message)
-createHmac(message)
-addToHistory(message)
-checkForReplay(message)
-verifyHmac(encryptedMsg, hmac)
-decryptMessage(encryptedMsg)
-disconnectUAV(uav)

uses uses
Y

v

Matt

MongoCollection

"MongoCollection |+ insertOne(document: object, options?: object, callback?: function) : Promise
+publish(topic: string, message: any)
+findOne(query?: object, projection?: object, options?: object, callback?: function) : Promise
-connect(url: string)

401 +updateOne(filter: object, update: object, options?: object, callback?: function) : Promise
-end() :

+deleteOne(filter: object, options?: object, callback?: function) : Promise”]
Figure 37. Rush cyber defense.

The Mgtt class represents the MQTT client that is used by the RushDefender class to
communicate with the MQTT broker. It has one private method, connect(url: string), and
one public method, publish(topic: string, message: any). The MongoCollection class represents
a collection within a MongoDB database and has several methods that contain operation
methods of the database. The RushDefender class uses the Mgtt class to communicate with
the MQTT broker, and the MongoCollection class to interact with the MongoDB database.

Below is a more detailed explanation of the process in sequential order, with each step
connected to the next to illustrate the defense mechanism against rush cyberattacks:

1. Initialization: The RushDefender class is initialized, which sets up instances of MQTT
clients (uavClient, cloudClient, and serverClient) for communication with the UAVs,
cloud, and server. It also initializes a MongoDB database instance (collection) to store
message history and manage rush attack detection.

2. Subscription: The RushDefender class subscribes to relevant MQTT topics for the UAV,
cloud, and server. Event listeners for incoming messages from each component are
set up using onUAVMessage, onCloudMessage, and onServerMessage methods.

3. Message processing: Upon receiving a message from any component (UAV, cloud,

or server), the respective event listener is triggered to process the message and detect

Drones 2023, 7, 289

50 of 102

potential rush attacks: (i) The message is encrypted with the encryptMessage() method.
(if) An HMAC signature is created using the createHmac() method. (iii) The message
is added to the history buffer with the addToHistory() method. The message history
buffer uses a sliding window approach, managed by the properties head, tail, and
window. (iv) The checkForReplay() method searches the message history within the
sliding window to identify potential rush attacks by detecting repeated messages.

4. Detect rush cyberattack: If a rush attack is detected by the checkForReplay() method,
the defend() method initiates an appropriate response: (i) An alert message is sent
to the targeted component (UAV or cloud) using the publishAlert() method, which
includes information about the detected attack and its timestamp. (ii) The affected
UAUVs are disconnected from the communication network with the disconnectUavs()
method, preventing further rush attacks. (iii) The disconnectUAV() private helper
method disconnects a specific UAV from the network.

5. Monitoring: The system continuously monitors messages exchanged between the
UAY, cloud, and server to detect and defend against rush cyberattacks. Steps 3 and 4
are repeated for each incoming message to ensure ongoing protection.

6. Unsubscription: When the defense mechanism is no longer required, the close()
method is called to unsubscribe the RushDefender instance from MQTT topics and
disconnect the MQTT clients, ending the rush attack monitoring and defense process.

3.19. Selfishness Attack
3.19.1. Definition

Let us consider a scenario in which there are n drones in a UAV-cloud network, each
with a certain amount of bandwidth and battery power. We want to model the behavior of a
selfish drone that consumes more resources than necessary to optimize its own performance
at the expense of other drones in the network. We can represent the amount of bandwidth
consumed by each UAVi as b; and the amount of battery power consumed by each UAVi as
pi- We can also represent the collective benefit of the network as B, which depends on the
total amount of resources consumed by all drones in the network.

We can formulate the problem of selfish behavior in the UAV-cloud network as follows:
Maximize by + py Subject to, by + Z?:l, i;&kbi < B, px + Z?:l, i£kPi < Pby, pr > 0,
where k is the index of the selfish drone, and P is the total amount of battery power available
in the network. The objective function represents the selfish drone’s desire to maximize
its own benefit by consuming more resources than necessary. The first constraint ensures
that the total amount of bandwidth consumed by all drones in the network, except for the
selfish drone, does not exceed the collective benefit of the network. The second constraint
ensures that the total amount of battery power consumed by all drones in the network,
except for the selfish drone, does not exceed the total amount of battery power available.
The third constraint ensures that the amount of resources consumed by the selfish drone is
non-negative [36].

3.19.2. Sequence Diagram

As shown in Figure 38, in this multi-UAV-cloud scenario, the cloud server is respon-
sible for assigning tasks to the unmanned aerial vehicles (UAVs) and monitoring their
progress. There are two UAVs in this particular case: UAV1, which exhibits selfish behavior,
and UAV2, which behaves as expected. Initially, the cloud server assigns distinct missions
to each UAV. To begin their respective tasks, UAV1 requests Task1 from the cloud server,
while UAV?2 requests Task2. The cloud server acknowledges these requests and delivers
Task1 to UAVT and Task2 to UAV?2 accordingly.

As the UAVs start working on their tasks, they report their progress to the cloud server.
UAV1, however, demonstrates selfish behavior. After reaching 50% progress on Taskl, it
ceases to send any further updates to the cloud server, contrary to the expectations of a
normal UAV. In contrast, UAV2 continues to send regular progress updates on Tuask2 to the
cloud server as it diligently works towards task completion. At some point, UAV1 decides

Drones 2023, 7, 289

51 of 102

to complete Taskl. To perform this, it sends a request for Task1 completion to the cloud
server. In response, the cloud server provides the necessary completion details for TaskI to
UAV1. Meanwhile, UAV2 reaches the end of Task2 and sends a request for Tusk2 completion
to the cloud server. Recognizing the completion of the task, the cloud server delivers the
appropriate completion details to UAV2.

CloudServer UAv1 UAVZ
alt [Distinct Missions Assigned]

Request Taski

Request Task2

Deliver Taskl1

»
L

Deliver Task2
Selfish UAV
Normal UAY
50% progress
| Progress updates
| Request Task1 completion
| Deliver Task1 completion
Request TaskZ cromjtetion
I Deliver TaskZ completion
CloudServer uav1 uavz

Figure 38. Selfishness sequence diagram.

3.19.3. Defense Class Diagram

As shown in Figure 39, SelfishDefender is the main class that represents the defender,
which has MQTT clients for UAVs, cloud, and server, and a map of registered UAVs
with their assigned tasks and progress. The class has a constructor, which initializes
the MQTT clients and the UAV map, and methods onlUAVMessage(), onCloudMessage(),
onServerMessage(), and defend() that handle incoming messages, assign tasks to UAVs, and
register UAVs.

The MQTTClient class is an abstract class that represents the MQTT client used by
the SelfishDefender class to connect to the MQTT brokers. The CloudClient, ServerClient,
and UAVClient classes are concrete subclasses of the MQTTClient class that represent the
MQITT clients for cloud, server, and UAVs, respectively. The UAVData class represents
the data structure that holds the task and progress of a UAV. This class is contained in
the SelfishDefender class using a one-to-many relationship. Note that the class diagram
assumes the existence of a standard mqtt package with connect(), subscribe(), publish(), and
on() methods for MQTT clients.

Drones 2023, 7, 289

52 of 102

«concrete» «concrete» «concrete»
UAVClient ServerClient CloudClient
1
1 1
'-.,\ | |
\\ I. II
Inheritance Inheritance Inheritance

q

p

.

\&f MQTTClient

+connect() : void

+subscribe() : void

«abstract» /

SelfishDefender

+MQTTClient: MQTTClient
+UAVs: Map

+SelfishDefender()
+onUAVMessage() : void
+onCloudMessage() : void
+onServerMessage() : void
+defend() : void

/

; g .
Inheritance contains

A
e

o

| o
UAVData

+task: String

+progress: 5tring

+publish() : void

+on() : void

Figure 39. Selfishness defender class diagram.

Below is the process of detecting and defending against selfishness cyberattacks using
the SelfishDefender class in the context of a multi-UAV—cloud system.

1. Initialization: When the SelfishDefender class is instantiated, it initializes the MQTT
clients for the UAVs, cloud, and server. It also initializes the UAV map, which will
store the registered UAVs and their corresponding assigned tasks and progress.

2. Establishing communication: The SelfishDefender class connects to the MQTT brokers
using the MQTT clients. By subscribing to relevant topics, it ensures that it can receive
messages from the UAVs, cloud, and server, allowing it to monitor the progress of the
UAVs and detect any selfish behavior.

3. UAV registration: The SelfishDefender class uses the onServerMessage() method to listen
for UAV registration messages from the server. When a new UAV registers, it is added
to the UAV map, along with its assigned task and initial progress information.

4. Task assignment: Using the onCloudMessage() method, the SelfishDefender class
processes task assignment messages from the cloud server. It assigns tasks to the
UAVs and updates the UAV map with this information.

5. UAV progress updates: The onUAVMessage() method is used by the SelfishDefender
class to process progress updates from the UAVs. The UAV map is updated with the
latest progress information for each UAV.

6. Analyzing UAV progress: As the SelfishDefender class receives progress updates from
the UAVs, it continuously analyzes the progress data in the UAV map. It compares
the reported progress of each UAV with its assigned task, allowing it to detect any
selfish behavior.

7. Detecting selfish behavior: If a UAV exhibits selfish behavior, such as not reporting
progress or not completing tasks, the SelfishDefender class identifies it based on the
analysis in step 6.

8. Initiating defense mechanisms: Once selfish behavior is detected, the SelfishDefender
class triggers the defend() method. Depending on the severity and impact of the selfish
behavior, this method initiates various defense mechanisms, such as (i) reassigning
the task, which means the SelfishDefender class can reassign the task to another UAV
to ensure the mission’s success, despite the selfish UAV’s behavior; (ii) disabling the

Drones 2023, 7, 289

53 of 102

selfish UAV, which means that if necessary, the SelfishDefender class can temporarily
disable the selfish UAV to prevent it from causing further harm to the overall mission;
(iii) notifying relevant entities, which means the SelfishDefender class can also notify the
cloud server or other relevant entities about the selfish UAV. This allows these entities
to take appropriate action, such as reassigning tasks or penalizing the selfish UAV.

9. Updating the UAV map: As tasks are reassigned or selfish UAVs are disabled, the
SelfishDefender class updates the UAV map to reflect the current status of the UAVs
and their tasks.

10. Ongoing monitoring and communication: Throughout the process, the SelfishDe-
fender class continues listening for incoming messages from the UAVs, cloud, and
server, ensuring it remains connected to the MQTT brokers and responds appropri-
ately to incoming messages.

11. Closing communication channels: Once the mission is completed or the SelfishDe-
fender class is no longer needed, it closes the MQTT connections to the brokers,
effectively ending its role in the system.

3.20. SPOF Cyberattack
3.20.1. Definition

In the given problem formulation, the network of n UAVs and m cloud-based services
is represented by a graph G=(V,E), where V is the set of nodes and E is the set of edges.
Each node in V represents either a UAV or a cloud-based service, and each edge in E
represents a connection between a UAV and a cloud-based service. Each UAV is connected
to k cloud-based services, and an SPOF cyber assault can disable any k of these services.
This means that if a UAV is connected to only k services, and any one of these services
is disabled in an SPOF attack, the UAV will be unable to perform its intended function.
Therefore, the problem seeks to identify the optimal placement of redundancy measures to
mitigate the impact of SPOF cyber assaults on the UAV—cloud network [37].

To solve this problem, the set of nodes V is partitioned into two subsets: the set of UAV
nodes U = {vy, vy, ..., vy}, and the set of cloud-based service nodes S = {s1, s2, ..., Sm}.
Each cloud-based service node s; has a capacity c;, which represents the maximum number
of UAVs that can be connected to it. The problem can be formulated as an optimization
problem, where the objective is to minimize the number of UAVs that are unable to perform
their intended function in the event of an SPOF cyber assault, subject to the constraints that
each UAV is connected to at least k+1 cloud-based services, and that the total capacity of
the redundant cloud-based services is minimized. The optimal placement of redundancy
measures can be found by adding redundant cloud-based services to the network such that
each UAV is connected to at least k+1 services, including at least one redundant service.
The number of redundant services to be added and their placement in the network should
be determined in such a way that the total capacity of the redundant services is minimized.

3.20.2. Sequence Diagram

As shown in Figure 40, Phase 1 of this process diagram depicts the Attacker acquiring
knowledge about the SPOF system, followed by scanning and vulnerability identification
in Phase 2. In Phase 3, the Attacker exploits a weakness to obtain access to the SPOF system;
in Phase 4, the attacker installs a backdoor; and in Phase 5, the SPOF system is attacked.
Due to the failure of the SPOF system in Phase 6, the Victim transfers to the backup system,
which the Attacker continues to target in Phase 7. In Phase 8, the Attacker causes damage
or steals sensitive data, and in Phase 9, they conceal their traces on both systems. It is vital
to highlight that this is an unlawful and immoral behavior, and if detected, the Attacker
will face severe penalties. It is usually preferable to use one’s skills and abilities towards
beneficial and lawful endeavors.

Drones 2023, 7, 289

54 of 102

Attacker UAY System Operator Backup UAV System

Phases 1-3: Acquire knowledge, scan, exploit vulnerability

Scan and exploit

Phases 4-5: Install backdoor, attack UAV System

Install backdoor, attack

Phase 6: Switch to backup UAV system

Phases 7-8: Attack backup UAV System, cause damage or steal data

Attack, cause damage or steal data

Phase 9: Cover tracks on both systems

Remove traces

»

Remove traces

>

Attacker UAV System Operator Backup UAV System

Figure 40. SPOF pattern.

3.20.3. SPOF Class Diagram

As shown in Figure 41, the class diagram represents a system for monitoring and
detecting single points of failure (SPOFs) in a network of unmanned aerial vehicles (UAVs).
The following is an explanation of what is happening in this system. The SpofDefender class
is the main class that connects to the MQTT broker for both the cloud and UAVs, and sets
up event listeners to receive messages from them. It also initializes a Map object called uavs
that stores information about each UAV, including its ID, last data and publish request times,
and idle timeout. The UAV class represents a single UAV in the network. It has a unique ID,
and tracks the time when it last sent a data request, publish request, and when it should be
considered idle. It also has methods to update these attributes and reset the idle timeout.

The DataRequest and PublishRequest classes are used to represent requests for data and
publishing messages that the UAVs can execute. These classes store information about
the UAV and the number of requests to execute, and have an execute() method that sends
the corresponding message to the UAV. The SpofEvent class represents a single point of
failure event, which is detected by the detectSpofEvent method in the SpofDefender class.
The SpofDefender class has several methods: onCloudMessage is called when a message is
received from the cloud broker. It checks for SPOF events in the data and publishes an
alert message to the cloud broker if necessary. onUAVMessage is called when a message is
received from a UAV.

It checks for SPOF events in the data and publishes an alert message to the cloud
broker if necessary. It also resets the idle timeout for the UAV.detectSpofEvent that is called
periodically to check for SPOF events in the data received from the UAVs. If an SPOF
event is detected, it creates a SpofEvent object with the type of event and the data, and
returns it. publishAlert is called to publish an alert message to the cloud broker with the
details of the SPOF.event.startEventInterval is called to start an interval to periodically call
detectSpofEvent. Overall, this system uses MQTT to communicate with the cloud and UAVs,
and MongoDB to store SPOF event data. The SpofDefender class acts as a central control point
that periodically checks for SPOF events and publishes alerts when necessary. The UAV
class tracks the state of each UAV in the network, and the DataRequest and PublishRequest
classes are used to send messages to the UAVs. The SpofEvent class represents a single point
of failure event that can occur in the network.

Drones 2023, 7, 289

55 of 102

SpofDefender
-uavs: Map

+onCloudMessage()
+onUAVMessage()
+detectSpofEvent() . -

- ~.

/’ +publishAlert() .

.
7 +startEventInterval() T~
N\ ~
creates detects creates
[\
/ \ | \
/ DataRequest PublishRequest
[SpofEvent
| +uav: UAV . +uav: VAV
manages +eventType: String
+numRequests: Number +numRequests: Mumber
+eventData: Object
+execute() +execute()
]
\ | y,
\ targets _Aargets
| —~
\ n -
uav /"

+id: String —
+lastDataRequest: Date | —
+lastPublishRequest: Date

+idleTimeout: Date

+updateDataRequest()
+updatePublishRequest()

+resetldleTimeout()

Figure 41. Defense class diagram.

Here is a detailed explanation of the defense mechanisms for SPOF attacks, focusing

on how each step relates to the next:

1.

Continuous monitoring: The SpofDefender class continually monitors the UAV net-
work, subscribing to messages from the cloud broker and UAVs. This constant
monitoring helps detect any irregularities or vulnerabilities in the system. Continuous
monitoring serves as the foundation for the subsequent steps in the defense process.
SPOF event detection: Building upon the continuous monitoring, the detectSpofEvent
method in the SpofDefender class is periodically called to analyze data received from
UAVs. This analysis is essential in identifying potential SPOF events. If an SPOF
event is detected, a SpofEvent object is created, containing information about the event
and relevant data.

Alert generation: Once an SPOF event is detected and a SpofEvent object is created,
the SpofDefender onCloudMessage and onUAVMessage methods are responsible for
publishing an alert message to the cloud broker. This step is crucial for notifying
system administrators or other relevant entities about the event, allowing for timely
intervention and remediation of the issue.

Timely intervention: As a direct response to the alert generated in step 3, operators
can take appropriate actions to address detected SPOF events. This step is essential for
reducing the impact of the attack on the UAV network. Actions may involve repairing
vulnerabilities, patching security holes, or isolating affected systems to prevent the
spread of the attack.

Periodic updates and maintenance: To maintain the effectiveness of the SpofDe-
fender system in detecting and defending against SPOF cyberattacks, regular up-
dates and maintenance must be performed. This ongoing process ensures that the
system is always up to date and ready to counter new threats. Updates include
refining the detection algorithms and methods, as well as updating software and
hardware components.

Redundancy and failover systems: As a long-term defense strategy, redundancy and
failover systems should be implemented alongside the SpofDefender system. These

Drones 2023, 7, 289

56 of 102

systems provide backup resources and capabilities, ensuring that the UAV network
can continue to function even when one or more components fail. This final step
enhances the overall resilience of the UAV network against SPOF cyberattacks.

3.21. Sybil Attack
3.21.1. Definition

Given a set of UAVs, represented as nodes in a graph, and a set of connections between
them, represented as edges, the objective is to identify Sybil nodes in the network, i.e.,
nodes that have been created by an attacker to gain control or disrupt the network’s
operation, and maximize their number. The Sybil nodes can be created by the attacker in
two ways: by creating virtual machines on the cloud platform or by manipulating the UAVs’
communication protocols. The problem can be formulated as an optimization problem,
where the goal is to maximize the number of Sybil nodes in the network while ensuring
that the network remains connected and functional [38].

The problem can be modeled using graph theory and can be solved using various
algorithms, such as the maximum flow algorithm or the maximum matching algorithm.
Formally, let G = (V, E) be a directed graph representing the UAV—cloud network, where V
is the set of nodes and E is the set of edges. Let S be the set of Sybil nodes in the network,
and let C be the set of UAVs’ decision-making algorithms that can be manipulated. The
objective is to find a set of nodes S’ such that S’ is a subset of V1 S’| is maximized. The
connectivity of the network is measured by the maximum flow or maximum matching.

3.21.2. Sequence Diagram

As shown in Figure 42, the sequence diagram depicts the process of a Sybil attack.
Firstly, the Attacker first finds Target Nodes in several UAV-cloud systems in Phase 1, and
then in Phase 2 creates phony identities and launches a Sybil assault against the Target
Nodes. In Phase 3, the phony identities enter Legitimate Nodes” UAV—cloud systems,
which accept them as valid nodes.

Attacker Target_Node Legitimate_Nodes Victim

Phase 1: Identify Target Node

Identify target node in network

Phase 2: Create Fake Identities

Create fake identities and launch Sybil attack

Phase 3: Infiltration

Fake identities infiltrate network

Accept fake identities as legitimate nodes W

<

Phase 4: Exploitation

Sybil attack on victim node

Accept malicious data from fake identities

Phase 5: Cover Tracks

Cover tracks and destroy fake identities

Attacker Target_Node Legitimate_Nodes Victim

Figure 42. Sybil attack.

Once the UAV—cloud systems have been infiltrated, the Attacker initiates the Sybil
attack against the UAV—cloud system of the Victim in Phase 4, and the Victim accepts
harmful data from the phony identities. Phase 5 concludes with the Attacker covering their
traces and destroying their bogus identities to avoid being discovered. It is vital to highlight

Drones 2023, 7, 289

57 of 102

that this is an unlawful and immoral behavior, and if detected, the Attacker will face severe
penalties. It is usually preferable to use one’s skills and abilities towards beneficial and
lawful endeavors.

3.21.3. Defense Class Diagram

Figure 43 shows the defense class diagram to mitigating a Sybil attack. The mgtt and
MongoClient classes are not explicitly shown in the diagram, as they are external classes
used by the SybilDefender class. The SybilDefender class has several properties, including
two MQTT client instances (uavClient and cloudClient), two sets of UAVs (uavs and sybilll-
AVs), and various configuration parameters (MAX_UAVS, DEVIATION_MULTIPLIER, and
DETECTION_INTERVAL).

It also has several methods, including event handlers for MQTT messages (onCloudMes-
sage and onUAVMessage), a method for detecting Sybil UAVs (detectSybilUAVs), and a
method for publishing alerts to the cloud and storing them in a MongoDB database (pub-
lishAlert). The defend method is the main entry point for the class, and it sets up periodic
checks for idle UAVs and Sybil UAVs. Overall, the class diagram shows the relationships
between the various properties and methods of the SybilDefender class, as well as its external
dependencies on the mqtt and MongoClient classes.

SybilDefender

+uavClient: MQTTClient
+cloudClient: MQTTClient

+uavs: Set
+sybilUAVs: Set
+MAX_UAVS: int

+DEVIATION_MULTIPLIER: float
+DETECTION_INTERVAL: int

+onCloudMessage() : void
+onUAVMessage() : void
+detectSybilUAVs() : void
+publishAlert() : void
+defend() : void

Uses Contains Uses

uav \
MQTTClient L MongoClient
| +id: int
+lastMessageTime: Date

Figure 43. Defense from Sybil attack.

The defense mechanism for Sybil cyberattacks in the context of a UAV-cloud system
can be explained as follows:

1. Initialization: The SybilDefender class initializes and establishes connections with
the MQTT broker for UAVs and the cloud. It also initializes an instance of the
MongoClient class to interact with the MongoDB database. The SybilDefender sets up
initial configuration parameters, such as MAX_UAVS, DEVIATION_MULTIPLIER,
and DETECTION_INTERVAL.

2. UAV communication: The UAVs in the network communicate with the SybilDefender
class by sending messages through the MQTT broker. These messages may include
telemetry data, status updates, or other relevant information.

Drones 2023, 7, 289

58 of 102

3. Message processing: The SybilDefender class listens for incoming messages from the
UAVs and the cloud. It processes messages from the UAVs using the onUAVMessage()
method and messages from the cloud using the onCloudMessage() method.

4. Periodic detection: The SybilDefender class periodically runs the detectSybilLULAVs()
method to analyze the messages received from the UAVs and identify any poten-
tial Sybil UAVs. This method compares the received messages against predefined
thresholds (e.g., MAX_UAVS and DEVIATION_MULTIPLIER).

5. Sybil UAV identification: If the SybilDefender class identifies any Sybil UAVs, it adds
them to the sybilUAVss set. This allows the system to keep track of the malicious UAVs.

6. Taking action: After identifying the Sybil UAVs, the SybilDefender class takes appro-
priate action against them, such as isolating or blocking the malicious UAVs from the
network. This step ensures that the impact of the Sybil attack is mitigated.

7. Alert generation: The SybilDefender class uses the publishAlert() method to send alerts
to the cloud about the identified Sybil UAVs and any actions taken by the SybilDefender
class to mitigate the attack.

8. Storing alert information: In addition to sending alerts, the SybilDefender class stores
the alert information in the MongoDB database using the MongoClient instance. This
helps maintain a record of detected Sybil UAVs and corresponding defensive actions.

9. Defend method: The defend() method serves as the main entry point for the SybilDe-
fender class, setting up the periodic checks for idle and Sybil UAVs. It ensures that the
SybilDefender class continuously monitors and defends the UAV-cloud system against
Sybil attacks.

10. Continuous monitoring: As the defend() method runs periodically, the SybilDefender
class continues to monitor and analyze the communication between the UAVs and
the cloud, detecting and defending against any new Sybil attacks.

3.22. SYN Flood Attack
3.22.1. Definition

Let S be the number of SYN requests sent by the attacker during the attack. Let T be
the time interval during which the attack occurs. Let R be the rate at which SYN requests
are sent, i.e.,, R=S5/T. Let A be the number of available resources, such as memory and
CPU, on the target system. Let U be the rate at which resources are consumed by each SYN
request, i.e., U =1/RTT, where RTT is the round-trip time for the three-way handshake.
The objective of the attacker is to consume all available resources on the target system, i.e.,
to make A = 0.

The attacker aims to achieve this by sending a large number of SYN requests (i.e.,
a high value of S) and not responding to the SYN-ACK replies, which causes the target
system to use resources while waiting for a response. The attacker’s success in consuming
resources depends on the rate at which resources are consumed by each SYN request (i.e.,
U) and the rate at which SYN requests are sent (i.e., R). The impact of a SYN flood attack
on the target system can be quantified by the number of legitimate requests that are denied
due to the attack. Let L be the rate at which legitimate requests are received by the target
system. If the rate of SYN requests exceeds the rate of legitimate requests (i.e., R > L),
the target system will become overloaded and unable to respond to legitimate requests,
resulting in a denial of service [39] .

3.22.2. Sequence Diagram

As shown in Figure 44, in Phase 1 of this sequence diagram, the Attacker selects Target
Nodes in several UAV-cloud systems before delivering a large number of SYN requests to
the Target Nodes in Phase 2. In Phase 3, the Target Nodes react with SYN-ACK packets. In
Phase 4, the Attacker drops or responds to these packets with RST packets. In Phase 5, the
Attacker repeatedly repeats the attack until the Target Nodes become inactive. In Phase 6,
the SYN flood assault causes the UAV—cloud systems to become unresponsive, culminating
in system collapse.

Drones 2023, 7, 289 59 of 102

Attacker Target_Nodes Victim x Victim

Phase 1: Identify Target Nodes

Identify target nodes in multiple UAV-Cloud systems

Phase 2: Send SYN Requests

Send a high volume of SYN requests to target nodes

Phase 3: Respond with SYN-ACK

Respond with SYN-ACK packets

Phase 4: DoS Attack

Drop the connection or respond with RST packets

Phase 5: Repeat Attack

Continuously repeat attack until the target nodes become unresponsive

Phase 6: System Failure

UAV-Cloud systems become unresponsive due to SYN Flood attack

Attacker Target_Nodes Victim x Victim

Figure 44. SYN flood attack.

3.22.3. Defense Class Diagram

As presented in Figure 45, SynFloodDefender is a class that has mgqtt.Client as its private
members. It has five public methods: onCloudMessage, onlUAVMessage, detectSynFlood,
publishAlert, and defend. mqtt.Client is a class used to create MQTT clients to connect to
brokers. It has six public methods: connect, on, subscribe, publish, once.

SynFloodDefender

-uavClient: mgttClient
-cloudClient: mqttClient
-uavs: Set
-synFloodDetected: boolean

-collection: any

+onCloudMessage(topic: string, message: string) : void
+onUAVMessage(topic: string, message: string) : void
+detectSynFlood() : void

+publishAlert(event: any) : void

+defend() : void

uses

y

mqttClient

+connect(url: string) : void

+on(event: string, callback: Function) : void

+subscribe(topic: string) : void

+publish(topic: string, message: string, options: any, callback: Function) : void

+once(event: string, callback: Function) : void

Figure 45. Defense from SYN flood attack.

The SynFloodDefender class uses the mgqtt.Client class to connect to MQTT brokers and
subscribe to topics. It also has a Set object to keep track of registered UAVs and a Boolean
flag to indicate if a SYN flood attack has been detected. The detectSynFlood method collects

Drones 2023, 7, 289

60 of 102

data from UAVs, analyzes them for SYN flood attack, and publishes an alert if an attack
is detected. The publishAlert method saves the event to MongoDB and publishes an alert
to the cloud. The defend method is used to periodically check for SYN flood attacks. The
maqtt.Client class is used by SynFloodDefender to connect to brokers, subscribe to topics,
publish messages, and listen to events.

The defense mechanism against SYN flood attacks in the context of a UAV—cloud
system can be explained as follows:

1. Initializing the SynFloodDefender class: The system initializes the SynFloodDefender
class, establishing connections with the MQTT broker for UAVs and the cloud. It sets
up a Set object to track registered UAVs and a Boolean flag to indicate if a SYN flood
attack has been detected.

2. Connecting and communicating with UAVs: The UAVs in the network connect
to the MQTT broker and start sending messages containing telemetry data, status
updates, or other relevant information to the SynFloodDefender class.

3. Subscribing to message topics: The SynFloodDefender class subscribes to the neces-
sary MQTT topics to receive incoming messages from the UAVs and the cloud.

4. Processing messages from UAVs and cloud: As the SynFloodDefender class receives
messages from the UAVs, it processes them using the onlAVMessage() method. Simi-
larly, messages from the cloud are processed using the onCloudMessage() method.

5. Periodically checking for SYN flood attacks: The SynFloodDefender class periodically
executes the detectSynFlood() method, which analyzes the messages received from the
UAVs to identify any potential SYN flood attacks.

6. Analyzing UAV communication patterns: During the execution of the detectSyn-
Flood() method, the SynFloodDefender class examines the UAV communication pat-
tern and compares it against predefined thresholds to identify any abnormal behavior
indicative of a SYN flood attack.

7. Identifying a SYN flood attack: If the SynFloodDefender class detects a SYN flood
attack, it sets the Boolean flag accordingly to indicate that a SYN flood attack has
been identified.

8. Generating and sending alerts: Upon detecting a SYN flood attack, the SynFloodDe-
fender class uses the publishAlert() method to send alerts to the cloud, informing it
about the detected SYN flood attack and any actions taken by the SynFloodDefender
class to mitigate the attack.

9. Storing alert information in MongoDB: In addition to sending alerts, the SynFlood-
Defender class stores the alert information in the MongoDB database to maintain a
record of detected SYN flood attacks and corresponding defensive actions.

10. Running the defend() method: The defend() method serves as the main entry point
for the SynFloodDefender class, setting up the periodic checks for SYN flood attacks
and ensuring continuous monitoring and defense against SYN flood attacks in the
UAV-cloud system.

11. Continuously monitoring and defending against SYN flood attacks: As the defend()
method runs periodically, the SynFloodDefender class keeps monitoring and analyzing
the communication between the UAVs and the cloud, detecting and defending against
any new SYN flood attacks.

3.23. Wormhole Attack
3.23.1. Definition

Let G = (V, E) denote a wireless mesh network with N nodes, where each node v in
V can transmit and receive data packets. Let D be the set of all possible data packets that
can be transmitted across the network, and let S be the set of all possible sources of data
packets. A wormhole attack is represented as a directed virtual link between two nodes
u and v, denoted by (u, v), which is established by the attacker to intercept and reroute
network traffic [40].

Drones 2023, 7, 289

61 of 102

LetH = (V, E, C) denote a directed graph, where E’ is the set of virtual links estab-
lished by the attacker, and C is the cost of each virtual link. The objective of the attacker is to
maximize the amount of sensitive data intercepted or the number of network connections
disrupted. This can be represented mathematically as follows: Maximize }_jcp Y ses X4 s,
where X ; is a binary decision variable that indicates whether a data packet d from source
s has been intercepted.

3.23.2. Sequence Diagram

Figure 46 shows the process of a wormhole cyberattack. In Phase 1 of this sequence
diagram, the Attacker selects Target Nodes in several UAV—cloud systems before delivering
a large number of SYN requests to the Target Nodes in Phase 2. In Phase 3, the Target
Nodes react with SYN-ACK packets. In Phase 4, the Attacker drops or responds to these
packets with RST packets. In Phase 5, the Attacker repeatedly repeats the attack until the
Target Nodes become inactive. In Phase 6, the SYN flood assault causes the UAV—cloud
systems to become unresponsive, culminating in system collapse.

Attacker UAY CloudSystem

Phase 1 - Attacker selects Target System

Establish covert tunnel (entry point)

»

Establish covert tunnel (exit peint)

loop [Phase 2 - Intercept & forward packets]

Intercept packets from UAV

Forward packets through tunnels to CloudSystem

Intercept packets from CloudSystem

Forward packets through tunnels to UAV

>
Phase 3 - Exploit communications or data

opt [Disrupt communication]

Disrupt communication

Disrupt communication

opt [Monitor traffic]

Passively monitor UAV traffic
>

Passively monitor CloudSystem traffic

Attacker uav CloudSystem

Figure 46. Wormhole cyberattack.

3.23.3. Defense Class Diagram

As shown in Figure 47, the WormholeDefender class has a one-to-many relationship
with the mgtt class through its uavClient and cloudClient properties, indicating that it uses
instances of the mgtt class to connect to the UAV and cloud brokers. Similarly, the Worm-
holeDefender class has a one-to-one relationship with the MongoClient class through its
collection property, indicating that it uses an instance of the MongoClient class to connect to
the MongoDB database. The WormholeDefender class has three public methods: calculateDis-
tance, detectWormhole, and publishAlert, and one private method: the constructor. The defend
method is also public but it is not used in the code provided. The onCloudMessage and
onUAVMessage methods are public and are used as event handlers for messages received
from the cloud and UAV brokers, respectively.

Drones 2023, 7, 289

62 of 102

mqtt
MongoClient
+connect(url)
on(event, callback) +connect(url, callback)
publish(topic, message, options, callback) /Y \
u?e store retrieve

WormholeDefender

-uavClient: mqtt
-cloudClient: mqtt
-uavs: Set

-collection: MongoClient

--private--

+calculateDistance(gps1, gps2)
+detectWormhole()
+publishAlert(event)

+defend()
+onCloudMessage(topic, message)
+onUAVMessage(topic, message)

+constructor()

Figure 47. Defense from wormhole attack.

In the context of a network communication system involving UAVs and cloud brokers,
the WormholeDefender class aims to protect the system from potential wormhole attacks.
Below is a step-by-step explanation of the defense mechanisms:

1. Initialization: An instance of the WormholeDefender class is created, establishing
connections to the UAV and cloud brokers using the mgtt class instances (uavClient
and cloudClient) and a connection to the MongoDB database using the MongoClient
instance (collection).

2. Monitoring communication: The WormholeDefender class listens for incoming mes-
sages from the UAV and cloud brokers using the onlUAVMessage and onCloudMessage
event handlers, respectively. These methods are responsible for processing the mes-
sages and collecting relevant data for further analysis.

3. Distance calculation: The calculateDistance method is used to compute the distance
between two communicating nodes (UAVs or cloud brokers) based on their location
information. This method helps in determining if the communication distance is
within the expected range.

4. Wormbhole detection: The detectWormhole method analyzes the collected data to iden-
tify potential wormhole attacks. This method checks for anomalies in the commu-
nication patterns, such as unexpected delays or significantly longer communication
distances than expected, which could indicate the presence of a wormhole attack.

5. Alert generation: If a wormhole attack is detected, the WormholeDefender class gen-
erates an alert using the publishAlert method. This method saves the event to the
MongoDB database and publishes an alert message to the cloud broker, notifying the
network administrator or other security mechanisms about the detected attack.

6. Defense strategy: Upon receiving the alert, the network administrator or automated
security systems can take appropriate defensive actions, such as isolating the affected
nodes, reconfiguring the network topology, or implementing additional security
measures to prevent further attacks.

Drones 2023, 7, 289

63 of 102

3.24. Brute Force Attack
3.24.1. Definition

In the context of UAV-cloud systems, brute force attacks on user or system accounts
pose a significant threat as they may allow attackers to gain unauthorized access to sensitive
data or systems. Attackers can use specialized software or tools to attempt a large number
of passwords or passphrases until the correct one is discovered, potentially leading to the
installation of malware, ransomware, or other forms of damage.

If a brute force attack is successful, the attacker may also be able to access other
accounts or systems if they have administrator credentials, which could lead to even more
damage. To prevent such attacks, it is essential to use strong passwords or passphrases,
enable multifactor authentication, and set up account lockout restrictions that prevent
attackers from continuously attempting different passwords. By implementing these
measures, the risk of brute force attacks can be significantly reduced in the UAV—cloud
environment [41].

3.24.2. Sequence Diagram

As shown in Figure 48, the sequence diagram portrays the process of a brute force
attack, illustrating the interaction between an Attacker and a Target System. Initially, the
Attacker identifies a system that they want to target for the attack. Subsequently, the
Attacker initiates a series of attempts to test various username and password combinations
in an effort to gain unauthorized access to the Target System. During this process, the
Attacker sends a test username and password combination to the Target System, which then
responds, indicating whether the authentication attempt was successful or unsuccessful.

Attacker TargetSystem

Phase 1 - Attacker selects Target System

loop [Phase 2 - Attempt combinations]

Test username/password combination

Authentication success or failure

A

Phase 3 - Attacker continues attempts

opt [Phase 4 - Successful authentication]

Access resources

A 4

Attacker gains unauthorized access

opt [Phase 4 - Failed
authentication]

Target System remains secure

Attacker TargetSystem

Figure 48. Brute force attack.

As a result, the Attacker continues trying different combinations, persisting until they
either succeed in gaining access or exhaust all possible combinations. Consequently, if the
Attacker discovers a successful combination, they proceed to access the resources within
the Target System, thereby gaining unauthorized access. On the other hand, if the Attacker
fails to find a successful combination, the Target System remains secure, and the attack is
ultimately unsuccessful.

Drones 2023, 7, 289

64 of 102

3.24.3. Defense Class Diagram

As shown in Figure 49, BruteForceDefender is the primary class in the system. It is
responsible for connecting to an MQTT message broker, receiving messages from linked
drones, detecting brute force assaults, and publishing alarms to a MongoDB database. The
class has secret methods for processing messages received from the cloud and unmanned
aerial vehicles, detecting brute force assaults, and issuing database alerts. It also contains
a public function defend() that starts the detection of brute force attempts. The mqtt class
represents the MQTT message broker and offers methods for connecting to the broker,
subscribing to topics, publishing messages, and registering callbacks for message events.

The mongodb class represents the MongoDB database and offers methods for establish-
ing a new database instance and connecting to the database. The insertOne() function of
the Collection class, a child class of mongodb, is used to insert a new document into the
database collection. The diagram’s arrows depict the connections between the classes. For
example, the BruteForceDefender class communicates with the MQTT message broker and
MongoDB database via instances of the mgtt and mongodb classes, respectively.

BruteForceDefender

-onCloudMessage()

-onUAVMessage()
-detectBruteForce()
-publishAlert()
+defend()
uses uses
mqtt v
mongodb
+connect()
+subscribe() +createlnstance()
+publish() +connect()
+registerCallback() T
contains
Collection
+insertOne()

Figure 49. Defense class diagram of brute force.

3.25. Leaks of Data Due to Human Mistakes
3.25.1. Definition

Let X be the set of all sensitive data collected by UAVs and transmitted to a cloud-
based system for processing and analysis. Let Y be the set of all workers or other persons
with access to the sensitive data. Let Z be the set of all possible ways in which the sensitive
data can be leaked due to human error. The challenge is to minimize the risk of a data
breach, given the following constraints: For all x in X, ensure that only authorized personnel
have access to the data and that the data are transmitted securely. For all y in Y, ensure
that they are aware of the importance of data security and are trained to handle sensitive
data appropriately. For all z in Z, ensure that appropriate security measures are in place to
prevent inadvertent exposure of sensitive data, including the use of encryption, multifactor
authentication, and access control [42].

Drones 2023, 7, 289

65 of 102

The objective is to minimize the probability of a data breach, which can be defined as
the likelihood that sensitive data are disclosed to unauthorized individuals or exploited
by cybercriminals. This can be expressed as a function of the probability of each possible
leakage scenario in Z, weighted by the severity of the consequences of a data breach. A
possible mathematical model to achieve this objective is a stochastic optimization model
that incorporates the probabilities of different leakage scenarios and their associated con-
sequences. The model can be solved using techniques such as Monte Carlo simulation or
scenario analysis to evaluate the risk of a data breach and identify the optimal security
measures to mitigate this risk.

3.25.2. Sequence Diagram

As shown in Figure 50, in Phase 1 of this sequence diagram, the Cloud Administrator
configures the UAV-cloud system’s security parameters. In Phase 2, the UAV obtains data
from the victim UAV—cloud system. In Phase 3, the Attacker gains access to the security
settings using social engineering. In Phase 4, the Cloud Administrator then incorrectly
configures the security settings, resulting in a data breach.

Cloud_Admin Uav Victim Attacker

Phase 1: Configure Security

Configure the security settings for the UAV-Cloud system

Phase 2: Collect Data

Collect data from the victim UAV-Cloud system

Phase 3: Social Engineering Attack

Conduct a social engineering attack to gain access to the security settings

Phase 4: Misconfiguration

Misconfigure the security settings, leading to a data leak

Phase 5: Obtain Data

Obtain the leaked data from the UAV-Cloud system

Phase 6: Use Data

Use the data for malicious purposes

Phase 7: Cover Tracks

Cover tracks and remove any evidence of the attack

Cloud_Admin uav Victim Attacker

Figure 50. Leak data due to human error.

In Phase 5, the Attacker acquires the leaked data from the UAV—cloud system, and
in Phase 6, he utilizes them for nefarious purposes. In Phase 7, the Attacker conceals their
tracks and eliminates all traces of the attack. It is vital to remember that data leaking due
to administrative errors poses a substantial danger to security and privacy, and can have
severe repercussions for the impacted persons and organizations. It is crucial to establish
security settings correctly and teach staff to spot and withstand social engineering attempts.

3.25.3. Defense Class Diagram

As shown in Figure 51, the crypto class provides encryption and decryption functional-
ity, including the createCipher and createDecipher methods, which are used for encrypting
and decrypting data. The speakeasy class provides multifactor authentication functionality,
including the generateSecret, totp and totp.verify methods, which are used for generating
authentication tokens and verifying them.

The AccessControl class provides access control functionality, including the can method,
which is used for checking if a user has access to a particular resource. The Server class
represents an HTTPS server that listens on a given port and handles requests from clients.

Drones 2023, 7, 289

66 of 102

The Logger class provides logging functionality, including the info method, which is used
for logging messages.

The MultiFactor class provides multifactor authentication functionality, including the
generateSecret and verifyToken methods, which are used for generating authentication tokens
and verifying them. The Main class is the main class of the application, and it includes
private properties for data, key, user role, action, resource, token, secret, encrypted data,
decrypted data, access granted, server, logger, eslintCli, and eslintReport, and instances of
the Encrypt, MultiFactor, crypto, AccessControl, and speakeasy classes. The Main class also
contains public methods for setting up the HTTPS server, logging, static code analysis and
testing, and for running the application. The Main class interacts with the other classes in
the system by calling their methods, as indicated by the arrows in the diagram.

Monitoring and logging (Server and Logger classes) is the Server class that handles in-
coming client requests, while the Logger class logs relevant events. By carefully monitoring
and logging user activities, it is possible to detect potential data leaks and address them
before significant damage occurs. Logging can also help in tracing the source of a data
leak and identifying the cause of the human error. Furthermore, the Main class manages
the overall application and interacts with other classes to enforce security measures. By
having a central class that oversees the entire process, it is easier to ensure that all security
mechanisms are in place and functioning correctly.

The Crypto class provides encryption and decryption functionality, which can be used
to protect sensitive data from being accidentally leaked by human error. By ensuring that
sensitive data are encrypted before they are stored or transmitted, the risk of data leakage
due to human error is significantly reduced. If someone inadvertently shares or exposes
encrypted data, they would still be unreadable without the correct decryption key.

Main

-data
-key
-role
-action
-resource
-token
-secret
-access
-server

-logger

+run()

——

uses uses uses uses uses
Cryot Speakeasy
rypto
AccessControl Server Logger
+generateSecret() |

+createCipher()
+totp() +can() +handleRequest() +info()

+createDecipher()

+verifyToken()

Figure 51. Defense class solution.

3.26. Data Loss Due to System Crash
3.26.1. Definition

Let D denote the set of all data stored by an organization, and let S be the set of storage
devices used to store D. Let B be the set of backup devices used to make copies of D for
recovery purposes. Let C: D x S — {0,1} be a function that indicates whether a particular
storage device correctly stores a particular datum. If C(d,s) = 1, it means that datum d is
correctly stored on device s, and if C(d,s) = 0, it means that datum d is not correctly stored

Drones 2023, 7, 289

67 of 102

on device s. Let R:D x B — {0,1} be a function that indicates whether a particular backup
device correctly stores a copy of a particular datum. If R(d,b) = 1, it means that a copy of
datum d is correctly stored on backup device b, and if R(d,b) = 0, it means that a copy of
datum d is not correctly stored on backup device b. Let P: D -> {0,1} be a function that
indicates whether a particular datum is sensitive or vital. If P(d) = 1, it means that datum d
is sensitive or vital, and if P(d) = 0, it means that datum d is not sensitive or vital [43].

The problem is to minimize the risk of inadvertent data loss, subject to the constraints
that: For all data d in D, there exists at least one storage device s in S such that C(d,s) = 1.
For all data d in D, there exists at least one backup device b in B such that R(d,b) = 1. For
all sensitive or vital data d in D, there exists at least one backup device b in B such that
R(d,b) = 1. The cost of storing and backing up data is minimized.

3.26.2. Sequence Diagram

As shown in Figure 52, this sequence diagram represents a communication sequence
between a UAV (unmanned aerial vehicle) and a cloud system, involving the storage and
retrieval of data. The diagram is split into two parts: data storage and data retrieval. Below
is a step-by-step explanation of each part:

1. Data storage: The sequence starts with the UAV sending a request to the cloud for
data storage. Then, the cloud receives the request and verifies the UAV’s privileges
to access the cloud system. After that, it sends a message to the UAV requesting
the data to be stored. The UAV sends the data to the cloud. Furthermore, the cloud
receives the data and verifies their integrity. If the data are corrupt, the cloud sends
an error message to the UAV and discards the data. If the data are valid, the cloud
stores the data in multiple devices and creates backups in multiple devices. Then, the
cloud sends a message to the UAV indicating that the data have been successfully
stored. After that, the UAV acknowledges the message. If the data are sensitive or
vital, the cloud performs additional encryption and access control measures to ensure
data security.

2. Data retrieval: The sequence starts with the UAV sending a request to the cloud for
data retrieval. Then, the cloud receives the request and verifies the UAV’s privileges
to access the cloud system. After that, it sends a message to the UAV requesting
the data to be retrieved. The cloud retrieves the data from the storage and backup
devices, and sends them to the UAV. In the next step, the UAV receives the data and
verifies their integrity using a checksum. If the data are corrupt, the UAV sends an
error message to the cloud and requests the data to be retrieved again. If the data are
valid, the UAV acknowledges the message and uses the data as needed. Overall, this
sequence diagram shows the flow of data between the UAV and the cloud, as well as
the data integrity checks and access control measures taken by the cloud system.

3.26.3. Defense Class Diagram

As shown in Figure 53, this class diagram defines five classes: AWS, 53, StoreService,
CryptoService, and DataEntity. The arrows between the classes represent method calls and
indicate the relationships between the classes. Here is a brief explanation of each class:
AWS represents the Amazon Web Services SDK, and has a private property called options,
which represents the AWS configuration options. Then, S3 represents the 53 storage service,
and provides public methods putObject() and getObject() to interact with the S3 storage
service. Furthermore, StoreService represents a service that uses the S3 class to store, backup,
and retrieve data from an S3 bucket, and also uses the CryptoService class to encrypt and
decrypt data.

Drones 2023, 7, 289 68 of 102

uav Cloud

Store data request

¥

verify privileges & request data

«

Send data

alt [Data is valid]

success & backups created

Acknowledge

[Data is corrupt]

Error

Retrieve data request

alt [Data found]

Verify privileges & send data

Check integrity & acknowledge

[Data lost (system crash)]

Error

uav Cloud

Figure 52. UAV—cloud data loss when system crashes.

CryptoService represents a service that provides methods to encrypt and decrypt data
using AES-256 encryption. Then, DataEntity represents an entity for storing and retrieving
data from an S3 bucket. It has private properties for the bucket name and the S3 instance,
and provides public methods to store and retrieve data. The arrows between the classes
indicate that the StoreService class uses the S3 class to interact with the S3 storage service,
and also uses the CryptoService class to encrypt and decrypt data. The AWS class also calls
methods on the S3 class to interact with the S3 storage service.

DataEntity
StoreService
AWS -bucketName
t' +storeData() -s3Instance
-options
- +backupData() Data()
+storeData
+retrieveData() \
/ +retrieveData()
calls uses uses uses
S3 CryptoService
+putObject() +encrypt()
+getObject() +decrypt()

Figure 53. Defense class diagram to avoid system crash.

Drones 2023, 7, 289

69 of 102

Below is a sequential explanation of the defense mechanisms against data leaks due to
a system crash:

1. Data storage request: The process begins with a data storage request initiated by a
user or a system component. The request is sent to the StoreService class, which is
responsible for handling the storage and retrieval of data.

2. Access control: The StoreService class interacts with the AWS class to verify the access
privileges of the requestor. This step ensures that only authorized users or services can
store or access the data, providing an essential security measure against unauthorized
data access.

3. Data encryption: Before storing the data, the StoreService class calls the CryptoService
class to encrypt sensitive data using AES-256 encryption. This process ensures that
the data are protected and unreadable, even if they are accessed by unauthorized
parties during a system crash.

4. Redundant storage: The StoreService class then interacts with the S3 class to store the
encrypted data in an S3 bucket. Data are stored across multiple devices, providing
redundancy and reducing the risk of data loss due to a single device or system failure.

5. Databackup: In addition to storing the data, the StoreService class also creates multiple
backups of the data across different devices. This further enhances redundancy and
reduces the likelihood of data loss during a system crash.

6. Data retrieval request: When a user or system component requests to retrieve data,
the StoreService class once again verifies the access privileges of the requestor using
the AWS class.

7. Data decryption: If the requestor is authorized, the StoreService class retrieves the
encrypted data from the S3 storage service and uses the CryptoService class to decrypt
them. This ensures that the data are readable only by authorized parties.

8. Data integrity check: After the data have been decrypted, an integrity check can be
performed to ensure that the retrieved data are not corrupt. If the data are found to
be corrupt, an error message is sent, and the data retrieval process is repeated until a
valid copy of the data is obtained.

3.27. Difference of Security Attack and Defense Pattern between Centralized vs. Decentralized

The security landscape of centralized and decentralized architectures varies signif-
icantly due to their inherent design and communication patterns. Understanding the
differences in attack mechanisms and defense strategies between these architectures is
crucial for designing secure systems. In this section, we explain the main difference of
security attack and defense pattern between centralized and decentralized architecture.

3.27.1. Attack Pattern Comparison
Black Hole and Gray Hole Attacks

In a centralized architecture, an attacker who successfully compromises the central
server can potentially gain the ability to discard or selectively forward data, thereby
affecting the entire network. The consequences of such an attack are more far-reaching,
as the compromised central server acts as the core communication hub for the entire
system. On the other hand, in a decentralized architecture, an attacker can target individual
nodes to execute black hole or gray hole attacks. However, the impact of these attacks is
more localized, and the overall network remains largely unaffected. To cause widespread
disruption in a decentralized system, the attacker would need to coordinate a simultaneous
attack on multiple nodes, which is more complex and challenging to achieve.

Collision Network

In a centralized architecture, a high volume of communication with the central server
can lead to an increased risk of collisions. These collisions, in turn, may cause network
bottlenecks and impact the overall system performance. In such scenarios, the central server
becomes a point of congestion, as all nodes attempt to communicate with it simultaneously,

Drones 2023, 7, 289

70 of 102

making the system more vulnerable to slowdowns and potential disruptions. Conversely,
in a decentralized architecture, the distributed nature of the system inherently reduces the
likelihood of network collisions. However, this does not entirely eliminate the possibility
of collisions. A high volume of communication between nodes can still lead to local
disruptions within specific areas of the network. Despite this, the impact of such disruptions
is generally more confined, as the decentralized design of the system prevents a single
point of failure from causing widespread issues.

Data Tampering, Modification, and Replay Attacks

In the context of data tampering, modification, and replay attacks, centralized and
decentralized architectures face distinct challenges and vulnerabilities. In a centralized
architecture, an attacker who successfully compromises the central server can potentially
manipulate data across the entire network. This is because the central server acts as the
primary repository and communication hub for all nodes, making it a high-value target for
attackers seeking to cause widespread disruption.

On the other hand, in a decentralized architecture, an attacker might attempt to tamper
with data on specific nodes. However, the impact of such an attack is generally limited due
to the distributed nature of the system. Decentralized architectures often employ consensus
algorithms and redundancy measures to validate and cross-verify data across multiple
nodes. These mechanisms help to detect and prevent data tampering, modification, and
replay attacks by ensuring that maliciously altered data are not accepted as valid by the
majority of the network.

Deauthentication, DDoS, Slowloris, Flooding, and SYN Flood Attacks

In a centralized architecture, these attacks target the central server, potentially causing
disruptions across the entire network. For instance, a deauthentication attack can forcibly
disconnect nodes from the central server, leading to loss of communication and control. A
DDoS or Slowloris attack can inundate the server with excessive traffic, rendering it unable
to process legitimate requests, leading to a system-wide outage. Flooding and SYN flood
attacks can also saturate the central server’s resources, causing network congestion and
severely impacting overall system performance. Since the central server is the primary
communication hub and data repository for all nodes, successful attacks on it can have
far-reaching consequences for the system’s functionality and performance.

In a decentralized architecture, these attacks can target multiple nodes simultane-
ously. However, the impact of these attacks is generally more localized. For example, a
deauthentication attack might only affect a few nodes within the network, while the rest
continue to operate normally. Similarly, a DDoS or Slowloris attack on specific nodes might
cause temporary disruptions but not compromise the entire system. Flooding and SYN
flood attacks can still lead to localized network congestion and performance issues, but the
decentralized nature of the system helps prevent these issues from propagating across the
entire network. Nevertheless, if a significant portion of the network becomes overwhelmed
by these attacks, the entire system could still be adversely affected. In such cases, the
decentralized architecture’s resilience depends on the distribution of the nodes and the
ability to maintain functionality even when some nodes are compromised.

GPS Spoofing and Telemetry Spoofing

In a centralized architecture, the entire network is more susceptible to GPS spoofing
and telemetry spoofing if the central server is compromised. In this case, an attacker
can manipulate the central server to collect or relay false location and telemetry data to
the nodes. Since the central server is responsible for processing and disseminating this
information, a successful attack can have significant consequences for the entire system,
causing UAVs to follow incorrect paths, make erroneous decisions, or fail to complete
their missions.

Drones 2023, 7, 289

71 of 102

On the other hand, in a decentralized architecture, the impact of GPS spoofing and
telemetry spoofing can be mitigated by using a consensus-based approach to verify location
and telemetry data. In this approach, multiple nodes within the network share and cross-
verify the data they receive, ensuring that a majority of the nodes agree on the data’s
accuracy before accepting them as valid. This method helps to detect and counteract
false data introduced by an attacker, as the malicious information is unlikely to achieve
consensus among the nodes. In such a scenario, the impact of the attack is more localized,
and the decentralized system’s resilience is bolstered by its distributed nature and the
ability to validate information collectively.

Impersonation and Man-In-The-Middle Attacks

In a centralized architecture, unauthorized access to the central server through im-
personation or MITM attacks can have far-reaching consequences for the entire network.
For example, an attacker impersonating a legitimate node can send malicious commands
or falsified data to the central server, which then propagates the false information across
the network. In an MITM attack, the attacker can intercept and modify communications
between the central server and the nodes, potentially causing widespread disruptions or
unauthorized access to sensitive information.

Conversely, in a decentralized architecture, the impact of impersonation and MITM
attacks can be limited through robust node authentication mechanisms and secure com-
munication channels. For instance, employing public-key cryptography can help ensure
the identity of the communicating nodes, making it more challenging for an attacker to
impersonate a legitimate node. However, attackers can still target specific nodes or exploit
weak points in the network. For example, if an attacker successfully impersonates a node
within the decentralized network, they may be able to introduce false data or malicious
commands to a limited number of neighboring nodes. Similarly, an MITM attack in a
decentralized system might compromise the communications between targeted nodes, but
the damage is likely to be more localized due to the distributed nature of the system.

Insider and Selfishness Attacks

In a centralized architecture, malicious insiders can cause more significant damage
by compromising the central server. For instance, a malicious employee with access to
the central server can manipulate the system by injecting false data, modifying critical
configurations, or even deleting essential information. The central server’s role as the
primary communication hub and data repository for all nodes means that successful
insider attacks can have far-reaching consequences for the system’s overall functionality
and performance.

On the other hand, in a decentralized architecture, the impact of insider and selfishness
attacks is more localized. For example, a malicious insider might compromise an individual
node and manipulate the data it shares with neighboring nodes, but the overall impact on
the network is limited due to its distributed nature. However, attackers can still exploit
individual nodes or form colluding groups to undermine the system. In a selfishness attack,
a group of nodes may collaborate to consume network resources disproportionately, such
as bandwidth or computational power, resulting in degraded performance for other nodes
in the network.

Jamming Attack

In a centralized architecture, a jamming attack can have severe consequences if the
communication between the central server and nodes is jammed. Since the central server
is the primary communication hub for all nodes, disrupting this link can paralyze the
entire system, preventing data exchange and coordination between nodes. For example, an
attacker could deliberately generate radio frequency interference in the communication
channel between the central server and the UAVs, making it impossible for them to receive
commands or transmit essential data, effectively rendering the entire system inoperable.

Drones 2023, 7, 289

72 of 102

Conversely, in a decentralized architecture, the system is more resilient against jam-
ming attacks. If communication between nodes is disrupted, the system can reroute traffic
and continue functioning, though the impact depends on the number of nodes affected
and the network topology. For instance, in a mesh topology where nodes have multiple
connections to neighboring nodes, a jamming attack may affect only a portion of the net-
work. The unaffected nodes can still communicate with each other and maintain system
functionality by bypassing the jammed nodes, albeit with reduced performance. How-
ever, if a significant number of nodes are affected or if the network topology is such that
jammed nodes isolate certain parts of the network, the overall system functionality could
be significantly impacted.

Eavesdropping: Centralized

In a centralized architecture, the system is more susceptible to eavesdropping attacks
if the central server’s communication is intercepted. Since the central server serves as the
primary communication hub and data repository for all nodes, an attacker eavesdropping
on this communication can potentially gain access to sensitive information for the entire
network. For example, an attacker could intercept the transmission of flight plans, sensor
data, or control commands between the central server and UAVs, potentially jeopardizing
mission objectives, privacy, or even safety.

Conversely, in a decentralized architecture, encrypted communication channels be-
tween nodes can limit the damage caused by eavesdropping attacks. Since communication
is distributed across multiple nodes, an attacker would have to intercept several communi-
cation channels to obtain comprehensive information about the system. However, attackers
can still target individual nodes or exploit weak points in the network. For instance, if a
particular node has weak encryption or an outdated security protocol, an attacker could
intercept its communication with other nodes, gaining access to a portion of the system’s
sensitive data.

Poor Link Quality and High Latency

In a centralized architecture, the entire network can be affected if the central server
experiences poor link quality or high latency, whether due to natural factors or an attacker’s
intervention. As the central server is the primary communication hub and data repository
for all nodes, any performance issues it faces can have a ripple effect throughout the
entire network. An attacker could intentionally degrade the central server’s connection,
causing delayed or lost data, which in turn reduces the effectiveness of surveillance or
reconnaissance missions. For example, a cyberattacker might employ jamming or flooding
techniques to disrupt the communication link between the UAVs and the central server,
resulting in poor link quality or high latency.

Conversely, in a decentralized architecture, the system can leverage alternative paths
and distribute the load to overcome issues related to poor link quality or high latency. Since
communication is distributed across multiple nodes, the system can dynamically route
data through the network, bypassing congested or slow paths to minimize latency and
maintain performance. However, if a significant portion of the network is affected by poor
link quality or high latency, either due to natural factors or an attacker’s intervention, the
entire system can still be impacted. An attacker might target multiple nodes simultaneously,
aiming to disrupt the network’s overall performance. For instance, if an attacker interferes
with multiple nodes in the network by jamming their communication channels or flooding
them with malicious traffic, the system may struggle to route data efficiently, leading to an
overall degradation in performance and responsiveness.

Rushing Cyberattack

This attack occurs when an attacker node quickly forwards routing packets, attempting
to gain control over network routes and disrupt the normal flow of data. In a centralized
architecture, a successful rushing attack on the central server could disrupt the entire

Drones 2023, 7, 289

73 of 102

network, as it is responsible for managing all communication routes. For example, an
attacker might manipulate routing information to redirect traffic through a compromised
node or create a network bottleneck, degrading overall performance. On the other hand,
decentralized architectures are more resilient to rushing attacks, as they rely on multiple
nodes for routing decisions. However, if a significant portion of nodes is compromised,
the attacker could still control key network routes, causing performance issues or enabling
data interception.

Sybil Attack

An attacker creates multiple fake identities to subvert the trust-based mechanisms
in a network, often to manipulate voting or consensus processes. If the central server in
a centralized architecture is compromised by a Sybil attack, the entire network could be
affected. For example, an attacker might use fake identities to influence decisions made
by the central server, such as granting unauthorized access to sensitive data. Conversely,
decentralized architectures are more resilient to Sybil attacks due to their consensus mecha-
nisms and trust-based systems. However, if a significant portion of nodes is compromised
or the consensus process is subverted, the attacker could still severely impact the system.
For instance, an attacker might launch a Sybil attack to manipulate voting results in a
decentralized consensus algorithm, undermining the network’s integrity.

Wormbhole Attack

An attacker creates a low-latency tunnel between two points in the network, effectively
“short-circuiting” the normal routing process and capturing or altering the data transmitted
through the tunnel. In a centralized architecture, a successful wormhole attack on the
central server could severely impact the entire network, as the attacker could intercept
and modify data transmitted between the central server and the connected nodes. For
example, an attacker could capture sensitive information or inject malicious data into the
network. Conversely, decentralized architectures are generally more resilient to wormhole
attacks due to their distributed nature. However, if a wormhole attack targets multiple
nodes or key network routes, the system could still be severely impacted. For instance, an
attacker might compromise several nodes and establish a wormhole to intercept or alter
data transmitted between them, disrupting network communication and data integrity.

SPOF Attack

In a centralized architecture, the system is inherently more vulnerable to SPOF attacks
due to the reliance on a single central server for data storage, processing, and commu-
nication. If an attacker successfully targets and compromises the central server, it can
lead to the failure of the entire network. For example, consider a centralized UAV control
system where all the UAVs are controlled by a single ground control station. If the ground
control station is taken offline by an SPOF attack, all the UAVs may lose their ability to
communicate, leading to a potential loss of control or a mission failure.

On the other hand, decentralized architectures are generally more resilient to SPOF
attacks because they distribute data and functionality across multiple nodes, reducing the
likelihood of a single point of failure. However, key nodes or infrastructure components can
still be targeted, and if they are compromised, it may affect the overall system performance.
For instance, in a decentralized UAV control system, an attacker might target a specific
node responsible for relaying critical information between other nodes. If this node is
compromised or taken offline, it could cause a disruption in the communication flow and
degrade the performance of the entire system.

Brute Force Attack

In a centralized architecture, the system is more susceptible to brute force attacks if
the central server’s security measures are breached. Since the central server is the primary
communication hub and data repository for all nodes, a successful brute force attack can

Drones 2023, 7, 289

74 of 102

have severe consequences for the system’s overall functionality and security. For example,
if an attacker gains unauthorized access to the central server in a UAV control system, they
may be able to manipulate UAV flight paths, intercept sensitive data, or cause disruptions
in UAV operations.

On the other hand, decentralized architectures are better at isolating the impact of brute
force attacks, as they distribute data and functionality across multiple nodes. However,
attackers can still target individual nodes or exploit weak points in the network. For
instance, if an attacker successfully brute-forces a node’s authentication credentials in a
decentralized UAV control system, they might be able to manipulate the data or commands
specific to that node. While the impact of this attack may be more localized compared
to a centralized system, it could still cause disruptions or security breaches within the
affected area.

Leaks of Data Due to Human Mistakes and Data Loss Due to System Crashes

In a centralized architecture, the consequences of data leaks or system crashes can
be more significant if the central server is affected. Since the central server serves as the
primary communication hub and data repository for all nodes, any data leaks or crashes
can potentially impact the entire network. For example, in a UAV control system, a data
leak at the central server could expose sensitive information about UAV flight paths or
reconnaissance data, while a system crash could lead to a temporary or permanent loss
of control over the UAV fleet. The attacker would focus on targeting the central server to
maximize the impact. If the attacker can exploit human mistakes, such as exploiting weak
passwords, social engineering, or phishing attacks, they can gain unauthorized access to
sensitive data or even control over the entire system. Furthermore, by inducing a system
crash, the attacker can disrupt the network, causing downtime or loss of functionality,
affecting all nodes that rely on the central server.

On the other hand, decentralized architectures can limit the impact of data leaks and
system crashes through redundancy and consensus mechanisms. With multiple nodes
storing data and processing information, the network can recover from individual node
failures or data leaks more easily. However, the system can still be affected if a significant
number of nodes or data replicas are compromised. For instance, if a large portion of
the nodes in a decentralized UAV control system experiences data leaks or crashes, the
overall system performance, data integrity, and security may be compromised, potentially
leading to disruptions in UAV operations. From an attacker’s perspective, decentralized
architectures require more effort and resources to exploit, as the attacker would need to
target multiple nodes to cause significant damage. However, both architectures can be made
more secure by implementing robust security measures, regular monitoring, and proper
access controls to minimize the risks associated with human mistakes and system crashes.

3.27.2. Defense Pattern Comparison

The defense mechanisms and solutions for attacks in centralized and decentralized
architectures differ in their approaches and effectiveness based on the unique characteristics
of each architecture.

Black Hole and Gray Hole Attacks

From a security developer’s perspective, defending against black hole and gray hole
attacks in centralized and decentralized architectures involves implementing various proac-
tive and reactive measures to minimize the impact of these attacks and maintain the
system’s overall security and performance. In a centralized architecture, the security devel-
oper should focus on protecting the central server, as it is the primary communication hub
and data repository for all nodes. To defend against black hole and gray hole attacks, they
can implement the following strategies:

1. Strict access controls: Employ robust authentication mechanisms, such as multifactor
authentication, to ensure that only authorized personnel can access the central server.

Drones 2023, 7, 289

75 of 102

Additionally, implement the principle of least privilege, granting users the minimum
access necessary to perform their tasks.

2. Intrusion detection systems: Deploy intrusion detection systems (IDSs) to monitor
network traffic for signs of malicious activity, such as unauthorized access attempts,
traffic anomalies, or suspicious patterns indicative of black hole or gray hole attacks.

3. Continuous monitoring: Regularly monitor the central server for signs of compro-
mise, including unexpected changes in system behavior, unexplained data loss, or
unauthorized access attempts. Implement real-time alerting systems to notify security
personnel of potential incidents.

In a decentralized architecture, the security developer should focus on detecting and
isolating malicious nodes, as these attacks target individual nodes within the network.
To defend against black hole and gray hole attacks in a decentralized system, they can
implement the following strategies:

1. Reputation-based systems: Develop and employ a reputation-based system that eval-
uates the trustworthiness of nodes based on their past behavior and interactions with
other nodes. This system can help identify and isolate malicious nodes, minimizing
the impact of black hole and gray hole attacks.

2. Consensus algorithms: Utilize consensus algorithms that require nodes to agree on the
validity of data and transactions before they are added to the network. This approach
helps detect and mitigate the impact of malicious nodes attempting to propagate false
or manipulated data.

3. Node monitoring and isolation: Continuously monitor individual nodes for signs of
black hole or gray hole attacks, such as sudden changes in data-forwarding behavior or
unexpected drops in network performance. If a node is suspected of being malicious,
isolate it from the network to prevent further harm.

Collision Network Attack

From a security developer’s perspective, defending against collision network attacks in
both centralized and decentralized architectures involves implementing various strategies
to optimize communication, manage network traffic, and prevent collisions from impacting
the system’s overall performance and reliability. In a centralized architecture, the security
developer should focus on enhancing the communication between the central server and
nodes to minimize the chance of collisions. To defend against collision network attacks in a
centralized system, they can implement the following strategies:

1. Optimize communication protocols: Review and optimize communication protocols
to ensure that they efficiently manage the flow of data between the central server and
nodes. This may include implementing error detection and correction mechanisms, as
well as prioritizing critical data transmissions.

2. Load balancing: Introduce load-balancing solutions to distribute network traffic
evenly across multiple communication channels, preventing bottlenecks and reducing
the likelihood of collisions. Load balancing can also help ensure that the central
server’s resources are used efficiently, maintaining optimal performance.

3. Traffic management: Implement traffic management solutions that monitor and
control the flow of data between the central server and nodes. This may involve
using techniques such as traffic shaping, congestion control, and quality of service
(QoS) policies to prioritize and manage network traffic, reducing the risk of collisions.

In a decentralized architecture, the security developer should focus on improving
communication between nodes and distributing network traffic across multiple channels.
To defend against collision network attacks in a decentralized system, they can implement
the following strategies:

1. Efficient routing algorithms: Develop and employ routing algorithms that efficiently
route data between nodes, taking into account factors such as network topology,
latency, and node availability. This can help minimize the chance of collisions by

Drones 2023, 7, 289

76 of 102

avoiding congested communication paths and ensuring that data are transmitted
along the most efficient routes.

2. Multiple communication channels: Utilize multiple communication channels to dis-
tribute network traffic, preventing bottlenecks and reducing the likelihood of col-
lisions. This can be achieved by employing different communication technologies
or leveraging multiple frequency bands, ensuring that the network can continue to
operate effectively even when one channel is experiencing congestion or interference.

Data Tampering, Modification, and Replay Attacks

From a security developer’s perspective, defending against data tampering, modifica-
tion, and replay attacks requires the implementation of robust security measures to protect
data in both centralized and decentralized architectures. The strategies employed in each
system type will vary to address their unique challenges. In a centralized architecture,
the security developer should focus on securing data in transit and at rest, as well as
ensuring the integrity of communication between the central server and nodes. To defend
against data tampering, modification, and replay attacks in a centralized system, they can
implement the following strategies:

1. Encryption: Employ strong encryption techniques to protect data, both in transit
between the central server and nodes, and at rest within the server itself. This can
help ensure that even if an attacker intercepts the data, they cannot read or modify
them without the appropriate decryption keys.

2. Digital signatures: Utilize digital signatures to verify the authenticity and integrity
of data transmitted between the central server and nodes. This can help prevent
attackers from tampering with or modifying the data without detection.

3. Secure communication protocols: Implement secure communication protocols, such
as transport layer security (TLS) or secure shell (SSH), to establish encrypted commu-
nication channels between the central server and nodes. This can help protect against
eavesdropping and tampering attacks during data transmission.

In a decentralized architecture, the security developer should focus on ensuring data
integrity across all nodes and preventing tampering or modification by malicious nodes. To
defend against data tampering, modification, and replay attacks in a decentralized system,
they can implement the following strategies:

1. Consensus algorithms: Employ consensus algorithms that require a majority of nodes
to agree on the validity and integrity of data before they are accepted into the system.
This can help detect and reject tampered or modified data, preventing malicious nodes
from manipulating the network.

2. Redundancy measures: Implement redundancy measures, such as data replication
and erasure coding, to store multiple copies of data across different nodes. This can
help ensure data integrity and prevent the loss or corruption of data due to tampering
or modification.

3. Cryptographic techniques: Utilize cryptographic techniques, such as cryptographic
hashing and digital signatures, to verify the authenticity and integrity of data transmit-
ted between nodes. This can help prevent attackers from tampering with or modifying
the data without detection.

Deauthentication, DDoS, Slowloris, Flooding, and SYN Flood Attacks

For centralized architectures, where the central server is the primary target, security
developers should focus on safeguarding the server from these types of attacks. They can
implement the following strategies:

1. Firewalls: Deploy advanced firewalls to filter incoming traffic and protect the central
server from unauthorized access or malicious traffic patterns associated with DDoS,
Slowloris, flooding, and SYN flood attacks.

Drones 2023, 7, 289

77 of 102

2. Rate limiting: Implement rate limiting to control the volume of incoming traffic and
prevent the central server from being overwhelmed by excessive requests. This can
help mitigate the impact of DDoS and SYN flood attacks.

3. Intrusion detection and prevention systems (IDPSs): Employ IDPSs to continuously
monitor the network for signs of malicious activity, such as deauthentication or DDoS
attacks, and take automated actions to block or mitigate detected threats.

For decentralized architectures, security developers should focus on leveraging the
distributed nature of the system to mitigate the impact of these attacks. They can implement
the following strategies:

1. Distributed network monitoring: Utilize distributed network monitoring tools to
detect unusual traffic patterns or signs of attacks across all nodes in the network. This
can help identify potential threats and respond quickly to mitigate their impact.

2. Cooperative filtering: Implement cooperative filtering mechanisms, in which nodes
share information about malicious traffic or attackers, allowing the system to collab-
oratively block or mitigate the attacks. This can help prevent the spread of DDoS,
Slowloris, flooding, and SYN flood attacks within the decentralized network.

3. Load balancing: Employ load-balancing techniques to distribute incoming traffic
across multiple nodes, preventing any single node from being overwhelmed by
malicious requests. This can help mitigate the impact of DDoS and SYN flood attacks
on the decentralized system.

GPS Spoofing and Telemetry Spoofing

For centralized architectures, where the central server is responsible for process-
ing and validating location and telemetry data, security developers can implement the
following strategies:

1. Cryptographic verification: Use cryptographic techniques, such as digital signatures,
to verify the authenticity and integrity of location and telemetry data received by the
central server. This ensures that the data have not been tampered with and come from
a trusted source.

2. Multisource data fusion: Employ multisource data fusion techniques, which involve
combining information from multiple independent sources, such as GPS, GLONASS,
and Galileo. This allows the central server to cross-validate location and telemetry
data, reducing the likelihood of accepting spoofed data.

For decentralized architectures, where nodes rely on distributed data processing and
validation, security developers can implement the following strategies:

1. Consensus-based approach: Utilize a consensus-based approach to verify location and
telemetry data by leveraging multiple independent sources. Nodes in the network
can share and validate data with their peers, allowing the system to collaboratively
determine the accuracy and reliability of the information. This can help mitigate the
impact of GPS spoofing and telemetry spoofing attacks by making it more difficult for
attackers to manipulate data across the entire network.

2. Redundant data sources: Encourage the use of redundant data sources in the decen-
tralized network, such as multiple GNSS constellations or alternative positioning
systems such as LORAN, eLoran, or local positioning systems. This increases the
resilience of the network against GPS spoofing and telemetry spoofing attacks by
providing additional data sources for validation and cross-referencing.

Impersonation and Man-In-The-Middle Attacks

In order to defend against impersonation and man-in-the-middle attacks, security
developers need to adopt different strategies based on the architecture of the system,
either centralized or decentralized. For centralized architectures, where a single central
server manages and controls the system, security developers can implement the following
defense strategies:

Drones 2023, 7, 289

78 of 102

Strong authentication: Employ robust authentication mechanisms, such as multifactor
authentication (MFA), to verify the identity of users, devices, or nodes connecting
to the central server. This helps prevent unauthorized access and reduces the risk of
impersonation attacks.

Authorization mechanisms: Implement granular access control policies to ensure
that users, devices, or nodes have the appropriate permissions to access resources
or execute actions within the system. This can help limit the impact of a successful
impersonation attack.

Secure communication channels: Use secure communication protocols, such as
SSL/TLS, to protect data transmitted between the central server and its clients. This
helps prevent man-in-the-middle attacks by ensuring the confidentiality and integrity
of the transmitted data.

For decentralized architectures, where the system relies on multiple nodes working

together, security developers can implement the following defense strategies:

1.

Node authentication: Utilize robust node authentication mechanisms to verify the
identity of nodes within the network. This can help prevent malicious nodes from
joining the network and carrying out impersonation attacks.

Secure communication channels: Implement secure communication protocols, such
as SSL/TLS, between nodes to protect the confidentiality and integrity of the data
exchanged within the network. This can help prevent man-in-the-middle attacks by
ensuring that attackers cannot intercept or tamper with the transmitted data.
Trust-based systems: Employ trust-based systems, such as reputation systems or
blockchain technology, to build a secure and resilient network. These systems can
help nodes collectively identify and isolate malicious or compromised nodes, reducing
the risk of impersonation and man-in-the-middle attacks.

Insider and Selfishness Attacks

To defend against insider and selfishness attacks, security developers need to consider

different strategies based on the system architecture, whether centralized or decentralized.
For centralized architectures, where a single central server manages and controls the system,
security developers can implement the following defense strategies:

1.

Strict access controls: Establish granular access control policies to ensure that users,
devices, or nodes have the appropriate permissions to access resources or execute ac-
tions within the system. This can help limit the impact of insider attacks by restricting
the actions and resources available to potentially malicious insiders.

User monitoring: Implement user activity monitoring to track and analyze actions
performed by users within the system. This can help detect unusual or malicious
behavior, such as unauthorized access attempts, data exfiltration, or other signs of
insider threats.

Anomaly detection systems: Employ advanced anomaly detection systems, such
as machine learning algorithms, to identify suspicious patterns or deviations from
normal behavior. These systems can help detect potential insider threats and trigger
alerts for further investigation or remediation.

For decentralized architectures, where the system relies on multiple nodes working

together, security developers can implement the following defense strategies:

1.

Reputation-based systems: Use reputation-based systems to build a secure and re-
silient network. These systems can help nodes collectively identify and isolate mali-
cious or selfish nodes, reducing the risk of insider and selfishness attacks.
Collaborative monitoring: Implement collaborative monitoring mechanisms, where
nodes within the network share information about the behavior and performance of
other nodes. This can help detect selfish or malicious nodes that may be attempting to
exploit the system.

Drones 2023, 7, 289

79 of 102

3. Consensus algorithms: Employ consensus algorithms, such as proof-of-work or proof-
of-stake, to ensure the integrity and consistency of the network. These algorithms can
help prevent malicious nodes from dominating or subverting the decision-making
process within the network, limiting the impact of insider and selfishness attacks.

Jamming Attack

For centralized architectures, where a single central server manages and controls the

system, security developers can implement the following defense strategies:

1.

Frequency hopping: Implement frequency-hopping techniques to rapidly switch
between multiple frequency channels during communication, making it difficult for
an attacker to jam the entire communication link between nodes and the central server.
Spread spectrum techniques: Employ spread spectrum techniques, such as direct-
sequence spread spectrum (DSSS) or frequency-hopping spread spectrum (FHSS), to
distribute the signal across a broader frequency range, making it more resistant to
jamming attempts.

Alternative communication channels: Establish alternative communication channels
or backup links between the central server and nodes to maintain connectivity in case
the primary communication channel is jammed.

For decentralized architectures, where the system relies on multiple nodes working

together, security developers can implement the following defense strategies:

1.

Network topology: Leverage the network’s topology to identify alternative communi-
cation paths that can bypass the jammed areas. This can help maintain connectivity
and ensure the continuous flow of information within the network.

Alternative communication paths: Utilize multiple communication paths between
nodes to ensure that if one path is jammed, others can still be used to transmit data.
This can enhance the network’s resilience to jamming attacks.

Adaptive routing: Implement adaptive routing algorithms that can dynamically adjust
to the network conditions and route data through the network, bypassing jammed
areas or congested paths. This can help maintain network performance and minimize
the impact of jamming attacks.

Eavesdropping

For centralized architectures, where a single central server manages and controls the

system, security developers can implement the following defense strategies:

1.

Encryption: Encrypt data transmitted between the central server and nodes to ensure
that even if an attacker intercepts the communication, they cannot decipher the
information. This can include symmetric encryption algorithms, such as AES, or
asymmetric encryption algorithms, such as RSA.

Secure communication protocols: Implement secure communication protocols such as
TLS or SSL to establish a secure channel between the central server and nodes. These
protocols provide encryption, authentication, and data integrity, protecting data from
eavesdropping and tampering.

For decentralized architectures, where the system relies on multiple nodes working

together, security developers can implement the following defense strategies:

1.

Encrypted communication channels: Use encrypted communication channels to
protect data exchange between nodes. This can be achieved by employing secure
communication protocols such as TLS or end-to-end encryption techniques to ensure
that data remain confidential during transmission.

Public-key cryptography: Implement public-key cryptography, such as RSA or elliptic
curve cryptography (ECC), to enable secure key exchange and data encryption be-
tween nodes. Public-key cryptography allows nodes to exchange keys securely, even

Drones 2023, 7, 289

80 of 102

in the presence of eavesdroppers, ensuring that data can be encrypted and decrypted
only by the intended recipients.

Poor Link and High Latency

For centralized architectures, where a single central server manages and controls the

system, security developers can implement the following defense strategies:

1.

Optimize network infrastructure: Ensure that the network infrastructure is well de-
signed and adequately maintained to provide reliable and high-performance connec-
tivity. This may involve using high-quality equipment, regular maintenance checks,
and ensuring proper network topology.

Load balancing: Distribute network traffic across multiple resources or servers to
prevent overloading the central server and to ensure smooth communication between
nodes. Load-balancing techniques can help manage network congestion and reduce
latency, leading to improved system performance.

Traffic management solutions: Implement traffic management solutions such as
quality of service (QoS) policies to prioritize critical data transmissions and allocate
resources effectively. This approach can help reduce latency and maintain optimal
network performance.

For decentralized architectures, where the system relies on multiple nodes working

together, security developers can implement the following defense strategies:

1.

Leverage multiple paths: Utilize the distributed nature of the network to route data
through multiple paths, bypassing congested or slow routes. This can help reduce
latency and maintain optimal system performance, even when some nodes experience
poor link quality or high latency.

Distribute traffic: Distribute network traffic across various nodes to avoid overloading
specific nodes and to maintain a balanced load across the network. This can help
minimize the impact of poor link quality and high latency on the overall system
performance.

Adaptive routing algorithms: Implement adaptive routing algorithms that can dy-
namically adjust to changing network conditions, such as congestion or node failures.
These algorithms can reroute data packets through alternative paths to minimize
latency and maintain optimal network performance.

Rushing Cyberattack, Sybil Attack, and Wormhole Attack

For centralized architectures, where a single central server manages and controls the

system, security developers can implement the following defense strategies:

1.

Strict access controls: Implement strong authentication and authorization mechanisms
to ensure that only authorized users can access the central server and its resources.
This can help prevent unauthorized users from launching attacks against the system.
Intrusion detection systems: Deploy intrusion detection systems (IDSs) that monitor
the network for suspicious activities and detect potential attacks. IDSs can help
identify rushing cyberattacks, Sybil attacks, and wormhole attacks in their early
stages, allowing security teams to take appropriate countermeasures.

Continuous monitoring: Establish continuous monitoring processes to track and
analyze the network’s performance, security, and overall health. Regular monitoring
can help identify and respond to potential threats, including rushing cyberattacks,
Sybil attacks, and wormhole attacks, before they can cause significant damage.

For decentralized architectures, where the system relies on multiple nodes working

together, security developers can implement the following defense strategies:

1.

Reputation-based systems: Implement reputation-based systems that assign trust
scores to nodes based on their past behavior and contributions to the network. This

Drones 2023, 7, 289

81 of 102

can help identify and isolate malicious nodes involved in rushing cyberattacks, Sybil
attacks, and wormbhole attacks.

Trust-based systems: Employ trust-based systems that evaluate the reliability and
trustworthiness of nodes before allowing them to participate in network activities.
This can help prevent malicious nodes from launching attacks or influencing the
network’s operations.

Secure routing protocols: Use secure routing protocols that are designed to detect and
mitigate attacks such as rushing cyberattacks, Sybil attacks, and wormhole attacks.
These protocols typically incorporate mechanisms to verify the authenticity and
integrity of routing information, ensuring that data are transmitted securely and
reliably across the network.

SPOF Attack

Defending against single point of failure (SPOF) attacks requires different approaches

depending on whether the system architecture is centralized or decentralized. For central-
ized architectures, where a single central server manages and controls the system, security
developers can implement the following defense strategies:

1.

Redundancy: Introduce redundancy by creating multiple instances of critical system
components or services. This can help ensure that if one component fails or is targeted
in an attack, the others can continue to function, minimizing the impact of a single
point of failure.

Backup systems: Establish backup systems to store and maintain copies of essential
data and configurations. Regularly updating and testing these backups can help
quickly restore the system to normal operation in case of a failure or an attack.

Load balancing: Employ load-balancing techniques to distribute network traffic across
multiple servers or resources. This can help prevent overloading a single point in the
system and increase its overall reliability and performance.

For decentralized architectures, where the system relies on multiple nodes working

together, security developers can implement the following defense strategies:

1.

Inherent resilience: Decentralized systems are inherently more resilient against SPOF
attacks due to their distributed nature. Each node operates independently, ensur-
ing that the failure or compromise of a single node has a limited impact on the
overall system.

Protect key infrastructure components: Although decentralized systems are more
resilient, it is crucial to ensure that key infrastructure components, such as critical
nodes or communication links, are protected and secure. Implement strong access
controls, encryption, and intrusion detection systems to safeguard these components
against potential attacks.

Regularly assess and update security measures: Continuously evaluate and update
the security measures in place, considering the evolving threat landscape and the
unique challenges of decentralized systems. Regular assessments can help identify
and address potential vulnerabilities before they can be exploited by attackers.

Brute Force Attack

For centralized architectures, where a single central server manages and controls the

system, security developers can implement the following defense strategies:

1.

Strong encryption: Employ strong encryption algorithms to protect data stored on the
central server, as well as data transmitted between the server and the nodes. This can
help safeguard sensitive information and prevent unauthorized access.

Complex passwords: Use complex, unique passwords for the central server and all
administrative accounts to make it more challenging for attackers to guess or crack
the passwords using brute force techniques.

Drones 2023, 7, 289

82 of 102

Account lockout policies: Implement account lockout policies to limit the number of
failed login attempts within a specific timeframe. This can help protect the central
server from brute force attacks by temporarily locking out accounts after a certain
number of unsuccessful login attempts, reducing the likelihood of an attacker gaining
unauthorized access.

For decentralized architectures, where the system relies on multiple nodes working

together, security developers can implement the following defense strategies:

1.

Strong authentication mechanisms: Utilize strong authentication mechanisms, such
as multifactor authentication (MFA) or public-key cryptography, to protect individ-
ual nodes from unauthorized access. These mechanisms can help ensure that only
authorized users can access the nodes, making brute force attacks more difficult.
Secure communication channels: Implement secure communication channels between
nodes using encryption and secure protocols, such as SSL/TLS. This can help protect
data exchanged between nodes and prevent unauthorized access or eavesdropping
by attackers.

Regular security assessments: Continuously evaluate and update security measures
to address the evolving threat landscape and the unique challenges of decentralized
systems. Regular assessments can help identify and mitigate potential vulnerabilities,
such as weak passwords or outdated encryption algorithms, before they can be
exploited by attackers.

Leaks of Data Due to Human Mistakes and Data Loss Due to System Crash

For centralized architectures, where a single central server manages and controls the

system, security developers can implement the following defense strategies:

1.

Strict access controls: Enforce strict access controls to limit the number of users who
can access sensitive data on the central server. By granting access only to those who
require it, the risk of data leaks due to human mistakes can be minimized.

User monitoring: Implement user monitoring tools to track user activities and detect
potential data leaks or unauthorized access. This can help identify unusual behavior
or potential breaches and allow for swift remediation.

Data backup and recovery solutions: Develop robust data backup and recovery
solutions to protect against data loss due to system crashes. Regularly scheduled
backups and reliable recovery mechanisms can help ensure data continuity and
minimize downtime in the event of a crash.

For decentralized architectures, where the system relies on multiple nodes working

together, security developers can implement the following defense strategies:

1.

Redundancy measures: Employ redundancy measures, such as data replication and
distributed storage, to ensure that data are stored across multiple nodes. This can help
prevent data loss due to system crashes and minimize the impact of human mistakes
on the overall system.

Consensus algorithms: Implement consensus algorithms to maintain data integrity
and consistency across nodes. By ensuring that all nodes agree on the state of the
data, it becomes more difficult for individual nodes to introduce errors or tamper with
the data.

Collaborative monitoring: Use collaborative monitoring tools to track user activi-
ties and detect potential data leaks or unauthorized access across the decentralized
network. By monitoring the activities of users across the entire system, security devel-
opers can more effectively detect and respond to potential data leaks and breaches.

4. Qualitative Analysis of Security Attack

This section presents a qualitative analysis of various cybersecurity attacks and their

potential impacts on UAV—cloud centralized systems, focusing on data loss, sensitivity,

Drones 2023, 7, 289

83 of 102

latency, delay, network availability, authentication, integrity, and confidentiality. By exam-
ining the characteristics and consequences of each attack, we assess their effects on these
attributes, offering valuable insights for prioritizing security measures and countermea-
sures in the context of UAV—cloud systems.

4.1. Delphi Method

In order to implement qualitative analysis, the Delphi method is used for assessing
latency and other network attributes of 26 cybersecurity attacks in the context of UAV-
cloud systems. The main objective of the study is to obtain expert consensus on the impact
of each attack on the selected attributes and assign qualitative values (high, medium, and
low) to each. There are several processes:

1. Define the problem: The main research question is, “What are the impacts of 26 cy-
bersecurity attacks on latency and other network attributes in UAV-cloud systems,
and how can they be qualitatively assessed?”

2. Select the experts: We assemble a diverse group of 20 experts with experience in
cybersecurity, UAV systems, and cloud computing. The experts are a mix of pro-
fessionals from academia, industry, and government to cover different perspectives.
Each expert has a background in at least one of the following areas: cybersecurity,
UAV systems, or cloud computing, and is familiar with network performance metrics.

3. Develop the questionnaire: After that, we create a series of questions that allow
experts to provide their opinions on the impacts of each cybersecurity attack on the
selected network attributes, such as latency, data loss, sensitivity, authentication,
integrity, and confidentiality. The purpose of the questionnaire is to obtain qualita-
tive assessments (high, medium, low) for each attribute using rating scales or other
mechanisms to capture expert opinions effectively.

4. First round: In this step, we distribute the questionnaire to the experts, asking them to
assess the impact of each attack on the network attributes in the context of UAV-cloud
systems. We also ensure anonymity to promote unbiased opinions.

5. Discuss and analyze the responses: In this phase, we discuss the response from the
collected first-round responses and analyze them. After that, we summarize the expert
opinions on the impacts of the attacks on each network attribute.

6. Second round: After analyzing the first-round step, we develop a new questionnaire
based on the results from the first round, presenting the summarized assessments and
asking experts to reconsider their initial opinions in light of the collective input. Then,
we encourage experts to provide any additional insights or explanations to support
their assessments.

7. Iterate: We continue to analyze the responses and develop new questionnaires for
additional rounds, repeating the process until a consensus is reached or diminishing
returns are observed. A consensus can be considered achieved when at least 75% of
experts agree on the impact assessments. Diminishing returns can be indicated by
minimal changes in assessments between rounds.

8. Compile results: We summarize the final results, detailing the consensus on the
impacts of each cybersecurity attack on latency and the other network attributes in
UAV—cloud systems. Furthermore, we also highlight the key differences between
attacks and their implications for system security and performance. Table 1 presents a
comprehensive overview of the rate of impacts of individual cyberattacks on various
network attributes.

Drones 2023, 7, 289

84 of 102

Table 1. Impact of a security attack on various attributes.

Attack Data Loss Sensitivity Latency and Delay Network Availability Authentication and Integrity Confidentiality
Black hole high medium high high low low
Collision network medium low high medium low low
Data tampering medium high low low high high
Deauthentication medium medium high high medium medium
DDoS and Slowloris medium low high high low low
Flooding medium-high low high high low low
GPS spoofing low medium low low medium low
Telemetry spoofing low high low low high medium
Gray hole high medium high high medium low
Impersonation low high low low high high
Insider high high low-medium medium-high high high
Jamming high medium high high low low
Eavesdropping low high low low low high
Poor link and high latency medium low high medium low low
Man-in-the-middle low high medium low high high
Modification low high medium low high medium
Replay low medium medium low high low
Rushing cyber medium low medium medium low low
Selfishness medium low medium medium low low
SPOF high medium high high medium medium
Sybil low medium low medium high medium
SYN flood low low high high low low
Wormbhole medium high medium medium high high
Brute force low high low low high high
Leaks data (human) low high low low high high
Data loss (system crash) high medium high high medium medium

Drones 2023, 7, 289

85 of 102

4.2. Results and Analysis
4.2.1. Black Hole Attack

Data loss: The consensus among experts is that the data loss impact is high due to the
intentional dropping of all received packets, which can severely affect the performance
and mission success of the UAV—cloud system. Sensitivity: The panel agreed that the
sensitivity impact is medium, as the attack mainly targets data loss and not the content
or confidentiality of the data. However, experts highlighted that the loss of sensitive data
could have severe consequences, depending on the specific data type and mission context.

Latency and delay: Experts concluded that latency and delay impacts are high, as
dropped packets cause retransmissions and increase the time it takes to transmit data, di-
rectly affecting the real-time control and responsiveness of the UAV. Network availability:
The panel reached a consensus that network availability is highly impacted, as the attack
can disrupt communication between the UAV and the cloud, leading to a potential loss of
control and system unavailability.

Authentication and integrity: The experts agreed that the impact on authentication
and integrity is low, as the attack primarily focuses on dropping packets rather than
altering or forging them. However, some experts noted that a sophisticated attacker could
potentially combine this attack with other techniques to compromise authentication or
integrity. Confidentiality: The panel concluded that the confidentiality impact is low, as
the attack does not directly target the content or confidentiality of the data. Nevertheless,
experts emphasized that this assessment assumes proper encryption and security measures
are in place to protect sensitive data.

4.2.2. Collision Network Attack

Data loss: The impact on data loss is considered medium, as the attacker’s primary
goal is to generate collisions, leading to retransmissions, and the possibility of data loss.
However, the extent of data loss depends on the severity and frequency of the collisions.
Sensitivity: The sensitivity impact is low, as the attack mainly targets data transmission
rather than the content or confidentiality of the data. This means that while the delivery of
data may be affected, the data themselves remain unaltered and secure.

Latency and delay: The latency and delay impact is high, as collisions result in
retransmissions, which can significantly increase the time it takes to transmit data. This
can adversely affect the real-time control and responsiveness of UAV systems, hindering
mission success. Network availability: The impact on network availability is medium, as
the attack can disrupt communication, causing intermittent connectivity issues. However,
it may not necessarily render the entire UAV—cloud system unavailable, depending on the
severity of the attack and the system’s resilience.

Authentication and integrity: The impact on authentication and integrity is low, as
the attack primarily focuses on causing collisions rather than altering or forging data
packets. This means that, while data transmission may be disrupted, the integrity and
authentication of the data remain intact. Confidentiality: The confidentiality impact is low,
as the attack does not directly target the content or confidentiality of the data. Assuming that
proper encryption and security measures are in place, the sensitive information within the
UAV—cloud system should remain protected even in the face of collision network attacks.

4.2.3. Data Tampering

Data loss: The impact of data loss is considered medium, as the attacker alters the
data, potentially rendering them useless and leading to data loss. This can disrupt the
functionality and decision-making capabilities of the UAV—cloud system. Sensitivity: The
sensitivity impact is high, as the attacker can change sensitive information, compromising
the confidentiality of the data. This can lead to severe consequences, such as unauthorized
access to mission details or the exposure of critical system vulnerabilities.

Latency and delay: The latency and delay impact is low, as data tampering does not
directly impact the time it takes to transmit data. However, depending on the severity of

Drones 2023, 7, 289

86 of 102

the tampering, additional processing or error-checking mechanisms may slightly increase
latency. Network availability: The impact on network availability is low, as the attack does
not affect the communication link between the UAV and the cloud. The system remains
operational, but the integrity and confidentiality of the data are compromised.

Authentication and integrity: The impact on authentication and integrity is high, as
the attack aims to compromise the integrity of the data. This can undermine the trustwor-
thiness of the UAV—cloud system and lead to incorrect decision making or unintended
consequences. Confidentiality: The confidentiality impact is high, as the attack directly
targets the content and confidentiality of the data. By tampering with sensitive information,
the attacker can gain unauthorized access to critical system components or manipulate the
UAV-cloud system for malicious purposes.

4.2.4. Deauthentication Attack

Data loss: The impact of data loss is considered medium, as the attacker forces le-
gitimate users to disconnect, potentially leading to data loss. This can hinder the overall
functionality of the UAV-cloud system, affecting both control and data collection. Sensitiv-
ity: The sensitivity impact is medium, as the attack can disrupt access to sensitive data but
does not directly target its content or confidentiality. Although sensitive data may not be
directly compromised, the loss of access can have severe consequences depending on the
mission context and the nature of the data.

Latency and delay: The impact on latency and delay is high, as the attack can disrupt
communication, causing delays and affecting the responsiveness of the UAV. This can result
in reduced mission effectiveness and increased operational risks. Network availability:
The network availability impact is high, as the attack can render the system unavailable
to legitimate users. By forcing disconnections, the attacker can effectively disrupt the
operation of the UAV—cloud system and its communication with authorized personnel.

Authentication and integrity: The impact on authentication and integrity is medium,
as the attack targets the authentication process but does not directly impact data integrity.
Although the data remain intact, the disruption of the authentication process can prevent
legitimate users from accessing and verifying the information. Confidentiality: The confi-
dentiality impact is medium, as the attack can disrupt access to sensitive data but does not
directly target their content or confidentiality. The primary concern is the loss of access to
sensitive data, which can hinder mission objectives and decision-making processes.

4.2.5. DDos and Slowloris Attack

Data loss: The impact of data loss is considered medium, as the attack aims to exhaust
server resources, potentially causing data loss due to congestion and system unavailability.
This can hinder the overall functionality of the UAV—cloud system, affecting both control
and data collection. Sensitivity: The sensitivity impact is low, as the attack does not
target the content or confidentiality of the data. The primary concern with this attack is
the potential disruption of data transmission, rather than the compromise of sensitive
information.

Latency and delay: The impact on latency and delay is high, as the Slowloris attack
can cause significant delays in data transmission, affecting the responsiveness of the UAV.
This can result in reduced mission effectiveness and increased operational risks. Network
availability: The network availability impact is high, as the attack can render the system
unavailable to legitimate users. By exhausting server resources, the attacker can effectively
disrupt the operation of the UAV—cloud system and its communication with authorized
personnel.

Authentication and integrity: The impact on authentication and integrity is low, as
the attack focuses on exhausting server resources rather than altering or forging data pack-
ets. While the attack does not directly impact data integrity, the resulting congestion can
hinder legitimate users’ access to the system and the verification of information. Confiden-
tiality: The confidentiality impact is low, as the Slowloris attack does not directly target the

Drones 2023, 7, 289

87 of 102

content or confidentiality of the data. The primary concern is the potential disruption of
data transmission and the system’s unavailability, rather than the compromise of sensitive
information.

4.2.6. Flooding Attack

Data loss: The impact of data loss ranges from medium to high, as the attacker aims
to overwhelm the UAV-cloud system with excessive traffic, potentially causing data loss
due to congestion and system unavailability. This disruption can affect both the control and
data collection capabilities of the UAV—cloud system. Sensitivity: The sensitivity impact is
low, as the attack does not target the content or confidentiality of the data. The primary
concern with this attack is the potential disruption of data transmission, rather than the
compromise of sensitive information.

Latency and delay: The impact on latency and delay is high, as the excessive traffic
generated during the attack can significantly increase the time it takes to transmit data.
This can result in reduced mission effectiveness and increased operational risks for the
UAV-cloud system. Network availability: The network availability impact is high, as the
attack aims to overwhelm the system, making it unavailable to legitimate users. By flooding
the UAV—cloud system with traffic, the attacker can effectively disrupt the operation and
communication with authorized personnel.

Authentication and integrity: The impact on authentication and integrity is low,
as the attack primarily focuses on flooding the system with traffic rather than altering
or forging data packets. While the attack does not directly impact data integrity, the
resulting congestion can hinder legitimate users’ access to the system and the verification
of information. Confidentiality: The confidentiality impact is low, as the flooding attack
does not directly target the content or confidentiality of the data. The primary concern is
the potential disruption of data transmission and the system’s unavailability, rather than
the compromise of sensitive information.

4.2.7. GPS Spoofing Attack

Data loss: The impact on data loss is low since the attack targets the UAV’s navigation
system rather than causes data loss or corruption in the communication link. The primary
focus of GPS spoofing is to manipulate the UAV’s position, which does not directly result in
the loss of data being transmitted between the UAV and the cloud. Sensitivity: The attack
has a medium impact on sensitivity, as the attacker can manipulate the UAV’s position,
potentially compromising the mission and revealing sensitive information about the UAV’s
location and trajectory. The risk stems from the possibility that the attacker may gain
insights into the UAV’s operations or hinder its ability to complete its mission successfully.

Latency and delay: The impact on latency and delay is low, as GPS spoofing does not
affect the time it takes to transmit data or the responsiveness of the UAV. Although the attack
primarily focuses on the UAV’s navigation system, it does not introduce additional delays
in data transmission between the UAV and the cloud. Network availability: The attack
has a low impact on network availability since it does not directly affect the communication
link between the UAV and the cloud. The objective of GPS spoofing is to deceive the
UAV’s navigation system, which is separate from the communication link responsible for
network availability.

Authentication and integrity: GPS spoofing attack has a medium impact on au-
thentication and integrity, as it primarily focuses on manipulating the UAV’s navigation
data rather than altering or forging data packets. A successful GPS spoofing attack can
undermine the integrity of the UAV’s position and mission data, potentially leading to
incorrect decisions or actions based on inaccurate location information. Confidentiality:
The attack has a low impact on confidentiality, as it does not directly target the content
or confidentiality of the data transmitted between the UAV and the cloud. While the
attacker might gain insights into the UAV’s location and trajectory, the content of data

Drones 2023, 7, 289

88 of 102

being transmitted remains unaffected, and proper encryption and security measures can
help maintain confidentiality.

4.2.8. Telemetry Spoofing Attack

Data loss: The impact on data loss is low, as the attack primarily focuses on altering
or forging telemetry data rather than causing data loss. The attacker’s goal is to manipulate
the telemetry data, not to disrupt data transmission or delete critical data. Sensitivity:
The sensitivity impact is high, as telemetry data are critical for UAV operations, and their
manipulation can compromise the mission and reveal sensitive information about the
UAV’s status and control. Successful telemetry spoofing attacks can jeopardize the safety
and success of the operation, making it crucial to protect these data from malicious actors.

Latency and delay: The impact on latency and delay is low, as telemetry spoofing
does not directly impact the time it takes to transmit data. The attack specifically targets
the UAV’s telemetry data, without directly affecting data transmission and communication
processes. Network availability: The network availability impact is low, as the attack does
not directly affect the communication link between the UAV and the cloud. The primary
focus of the attacker is on manipulating the UAV’s telemetry data, rather than disrupting
the overall network availability.

Authentication and integrity: The impact on authentication and integrity is high,
as the attacker aims to compromise the integrity of the telemetry data by altering or
forging them. Successfully manipulated telemetry data can result in incorrect or misleading
information being used for UAV control and decision making, potentially leading to mission
failures or unexpected operational outcomes. Confidentiality: The confidentiality impact
is medium, as the attacker directly targets the content of the telemetry data, potentially
revealing sensitive information. This could lead to unauthorized access or exposure of
sensitive UAV operational details, making it essential to secure the confidentiality of
telemetry data.

4.2.9. Gray Hole Attack

Data loss: The impact on data loss is high, as the attacker selectively drops packets,
leading to data loss and communication disruption. This can severely affect the perfor-
mance and mission success of the UAV—cloud system. Sensitivity: The sensitivity impact
is medium, as the attack targets data loss rather than the content or confidentiality of the
data. However, the loss of sensitive data could have severe consequences, depending on
the specific data type and mission context.

Latency and delay: The impact on latency and delay is high, as selectively dropped
packets cause retransmissions and increase the time it takes to transmit data. This directly
affects the real-time control and responsiveness of the UAV. Network availability: The
network availability impact is high, as the attack can disrupt communication and render
the system unavailable. This can lead to a loss of control and system unavailability, severely
hindering the UAV-cloud system’s operation.

Authentication and integrity: The impact on authentication and integrity is medium,
as the attacker selectively drops packets rather than altering or forging them. However,
the attacker could potentially combine this attack with other techniques to compromise
authentication or integrity, posing a more significant threat to the UAV—cloud system.
Confidentiality: The confidentiality impact is low, as the attack does not directly target
the content or confidentiality of the data. However, this assessment assumes that proper
encryption and security measures are in place to protect sensitive data from unauthorized
access and exposure.

4.2.10. Impersonation Attack

Data loss: The impact on data loss is low, as the attacker primarily focuses on pre-
tending to be a legitimate entity rather than causing data loss. However, the unauthorized
access gained through this attack could potentially lead to data loss if the attacker decides

Drones 2023, 7, 289

89 of 102

to delete or tamper with the data. Sensitivity: The sensitivity impact is high, as the attacker
can gain unauthorized access to sensitive data and resources by impersonating a legitimate
entity. This can lead to severe consequences, such as exposing the UAV’s location, mission
details, or other sensitive information.

Latency and delay: The impact on latency and delay is low, as impersonation attacks
do not directly impact the time it takes to transmit data. However, indirect consequences of
unauthorized access might affect the responsiveness of the UAV-cloud system. Network
availability: The network availability impact is low, as the attack does not directly affect
the communication link between the UAV and the cloud. Nonetheless, the unauthorized
access could potentially lead to system disruptions or resource unavailability.

Authentication and integrity: The impact on authentication and integrity is high,
as the attacker aims to bypass the authentication process and compromise the integrity
of the system. This can undermine the overall security and trustworthiness of the UAV-
cloud system. Confidentiality: The confidentiality impact is high, as the attacker can gain
unauthorized access to sensitive data by impersonating a legitimate entity. This can lead to
unauthorized disclosure of confidential information, placing the UAV—cloud system and
its mission at risk.

4.2.11. Insider Attack

Data loss: The impact on data loss is high, as the attacker, being an insider, has
privileged access to the system and can potentially cause significant data loss and damage.
This could severely affect the performance and mission success of the UAV—cloud system.
Sensitivity: The sensitivity impact is high, as the attacker has privileged access to sensitive
data and can compromise its confidentiality. This can lead to unauthorized disclosure of
confidential information, placing the UAV—cloud system and its mission at risk.

Latency and delay: The impact on latency and delay is low to medium, as it depends
on the attacker’s actions. An insider attacker could potentially disrupt communication
or cause delays in data transmission, affecting the responsiveness of the UAV—cloud sys-
tem. Network availability: The network availability impact is medium to high, as the
attacker can potentially disrupt the communication link and render the system unavailable.
This could result in a loss of control and system unavailability, which can have serious
consequences on the UAV—cloud system’s operations.

Authentication and integrity: The impact on authentication and integrity is high, as
the attacker already has authenticated access to the system and can compromise its integrity
by altering or deleting data. This can undermine the overall security and trustworthiness of
the UAV—cloud system. Confidentiality: The confidentiality impact is high, as the attacker
has privileged access to sensitive data and can exploit them for malicious purposes. This
can lead to unauthorized disclosure of confidential information, placing the UAV—cloud
system and its mission at risk.

4.2.12. Jamming Attack

Data loss: The impact on data loss is high, as the attacker seeks to disrupt the commu-
nication link by flooding the network with noise, causing significant data loss. This can
severely impact the performance and mission success of the UAV-cloud system. Sensitiv-
ity: The sensitivity impact is medium, as the attack primarily targets data loss rather than
the content or confidentiality of the data. However, the loss of sensitive data could have
severe consequences, depending on the specific data type and mission context.

Latency and delay: The impact on latency and delay is high, as jamming disrupts
communication links and causes retransmissions, increasing the time it takes to transmit
data. This directly affects the real-time control and responsiveness of the UAV—cloud
system. Network availability: The network availability impact is high, as the attack can
render the communication link between the UAV and the cloud unavailable. This may lead
to a loss of control and system unavailability, which can have serious consequences for the
UAV—cloud system’s operations.

Drones 2023, 7, 289

90 of 102

Authentication and integrity: The impact on authentication and integrity is low, as
the attack primarily focuses on disrupting the communication link rather than altering or
forging data packets. However, some experts noted that a sophisticated attacker could
potentially combine this attack with other techniques to compromise authentication or
integrity. Confidentiality: The confidentiality impact is low, as the attack does not directly
target the content or confidentiality of the data. Nevertheless, experts emphasized that
this assessment assumes proper encryption and security measures are in place to protect
sensitive data.

4.2.13. Eavesdropping Attack

Data loss: The impact on data loss is low, as the attacker primarily focuses on in-
tercepting data rather than causing data loss. Eavesdropping attackers seek to access
information being transmitted between the UAV and the cloud, not to disrupt or corrupt
the data themselves. Sensitivity: The sensitivity impact is high, as the attacker can access
sensitive information transmitted between the UAV and the cloud. Unauthorized access to
sensitive data can compromise the mission and have serious consequences, depending on
the specific data type and mission context.

Latency and delay: The impact on latency and delay is low, as eavesdropping does not
directly impact the time it takes to transmit data. The primary objective of an eavesdropping
attacker is to monitor the data being transmitted, not to introduce delays or disrupt the
communication process. Network availability: The network availability impact is low,
as the attack does not directly affect the communication link between the UAV and the
cloud. Eavesdropping attackers are primarily interested in intercepting data, not in causing
disruptions to the communication link or network availability.

Authentication and integrity: The impact on authentication and integrity is low, as
the attacker aims to intercept and monitor the data rather than altering or forging them.
While eavesdropping attacks do not inherently compromise data integrity, they highlight
the importance of robust authentication mechanisms to protect against unauthorized access.
Confidentiality: The confidentiality impact is high, as the attacker can gain unauthorized
access to sensitive data by intercepting them during transmission. The primary goal of
an eavesdropping attack is to access confidential information, which can significantly
compromise the data’s confidentiality and lead to severe consequences for the UAV-cloud
system and its operations.

4.2.14. Poor Link Quality and High Latency Attack

Data loss: This attack has a medium impact on data loss, as poor link quality can
lead to packet loss and data corruption. The degraded communication quality can result
in incomplete or lost data, which could affect the performance and mission success of
the UAV—cloud system. Sensitivity: The sensitivity impact is low, as the attack does not
directly target the content or confidentiality of the data. The primary objective of this attack
is to disrupt the communication link, not to compromise sensitive information.

Latency and delay: The impact on latency and delay is high, as poor link quality
increases the time it takes to transmit data due to retransmissions and delays. This can
affect the overall responsiveness and efficiency of the UAV-cloud system, which might have
adverse consequences for mission-critical operations. Network availability: The network
availability impact is medium, as the attack can degrade the communication link between
the UAV and the cloud but not render it completely unavailable. The degraded link can
result in reduced system performance and challenges in maintaining system availability.

Authentication and integrity: The impact on authentication and integrity is low, as
the attack primarily focuses on degrading the communication link rather than altering or
forging data packets. The objective is to disrupt the communication process rather than
compromise the data’s integrity. Confidentiality: The confidentiality impact is low, as the
attack does not directly target the content or confidentiality of the data. The focus of the

Drones 2023, 7, 289

91 of 102

attack is on disrupting the communication link, not on accessing or compromising sensitive
information during transmission.

4.2.15. Man-In-the-Middle Attack

Data loss: The impact on data loss is low, as the attacker primarily focuses on inter-
cepting and potentially altering data rather than causing data loss. The primary objective of
this attack is to gain unauthorized access to the data transmitted between the UAV and the
cloud, rather than to delete or corrupt the data. Sensitivity: The attack has a high impact
on sensitivity, as the attacker can access and potentially manipulate sensitive information
transmitted between the UAV and the cloud. The interception and possible tampering of
sensitive data can lead to severe consequences, depending on the specific data type and
mission context.

Latency and delay: The impact on latency and delay is medium, as the attacker might
introduce additional delay when intercepting and forwarding data. The presence of the
attacker in the communication process can cause performance degradation and slower
response times, which may affect the overall efficiency of the UAV—cloud system. Network
availability: The attack has a low impact on network availability as it does not directly
affect the communication link between the UAV and the cloud. The primary goal of the
attacker is to intercept and manipulate data, not to disrupt the communication link itself.

Authentication and integrity: Man-in-the-middle attacks have a high impact on au-
thentication and integrity, as the attacker aims to intercept, monitor, and potentially alter the
data, compromising their integrity. The possibility of data tampering during transmission
raises concerns about the trustworthiness of the data received by the UAV-cloud system.
Confidentiality: The attack has a high impact on confidentiality, as the attacker can gain
unauthorized access to sensitive data by intercepting and potentially altering them during
transmission. This unauthorized access can compromise the confidentiality of the data and
potentially lead to severe consequences for the UAV-cloud system and its operations.

4.2.16. Modification Attack

Data loss: The impact on data loss is low, as the attacker primarily focuses on altering
data rather than causing data loss. In this type of attack, the attacker’s main objective is to
tamper with the data transmitted between the UAV and the cloud, rather than to delete
or corrupt the data. Sensitivity: Modification attacks have a high impact on sensitivity, as
the attacker can compromise the integrity of sensitive information transmitted between
the UAV and the cloud. The potential tampering of sensitive data may lead to severe
consequences, depending on the specific data type and mission context.

Latency and delay: The impact on latency and delay is medium, as the attacker might
introduce additional delay when intercepting and modifying data. The presence of the
attacker in the communication process can cause performance degradation and slower
response times, which may affect the overall efficiency of the UAV—cloud system. Network
availability: The attack has a low impact on network availability since it does not directly
affect the communication link between the UAV and the cloud. The primary goal of the
attacker is to intercept and manipulate data, not to disrupt the communication link itself.

Authentication and integrity: Modification attacks have a high impact on authentica-
tion and integrity, as the attacker aims to intercept and alter the data, compromising their
integrity. The possibility of data tampering during transmission raises concerns about the
trustworthiness of the data received by the UAV—cloud system. Confidentiality: The attack
has a medium impact on confidentiality, as the attacker can gain unauthorized access to
sensitive data by intercepting and modifying them during transmission. Although the pri-
mary focus is on data manipulation, unauthorized access to sensitive information can still
compromise the confidentiality of the data and potentially lead to negative consequences
for the UAV-cloud system and its operations.

Drones 2023, 7, 289

92 of 102

4.2.17. Replay Attack

Data loss: The impact on data loss is low, as the attacker primarily focuses on retrans-
mitting previously captured data rather than causing data loss. In this type of attack, the
attacker’s main objective is to reuse old data to deceive the UAV—cloud system, rather
than to delete or corrupt the data. Sensitivity: Replay attacks have a medium impact on
sensitivity, as the attacker can compromise the integrity of the system by replaying old data,
potentially leading to incorrect decisions or actions. The potential misuse of previously
captured data may cause the UAV—cloud system to operate based on outdated or invalid
information, affecting its performance and mission success.

Latency and delay: The impact on latency and delay is medium, as the attacker might
introduce additional delay when intercepting and retransmitting data. The presence of
the attacker in the communication process can cause performance degradation and slower
response times, which may affect the overall efficiency of the UAV—cloud system. Network
availability: The attack has a low impact on network availability since it does not directly
affect the communication link between the UAV and the cloud. The primary goal of the
attacker is to deceive the system by replaying old data, not to disrupt the communication
link itself.

Authentication and integrity: Replay attacks have a high impact on authentication
and integrity, as the attacker aims to compromise the integrity of the system by replaying
old data. The possibility of data misuse during transmission raises concerns about the
trustworthiness of the data received by the UAV—cloud system, potentially affecting its
operation and decision-making processes. Confidentiality: The attack has a low impact
on confidentiality, as it does not directly target the content or confidentiality of the data.
Although the primary focus is on replaying previously captured data, maintaining data
confidentiality remains crucial for the overall security of the UAV—cloud system and
its operations.

4.2.18. Rushing Cyberattack

Data loss: The impact on data loss is medium, as the attacker aims to quickly forward
data packets to gain an advantage in routing decisions, potentially causing some data loss.
This type of attack can lead to the misdirection or loss of data packets, affecting the overall
performance and mission success of the UAV—cloud system. Sensitivity: The attack has
a low impact on sensitivity, as it does not directly target the content or confidentiality of
the data. The attacker’s primary objective is to manipulate routing decisions, which may
indirectly affect the system’s operation but not the sensitivity of the data themselves.

Latency and delay: The impact on latency and delay is medium, as the attacker might
introduce additional delay when rushing the data-forwarding process. The attacker’s
interference in the routing process may cause performance degradation and slower response
times, affecting the overall efficiency of the UAV-cloud system. Network availability: The
attack has a medium impact on network availability, as it can impact the communication
link between the UAV and the cloud, causing potential routing disruptions. The disruption
of the communication link can affect the stability and resilience of the system, potentially
impacting its availability and mission success.

Authentication and integrity: The impact on authentication and integrity is low, as
the attack primarily focuses on forwarding data packets quickly rather than altering or
forging them. While the attacker’s intent is to influence routing decisions, the integrity
of the data packets themselves is not directly targeted or compromised. Confidentiality:
The attack has a low impact on confidentiality, as it does not directly target the content
or confidentiality of the data. The attacker’s focus on manipulating routing decisions
rather than the data content means that the confidentiality of the data is not directly at risk,
although maintaining data confidentiality remains important for overall system security.

Drones 2023, 7, 289

93 of 102

4.2.19. Selfishness Attack

Data loss: The impact on data loss is medium, as the attacker aims to save its resources
by not forwarding data packets, potentially causing some data loss. This type of attack
can lead to the misdirection or loss of data packets, affecting the overall performance and
mission success of the UAV—cloud system. Sensitivity: The attack has a low impact on
sensitivity, as it does not directly target the content or confidentiality of the data. The
attacker’s primary objective is to conserve its resources, which may indirectly affect the
system’s operation but not the sensitivity of the data themselves.

Latency and delay: The impact on latency and delay is medium, as the attacker might
introduce additional delay by not forwarding data packets. The selfish behavior of the
attacker may cause performance degradation and slower response times, affecting the over-
all efficiency of the UAV—cloud system. Network availability: The attack has a medium
impact on network availability, as it can impact the communication link between the UAV
and the cloud, causing potential routing disruptions. The disruption of the communication
link can affect the stability and resilience of the system, potentially impacting its availability
and mission success.

Authentication and integrity: The impact on authentication and integrity is low,
as the attack primarily focuses on saving resources rather than altering or forging data
packets. While the attacker’s intent is to conserve resources, the integrity of the data packets
themselves is not directly targeted or compromised. Confidentiality: The attack has a
low impact on confidentiality, as it does not directly target the content or confidentiality
of the data. The attacker’s focus on conserving resources rather than the data content
means that the confidentiality of the data is not directly at risk, although maintaining data
confidentiality remains important for overall system security.

4.2.20. SPOF Cyberattack

Data loss: The impact on data loss is high, as the attacker targets a single point of
failure within the system, potentially causing a significant amount of data loss if successful.
The disruption caused by this type of attack could lead to substantial data loss, jeopardizing
the overall operation of the UAV—cloud system and its mission objectives. Sensitivity:
The impact on sensitivity is medium, as the attack mainly affects data loss and not the
content or confidentiality of the data. However, the loss of sensitive data could have severe
consequences, particularly if it involves mission-critical information or proprietary data.
The impact on sensitivity depends on the specific data affected and the context of the
system’s operation.

Latency and delay: The impact on latency and delay is high, as the attack can cause
significant delays in data transmission if a critical component of the system is compromised.
SPOF cyberattacks could lead to the disruption or complete failure of data transmission,
significantly affecting the overall responsiveness and efficiency of the UAV-cloud system.
Network availability: The impact on network availability is high, as the attack can render
the system unavailable if a single point of failure is successfully targeted. The loss of a
critical component could lead to network downtime, causing disruptions in communication
and potentially rendering the entire system inoperable.

Authentication and integrity: The impact on authentication and integrity is medium,
as the attacker might compromise the integrity of the system by targeting a single point
of failure. If a critical component responsible for authentication or integrity checks is
compromised, it could lead to unauthorized access or data corruption, undermining the
trustworthiness of the UAV—cloud system. Confidentiality: The impact on confidentiality
is medium, as the attacker can potentially gain unauthorized access to sensitive data by
compromising a single point of failure. If a component responsible for data encryption or
access control is targeted, it could expose sensitive information to unauthorized parties,
placing the confidentiality of the data at risk.

Drones 2023, 7, 289

94 of 102

4.2.21. Sybil Attack

Data loss: The impact on data loss is low, as the attacker primarily focuses on creating
multiple fake identities rather than causing data loss. The main objective of a Sybil attack is
to undermine the reputation system or disrupt consensus mechanisms, rather than directly
affecting data transmission or storage. Sensitivity: The impact on sensitivity is medium, as
the attacker can use the fake identities to gain unauthorized access to sensitive information
or disrupt the UAV—cloud system. While the attack itself does not directly target the
content of the data, the infiltration of fake identities could lead to unauthorized access or
manipulation of sensitive information, depending on the system’s vulnerabilities.

Latency and delay: The impact on latency and delay is low, as the attack does not
directly introduce additional latency or delay in data transmission. However, the indirect
effects of a Sybil attack, such as the disruption of consensus mechanisms or the skewing of
reputation systems, could lead to a less efficient UAV-cloud system, potentially affecting
the overall responsiveness. Network availability: The impact on network availability is
medium, as the attack can impact the communication link between the UAV and the cloud,
causing potential routing disruptions or affecting consensus mechanisms. If left undetected,
a Sybil attack could undermine the UAV—cloud system’s stability, leading to a less reliable
network and degraded performance.

Authentication and integrity: The impact on authentication and integrity is high, as
the attacker aims to compromise the system by creating fake identities and potentially
forging data or altering routing decisions. The presence of multiple fake identities can
undermine the trustworthiness of the system, leading to incorrect decisions or actions based
on manipulated data or reputation scores. Confidentiality: The impact on confidentiality
is medium, as the attacker can potentially gain unauthorized access to sensitive data by
using fake identities to infiltrate the system. While the attack itself does not directly target
data confidentiality, the attacker could exploit the fake identities to gain access to restricted
information, placing the confidentiality of the data at risk.

4.2.22. SYN Flood Attack

Data loss: The impact on data loss is low, as the attacker primarily focuses on over-
whelming the target with SYN requests rather than causing data loss. The main objective of
a SYN flood attack is to consume resources and disrupt the availability of the target system,
rather than directly affecting data transmission or storage. Sensitivity: The impact on
sensitivity is low, as the attack does not directly target the content or confidentiality of the
data. While the attack itself may not jeopardize sensitive information, organizations should
remain vigilant and maintain comprehensive security measures to safeguard sensitive data
from potential threats.

Latency and delay: The impact on latency and delay is high, as the attack can cause
significant delays in data transmission by overwhelming the target with SYN requests. The
system’s ability to process legitimate requests may be significantly hindered, leading to
poor performance and unresponsiveness. Network availability: The impact on network
availability is high, as the attack can render the target system unavailable due to resource
exhaustion. The overwhelming flood of SYN requests consumes available resources,
potentially causing the system to become unresponsive or even crash.

Authentication and integrity: The impact on authentication and integrity is low,
as the attack primarily focuses on overwhelming the target system rather than altering
or forging data packets. Although SYN flood attacks do not directly compromise data
authentication or integrity, organizations should ensure that robust authentication and
data integrity mechanisms are in place to protect against potential threats. Confidentiality:
The impact on confidentiality is low, as the attack does not directly target the content or
confidentiality of the data. While the attack itself does not compromise data confidentiality,
organizations should remain proactive in ensuring data encryption and implementing
access control measures to protect sensitive information.

Drones 2023, 7, 289

95 of 102

4.2.23. Wormbhole Attack

Data loss: The impact on data loss is medium, as the attacker aims to create a worm-
hole tunnel to forward data packets. Data loss can occur if the tunnel is disrupted or data
packets are dropped. The primary objective of a wormhole attack is to intercept and reroute
data, potentially causing data loss in the process. Sensitivity: The impact on sensitivity
is high, as the attacker can compromise the integrity and confidentiality of the data by
intercepting and forwarding data packets through the wormhole tunnel. The attacker has
the ability to access and potentially alter sensitive data, posing a significant risk to the
affected system.

Latency and delay: The impact on latency and delay is medium, as the attacker might
introduce additional delay when intercepting and forwarding data packets through the
wormbhole tunnel. This redirection of data packets could cause delays in data transmission,
impacting the performance of the system. Network availability: The impact on network
availability is medium, as the attack can impact the communication link between the
UAV and the cloud, causing potential routing disruptions. The rerouting of data packets
through the wormhole tunnel can lead to confusion in the network, affecting its availability
and stability.

Authentication and integrity: The impact on authentication and integrity is high, as
the attacker aims to compromise the integrity of the system by intercepting and forwarding
data packets through the wormhole tunnel. The unauthorized access to data packets allows
the attacker to potentially alter or forge data, posing a significant risk to the system’s data
integrity. Confidentiality: The impact on confidentiality is high, as the attacker can gain
unauthorized access to sensitive data by intercepting and forwarding data packets through
the wormhole tunnel. The attacker’s ability to access sensitive information can compromise
the confidentiality of the data, highlighting the importance of employing robust security
measures to protect against wormhole attacks.

4.2.24. Brute Force Attack

Data loss: The impact on data loss is low, as the attacker primarily focuses on gaining
unauthorized access to the system rather than causing data loss. The main goal of a brute
force attack is to break into a system, which may not result in data loss unless the attacker
chooses to delete or modify data. Sensitivity: The impact on sensitivity is high, as the
attacker can compromise the integrity and confidentiality of the data if successful in gaining
unauthorized access. Once the attacker has access to the system, sensitive data are at risk,
emphasizing the need for robust security measures to protect sensitive information.

Latency and delay: The impact on latency and delay is low, as the attack does not
directly introduce additional latency or delay in data transmission. Brute force attacks
target authentication mechanisms rather than affecting data transmission, so their impact
on latency and delay is minimal. Network availability: The impact on network availability
is low, as the attack does not directly affect the communication link between the UAV and
the cloud. While a brute force attack might not directly impact network availability, it is
essential to monitor for any unusual network behavior that may signal an ongoing attack.

Authentication and integrity: The impact on authentication and integrity is high, as
the attacker aims to compromise the system by gaining unauthorized access. Successful
brute force attacks can result in unauthorized access, placing the system’s authentication
and data integrity at risk. Confidentiality: The impact on confidentiality is high, as the
attacker can potentially gain unauthorized access to sensitive data by successfully guessing
passwords or encryption keys. Gaining access to sensitive data may allow the attacker
to view, modify, or steal confidential information, highlighting the importance of strong
encryption and access control measures to protect data confidentiality.

4.2.25. Leaks of Data Due to Human Mistake

Data loss: The impact on data loss is low, as the attacker primarily focuses on exploit-
ing human mistakes rather than causing data loss. The main objective of this attack is to

Drones 2023, 7, 289

96 of 102

take advantage of human errors, which might not result in data loss unless the exploited
mistakes lead to data exposure or deletion. Sensitivity: The impact on sensitivity is high,
as the attacker can compromise the integrity and confidentiality of the data by exploiting
human mistakes. Once the attacker takes advantage of human errors, sensitive data may be
at risk, emphasizing the need for employee training and strong security policies to protect
sensitive information.

Latency and delay: The impact on latency and delay is low, as the attack does not
directly introduce additional latency or delay in data transmission. Human error exploita-
tion targets weaknesses in human behavior rather than affecting data transmission, so its
impact on latency and delay is minimal. Network availability: The impact on network
availability is low, as the attack does not directly affect the communication link between
the UAV and the cloud. While human error exploitation might not directly impact network
availability, it is essential to monitor for any unusual network behavior that may signal an
ongoing attack.

Authentication and integrity: The impact on authentication and integrity is high, as
the attacker aims to compromise the system by exploiting human mistakes and potentially
gaining unauthorized access. Successful exploitation of human errors can result in unautho-
rized access, placing the system’s authentication and data integrity at risk. Confidentiality:
The impact on confidentiality is high, as the attacker can potentially gain unauthorized
access to sensitive data by exploiting human mistakes. Gaining access to sensitive data
may allow the attacker to view, modify, or steal confidential information, highlighting the
importance of strong encryption and access control measures to protect data confidentiality.

4.2.26. Data Loss Due to System Crash

Data loss: The impact of data loss is high, as a system crash can result in the loss of
critical control data, telemetry, or payload data. System crashes can lead to data loss, which
may have serious consequences, especially if the lost data are vital to the UAV’s operation
or mission. Sensitivity: The impact on sensitivity is medium, as data loss is unintentional
and not directly targeted. Although system crashes are not intentional, the loss of sensitive
data during a crash could have severe consequences, depending on the specific data type
and mission context.

Latency and delay: The impact on latency and delay is high, as a system crash can
cause significant delays in data transmission, directly affecting the real-time control and
responsiveness of the UAV. A system crash may interrupt data transmission, leading to
latency and delay issues, which may impact the UAV’s performance and mission success.
Network availability: The impact on network availability is high, as a system crash can
render the system unavailable, leading to a potential loss of control and system unavailabil-
ity. System crashes may cause a loss of network connectivity, affecting the UAV’s ability to
communicate with the cloud or other systems.

Authentication and integrity: The impact on authentication and integrity is medium,
as a system crash might compromise the integrity of the system, but the crash itself is not
an intentional attack. While a system crash is not a targeted attack, it can still result in
data corruption or other integrity issues due to the sudden loss of system functionality.
Confidentiality: The impact on confidentiality is medium, as a system crash can potentially
expose sensitive data if proper encryption and security measures are not in place to protect
it. System crashes might lead to the exposure of sensitive data if security measures such as
encryption or access controls are insufficient or fail during the crash.

5. Complexity Analysis

Complexity analysis is a theoretical evaluation, and actual performance may vary
depending on factors such as hardware, programming languages, and compilers. It is often
referred to as time and space complexity analysis, and it is used to evaluate the efficiency
of an algorithm or a piece of code. It provides an estimate of the amount of computational
resources, such as time (execution speed) and memory (space), that an algorithm will

Drones 2023, 7, 289

97 of 102

consume as the input size increases. Complexity analysis helps developers choose the best
algorithms for their specific use cases and helps them identify potential bottlenecks or areas

for optimization in their code.

In this paper, we expose several complexity analyses of security solutions based on
our implementation of defense pattern code in node.js, and readers can download our
implementation in github [44]. Based on Table 2, we find the time and space complexity
of each solution, and the analysis can be used by the community as a consideration to
implement protection and data security modules in UAV—cloud-based application. The
high performance of a prevention system can lead to a higher chance of security detection;
therefore, the analysis of complexity can be an appropriate analysis for practical reasons.

Table 2. Complexity analyses of security solutions.

Defense For Time Complexity Space Complexity
Black hole O(mn + nlogn) O(m +n)
Collision network O(1) O(1)
Data tampering O(1) O(n)
Deauthentication O(n) O(n)
DDoS and Slowloris o) o)
Flooding O(n) O(m)
GPS spoofing O(n) O(1)
Telemetry spoofing O(n) O(n)
Gray hole O(n?) O(n)
Impersonate O(n) o)
Insider O(n?) O(n)
Jamming O(n) o)
Eavesdropping On) O(n)
Poor link and latency O(n logn) O(n)
Man-in-the-middle O(n) O(1)
Modification O(n) O(n)
Replay O(n) O(n)
Rushing attack O(n) o)
SPOF o) O(n)
Sybil O(n) 1)
SYN flood O(n) O(n)
Wormbhole O(n?) O(n?)
Brute force O(n) O(n)
Leaks of data by human O(n) O(n)
Data loss due to system O(n) O(n)
Selfishness O(n) O(n)

Based on the time and space complexity table provided, the following recommenda-
tions can be made with respect to trade-offs between performance and cost for different

types of attacks:

1. For defense patterns that have a constant time and space complexity (O(1)), such
as collision network, DDoS and Slowloris, GPS spoofing, jamming, man-in-the-
middle, rushing attack, and SPOF, the focus should be on creating cost-effective
and lightweight defenses that do not compromise system performance.

2. For defense solutions that have a linear time and space complexity (O(n)), such as
data tampering, flooding, impersonate, eavesdropping, modification, replay, brute
force, leaks of data by human, data loss due to system, and selfishness, the focus
should be on creating defenses that strike a balance between effectiveness and system
performance. In particular, security developers should aim to optimize the time and
space complexity of their defenses to ensure that they are efficient and cost-effective
while still providing adequate protection against these types of attacks.

Drones 2023, 7, 289

98 of 102

For defense patterns that have a quadratic time and space complexity (O(n?)), such
as gray hole and wormhole, the focus should be on creating effective defenses that
can prevent or mitigate these types of attacks. However, because these attacks require
significant resources to execute, defenses with higher time and space complexity may
be warranted in order to effectively protect against them.

For attacks that have a combination of linear and logarithmic time complexity (O(n
log n)), such as poor link and latency, the focus should be on creating efficient defenses
that can minimize the impact of these attacks on system performance. In particular,
security developers should aim to optimize the time complexity of their defenses
to ensure that they are efficient and cost-effective while still providing adequate
protection against these types of attacks.

Overall, the recommendations for trade-offs between performance and cost will de-

pend on the specific needs of the organization and the network being secured. Security
developers should carefully consider the time and space complexity of different types of
attacks and their corresponding defenses, and make informed decisions about the optimal
trade-offs between security effectiveness, system performance, and cost.

6. Limitations and Threats to Validity

In order to ensure a thorough and comprehensive analysis, it is crucial to consider the

following limitation details:

1.

Architectural diversity: The study specifically examines centralized architectures
for UAV systems, which may limit its applicability to other architectural paradigms,
such as decentralized, distributed, or hybrid architectures. Comprehensive research
exploring attack and defense patterns across diverse architectural designs would
provide a more complete understanding of UAV system security.

Expanding the attack landscape: The research identifies 26 attack variations, but
this may not encompass all possible threats in the UAV system security landscape.
To obtain a more exhaustive understanding, future studies should investigate a
broader range of attack patterns and techniques, including those arising from new
and emerging technologies.

Interdisciplinary approach: This study presents countermeasures and defense strate-
gies from a software analyst’s perspective, which may not cover all aspects of UAV sys-
tem security. To develop a more comprehensive understanding, future research should
adopt an interdisciplinary approach, incorporating expertise from fields such as hard-
ware engineering, network security, cryptography, and human-computer interaction.
Platform and language adaptability: The provided node.js code template may not be
suitable for all UAV systems, as they may use different programming languages or
platforms. To enhance the practical applicability of the research, future studies should
develop code templates or guidelines for a variety of programming languages and
platforms commonly used in UAV system development.

Robust evaluation methodologies: Assessing the effectiveness of proposed defense
strategies based on time and space complexity provides valuable insights. However,
incorporating additional evaluation methodologies such as real-world testing, simula-
tions, case studies, and quantitative metrics could lead to more rigorous and practical
assessments of defense strategies’ effectiveness across various scenarios.
Customized security solutions: The research findings and recommendations may
not be universally applicable to all UAV systems, given their unique requirements
and constraints. Future research should consider the specific needs and challenges
of different UAV applications, including commercial, military, humanitarian, and
environmental use cases, and design security measures tailored to each context.
Human factors and usability: The study does not directly address the impact of
human factors on UAV system security, such as user error, social engineering attacks,
or insider threats. A comprehensive understanding of security challenges in UAV

Drones 2023, 7, 289

99 of 102

systems should also explore the human aspect, including human-related risks and
vulnerabilities, as well as the usability of security measures and interfaces.

8. Evolving cybersecurity landscape: The dynamic nature of the cybersecurity land-
scape requires continuous research and adaptation of security measures. Future
work should monitor and analyze emerging threats, attack patterns, and technologi-
cal advancements, ensuring that defense strategies remain current and effective in
addressing the ever-evolving challenges in UAV system security.

9. Legal and ethical considerations: The research does not discuss the legal and ethical
implications of UAV system security, such as data privacy, surveillance concerns, and
regulatory compliance. A more comprehensive approach to UAV system security
should consider the legal and ethical dimensions, as well as potential conflicts between
security measures and privacy rights.

10. Resilience and recovery: The study focuses on attack and defense patterns but does
not address the resilience of UAV systems in the face of successful attacks, nor their
ability to recover from security breaches. Future research should investigate strategies
to enhance system resilience and recovery capabilities, ensuring that UAV systems
can effectively respond to and recover from security incidents.

Threats to validity are factors that may impact the accuracy or generalizability of
the study’s results or conclusions. In this context, the limitations mentioned earlier could
potentially affect the external and internal validity of the research:

1. External validity: This refers to the extent to which the research findings can be
generalized to other contexts or settings. The limitations related to architectural
diversity, platform and language adaptability, and customized security solutions,
among others, may impact the external validity of the study, as they could limit
the applicability of the findings to different architectures, programming languages,
platforms, or UAV applications.

2. Internal validity: This refers to the extent to which the research design allows for
accurate conclusions about the relationships between variables. The limitations
related to the interdisciplinary approach, robust evaluation methodologies, human
factors and usability, and resilience and recovery, among others, may impact the
internal validity of the study, as they could affect the completeness or accuracy of the
conclusions drawn from the research.

7. Conclusions

In the UAV-cloud problem, drones are often used to collect data and perform various
tasks that require communication with a cloud-based server. However, the communication
between the drone and the cloud server can be vulnerable to various types of security
threats, including those listed in the time and space complexity table. For example, GPS
spoofing could be used to mislead the drone’s location, while DDoS attacks could be used
to overwhelm the cloud server with requests and cause a denial of service. To address the
security threats associated with the UAV—cloud problem, security developers must carefully
consider the trade-offs between performance and cost when designing their defenses. On
the one hand, it is important to create defenses that are as effective as possible in preventing
attacks. However, these defenses must also be lightweight and cost-effective to ensure that
they do not compromise the drone’s flight performance or add unnecessary costs to the
overall system.

For example, when creating defenses against DDoS attacks, security developers could
use techniques such as rate limiting or traffic filtering to prevent overwhelming the cloud
server. These defenses can be designed with a lower time and space complexity, which
will help to keep system performance optimized while minimizing the costs of the overall
system. Similarly, when creating defenses against GPS spoofing attacks, security developers
could use techniques such as cryptographic verification or multisensor fusion to improve
the accuracy of the drone’s location data. These defenses can be designed with a higher
time and space complexity, which will help to ensure that the drone’s location is accurately

Drones 2023, 7,289 100 of 102

determined and prevent the drone from being misled by spoofed GPS data. Overall, the
trade-offs between performance and cost in the UAV-cloud problem will depend on the
specific needs of the drone system being designed. Security developers must carefully
consider the time and space complexity of different types of attacks and their corresponding
defenses, and make informed decisions about the optimal trade-offs between security
effectiveness, system performance, and cost to ensure that the UAV—cloud system is both
secure and efficient.

This research, although providing insights into the security challenges in UAV—cloud
systems, has certain limitations. One such limitation is that we focused primarily on the
time and space complexity of various attacks and defenses, without thoroughly exploring
the trade-offs between performance and cost in implementing these defenses. A compre-
hensive study considering the balance between security effectiveness, system performance,
and cost will provide a more detailed understanding of the UAV-cloud problem. In future
work, we plan to delve deeper into the trade-offs between performance and cost when
designing defenses for UAV-cloud systems. By examining various techniques, such as rate
limiting and traffic filtering for DDoS attacks, and cryptographic verification or multisensor
fusion for GPS spoofing attacks, we aim to develop defenses with optimized time and space
complexity. This will ensure that the drone’s flight performance is not compromised and
that the overall system remains cost-effective. Additionally, we will consider the specific
needs of different drone systems when designing security measures, thus tailoring the
optimal trade-offs between security effectiveness, system performance, and cost for each
use case. This comprehensive approach will contribute to the development of more secure
and efficient UAV—cloud systems in the future.

Author Contributions: Conceptualization, G.A.; Software, G.A.; Investigation, G.A.; Resources,
G.A.; Writing—original draft, G.A.; Writing—review and editing, A.L.; Supervision, A.L.; Project
Administration, A.L.; Funding Acquisition, A.L. All authors have read and agreed to the published
version of the manuscript.

Funding: The works of the authors were funded by the National Science and Technology Coun-
cil, Taiwan (109-2221-E-194-022-MY3 & 111-2218-E-194-004) and Atma Jaya Catholic University
of Indonesia.

Institutional Review Board Statement: Not applicable.
Informed Consent Statement: Informed consent was obtained from all subjects involved in the study.

Data Availability Statement: The data used to support the findings of this study are available from
the corresponding author upon request.

Conflicts of Interest: The authors declare no conflict of interest.

References

1. Mohsan, S.A.H.; Othman, N.Q.H.; Li, Y.; Alsharif, M.H.; Khan, M.A. Unmanned aerial vehicles (UAVs): Practical aspects,
applications, open challenges, security issues, and future trends. Intell. Serv. Robot. 2023, 16, 109-137. [CrossRef]

2. Mekdad, Y; Aris, A.; Babun, L.; Fergougui, A.E.; Conti, M.; Lazzeretti, R.; Uluagac, S. A survey on security and privacy issues of
UAVs. Comput. Netw. 2023, 224, 109626. [CrossRef]

3. Hadi, HJ.; Cao, Y.; Nisa, K.U.; Jamil, A.M.; Ni, Q. A comprehensive survey on security, privacy issues and emerging defence
technologies for UAVs.]. Netw. Comput. Appl. 2023, 213, 103607. [CrossRef]

4. Ahmed, F; Jenihhin, M. A Survey on UAV Computing Platforms: A Hardware Reliability Perspective. Sensors 2022, 22, 6286.
[CrossRef] [PubMed]

5. Bansal, G.; Chamola, V.; Sikdar, B.; Yu, ER. UAV SECaaS: Game-Theoretic Formulation for Security as a Service in UAV Swarms.
IEEE Syst.]. 2022, 16, 6209-6218. [CrossRef]

6. Xia, Z; Du, J.; Han, Z. Distributed Artificial Intelligence Enabled Aerial-Ground Networks: Architecture, Technologies and
Challenges. IEEE Access 2022, 10, 105447-105457. [CrossRef]

7. Qu,Y,; Dai, H; Zhuang, Y.; Chen, J.; Dong, C.; Wu, E; Guo, S. Decentralized Federated Learning for UAV Networks: Architecture,
Challenges, and Opportunities. I[EEE Netw. 2021, 35, 156-162. [CrossRef]

8. Haider, S. Ensuring Aircraft Safety In Single Point Failures, Automation and Human Factors. In Proceedings of the 2020 Annual Re-

liability and Maintainability Symposium (RAMS), Palm Springs, CA, USA, 27-30 January 2020; IEEE: Piscataway, NJ, USA, 2020.

http://doi.org/10.1007/s11370-022-00452-4
http://dx.doi.org/10.1016/j.comnet.2023.109626
http://dx.doi.org/10.1016/j.jnca.2023.103607
http://dx.doi.org/10.3390/s22166286
http://www.ncbi.nlm.nih.gov/pubmed/36016048
http://dx.doi.org/10.1109/JSYST.2021.3116213
http://dx.doi.org/10.1109/ACCESS.2022.3210337
http://dx.doi.org/10.1109/MNET.001.2100253

Drones 2023, 7, 289 101 of 102

10.

11.

12.

13.

14.

15.

16.

17.

18.

19.

20.

21.

22.

23.

24.

25.

26.

27.

28.

29.

30.

31.

Tlili, F.; Fourati, L.C.; Ayed, S.; Ouni, B. Investigation on vulnerabilities, threats and attacks prohibiting UAVs charging and
depleting UAVs batteries: Assessments & countermeasures. Ad Hoc Netw. 2022, 129, 102805.

Pandey, G.K.; Gurjar, D.S.; Nguyen, H.H.; Yadav, S. Security Threats and Mitigation Techniques in UAV Communications: A
Comprehensive Survey. IEEE Access 2022, 10, 112858-112897. [CrossRef]

Mansfield, K.; Eveleigh, T.; Holzer, T.H.; Sarkani, S. Unmanned aerial vehicle smart device ground control station cyber security
threat model. In Proceedings of the 2013 IEEE International Conference on Technologies for Homeland Security (HST), Waltham,
MA, USA, 12-14 November 2013; IEEE:Piscataway, NJ, USA, 2014.

Bekmezdi, I; Sahingoz, O.K.; Temel, $. Flying Ad-Hoc Networks (FANETs): A survey. Ad Hoc Netw. 2013, 11, 1254-1270.
[CrossRef]

Altawy, R.; Youssef, A.M. Security, Privacy, and Safety Aspects of Civilian Drones: A Survey. ACM Trans. Cyber-Phys. Syst. 2016,
1, 1-25. [CrossRef]

Lin, C,; He, D.; Kumar, N.; Choo, KK.R; Vinel, A.; Huang, X. Security and Privacy for the Internet of Drones: Challenges and
Solutions. IEEE Commun. Mag. 2018, 56, 64-69. [CrossRef]

McEnroe, P.; Wang, S.; Liyanage, M. A Survey on the Convergence of Edge Computing and Al for UAVs: Opportunities and
Challenges. IEEE Internet Things J. 2022, 9, 15435-15459. [CrossRef]

Yang, W.; Wang, S.; Yin, X.; Wang, X.; Hu, J. A Review on Security Issues and Solutions of the Internet of Drones. IEEE Open |J.
Comput. Soc. 2022, 3, 96-110. [CrossRef]

Fernandez, E.B. A pattern for a secure cloud-based IoT architecture. In Proceedings of the 27th Conference on Pattern Languages
of Programs, Online, 12-16 October 2020; pp. 1-9.

Iba, T.; Isaku, T. A pattern for a UAV-aided wireless sensor network. In Proceedings of the PLoP "16: The 23rd Conference on
Pattern Languages of Programs, Monticello, IL, USA, 24-26 October 2016, ACM: New York, NY, USA, 2016; Volume 11, pp. 1-63.
Papa, R.; Fernandez, E.B.; Cardel, M. A pattern for a UAV-aided wireless sensor network. In Proceedings of the PLoP "19: The
26th Conference on Pattern Languages of Programs, Ottawa, ON, Canada, 7-10 October 2019; ACM: New York, NY, USA, 2021;
Volume 5, pp. 1-9.

Fu, Y,; Li, G.; Mohammed, A.; Yan, Z.; Cao, J.; Li, H. A Study and Enhancement to the Security of MANET AODYV Protocol
Against Black Hole Attacks. In Proceedings of the 2019 IEEE SmartWorld, Ubiquitous Intelligence & Computing, Advanced &
Trusted Computing, Scalable Computing & Communications, Cloud & Big Data Computing, Internet of People and Smart City
Innovation (SmartWorld /SCALCOM /UIC/ATC/CBDCom/IOP/SCI), Leicester, UK, 19-23 August 2019; IEEE: Piscataway, NJ,
USA, 2019.

Cho, J.W,; Kim, J.H. Traffic Generation Scheduling for Performance Improvement in WLAN Based Drone Networks. In
Proceedings of the 2022 13th International Conference on Information and Communication Technology Convergence (ICTC), Jeju
Island, Republic of Korea, 19-21 October 2022; IEEE: Piscataway, NJ, USA, 2022.

Yapp, J.; Seker, R.; Babiceanu, R. Providing accountability and liability protection for UAV operations beyond visual line of sight.
In Proceedings of the 2018 IEEE Aerospace Conference, Big Sky, MT, USA, 3-10 March 2018; IEEE: Piscataway, NJ, USA, 2018.
Kadripathi, K.N.; Ragav, L.Y.; Shubha, K.N.; Chowdary, PH. De-Authentication Attacks on Rogue UAVs. In Proceedings of the
2020 3rd International Conference on Intelligent Sustainable Systems (ICISS), Thoothukudi, India, 3-5 December 2020; IEEE:
Piscataway, NJ, USA, 2021.

Mairaj, A.; Majumder, S.; Javaid, A.Y. (Eds.) Game Theoretic Strategies for an Unmanned Aerial Vehicle Network Host Under
DDoS Attack. In Proceedings of the 2019 International Conference on Unmanned Aircraft Systems (ICUAS), Atlanta, GA, USA,
11-14 June 2019; IEEE: Piscataway, NJ, USA, 2019.

Padam, R.; Malhotra, J. Secure Techniques for the UAV Networks: A Review. In Proceedings of the 2018 International
Conference on Computing, Power and Communication Technologies (GUCON), Greater Noida, India, 28-29 September 2018;
IEEE: Piscataway, NJ, USA, 2019.

Gaspar, J.; Ferreira, R.; Sebastido, P.; Souto, N. Capture of UAVs Through GPS Spoofing. In Proceedings of the 2018 Global
Wireless Summit (GWS), Chiang Rai, Thailand, 25-28 November 2018; IEEE: Piscataway, NJ, USA, 2019.

Agyapong, R.A; Nabil, M.; Nuhu, A.R.; Rasul, M.I.; Homaifar, A. Efficient Detection of GPS Spoofing Attacks on Unmanned
Aerial Vehicles Using Deep Learning. In Proceedings of the 2021 IEEE Symposium Series on Computational Intelligence (SSCI),
Orlando, FL, USA, 5-7 December 2021; IEEE: Piscataway, NJ, USA, 2022.

Kou, G.; Wei, G.; Qin, Y. Research on Key Agreement Protocol for Static UAV networks. In Proceedings of the 2022 IEEE 5th
Advanced Information Management, Communicates, Electronic and Automation Control Conference (IMCEC), Chonggqing,
China, 16-18 December 2022; IEEE: Piscataway, NJ, USA, 2023.

Benfriha, S.; Labraoui, N. Insiders Detection in the Uncertain IoD using Fuzzy Logic. In Proceedings of the 2022 International
Arab Conference on Information Technology (ACIT), Abu Dhabi, United Arab Emirates, 22-24 November 2022; IEEE: Piscataway,
NJ, USA, 2023.

Alrefaei, F; Alzahrani, A.; Song, H.; Alrefaei, S. A Survey on the Jamming and Spoofing attacks on the Unmanned Aerial Vehicle
Networks. In Proceedings of the 2022 IEEE International IOT, Electronics and Mechatronics Conference (IEMTRONICS), Toronto,
ON, Canada, 14 June 2022; IEEE: Piscataway, NJ, USA, 2022.

Wu, H.; Li, M,; Gao, Q.; Wei, Z.; Zhang, N.; Tao, X. Eavesdropping and Anti-Eavesdropping Game in UAV Wiretap System: A
Differential Game Approach. IEEE Trans. Wirel. Commun. 2022, 21, 9906 —9920. [CrossRef]

http://dx.doi.org/10.1109/ACCESS.2022.3215975
http://dx.doi.org/10.1016/j.adhoc.2012.12.004
http://dx.doi.org/10.1145/3001836
http://dx.doi.org/10.1109/MCOM.2017.1700390
http://dx.doi.org/10.1109/JIOT.2022.3176400
http://dx.doi.org/10.1109/OJCS.2022.3183003
http://dx.doi.org/10.1109/TWC.2022.3180395

Drones 2023, 7, 289 102 of 102

32.

33.

34.

35.

36.

37.

38.

39.

40.

41.

42.
43.

44.

Bose, T.; Suresh, A.; Pandey, O.].; Cenkeramaddi, L.R.; Hegde, R M. Improving Quality-of-Service in Cluster-Based UAV-Assisted
Edge Networks. IEEE Trans. Netw. Serv. Manag. 2022, 19, 1903-1919. [CrossRef]

Hassija, V.; Chamola, V.; Agrawal, A.; Goyal, A.; Luong, N.C.; Niyato, D.; Yu, ER.; Guizani, M. Fast, Reliable, and Secure Drone
Communication: A Comprehensive Survey. IEEE Commun. Surv. Tutorials 2021, 23, 2802-2832. [CrossRef]

Chaari, L.; Chahbani, S.; Rezgui,]. MAV-DTLS toward Security Enhancement of the UAV-GCS Communication. In Proceedings
of the 2020 IEEE 92nd Vehicular Technology Conference (VTC2020-Fall), Victoria, BC, Canada, 18 November-16 December 2020;
IEEE: Piscataway, NJ, USA, 2021.

Séanchez, H.S.; Rotondo, D.; Vida, M.L.; Quevedo,]. Frequency-based detection of replay attacks: Application to a quadrotor UAV.
In Proceedings of the 2019 8th International Conference on Systems and Control (ICSC), Marrakesh, Morocco, 23-25 October
2019; IEEE: Piscataway, NJ, USA, 2020.

Liao, C.; Xu, K.; Zhu, H.; Xia, X; Su, Q.; Sha, N. Secure transmission in satellite-UAV integrated system against eavesdropping
and jamming: A two-level stackelberg game model. China Commun. 2022, 19, 53-66. [CrossRef]

Sakic, E.; Kellerer, W. Decoupling of Distributed Consensus, Failure Detection and Agreement in SDN Control Plane. In Proceed-
ings of the 2020 IFIP Networking Conference (Networking), Paris, France, 22-26 June 2020; IEEE: Piscataway, NJ, USA, 2022.
Bhandarkar, A.B.; Jayaweera, S.K.; Lane, S.A. Adversarial Sybil attacks against Deep RL based drone trajectory planning.
In Proceedings of the MILCOM 2022—2022 IEEE Military Communications Conference (MILCOM), Rockville, MD, USA,
28 November—2 December 2022; IEEE: Piscataway, NJ, USA, 2023.

Tsao, K.Y,; Girdler, T.; More, V.G.V.S. A survey of cyber security threats and solutions for UAV communications and flying ad-hoc
networks. Ad Hoc Netw. 2022, 133, 102894. [CrossRef]

Al-Turjman, E; Abujubbeh, M.; Malekloo, A.; Mostarda, L. UAVs assessment in software-defined IoT networks: An overview.
Comput. Commun. 2019, 150, 519-536. [CrossRef]

Alsuhli, G.; Fahim, A.; Gadallah, Y. A survey on the role of UAVs in the communication process: A technological perspective.
Comput. Commun. 2022, 194, 86-123. [CrossRef]

Nnamani, C.O.; Khandaker, M.R.; Sellathurai, M. Secure data collection via UAV-carried IRS. ICT Express 2022. [CrossRef]

Li, L.; Zhang, X.; Yue, W.; Liu, Z. Cooperative search for dynamic targets by multiple UAVs with communication data losses. ISA
Trans. 2021, 114, 230-231. [CrossRef] [PubMed]

Security Pattern Code. Available online: https://github.com/techmentalist/securitypattern (accessed on 24 April 2023).

Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual
author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to
people or property resulting from any ideas, methods, instructions or products referred to in the content.

http://dx.doi.org/10.1109/TNSM.2021.3139892
http://dx.doi.org/10.1109/COMST.2021.3097916
http://dx.doi.org/10.23919/JCC.2022.07.005
http://dx.doi.org/10.1016/j.adhoc.2022.102894
http://dx.doi.org/10.1016/j.comcom.2019.12.004
http://dx.doi.org/10.1016/j.comcom.2022.07.021
http://dx.doi.org/10.1016/j.icte.2022.09.003
http://dx.doi.org/10.1016/j.isatra.2020.12.055
http://www.ncbi.nlm.nih.gov/pubmed/33423767
https://github.com/techmentalist/securitypattern

	Introduction
	Related Work
	Attack and Defense Pattern
	Black Hole Attack
	Definition
	Sequence Diagram
	Defense Class Diagram

	Collision Network
	Definition
	Sequence Diagram
	Defense Class Diagram

	Data Tampering
	Definition
	Sequence Diagram
	Defense Class Diagram

	Deauthentication
	Definition
	Sequence Diagram
	Defense Class Diagram

	DDoS and Slowloris
	Definition
	Sequence Diagram
	Defense Class Diagram

	Flooding
	Definition
	Sequence Diagram
	Defense Class Diagram

	GPS Spoofing
	Definition
	Sequence Diagram
	Defense Class Diagram

	Telemetry Spoofing
	Definition
	Sequence Diagram
	Defense Class Diagram

	Gray Hole Attack
	Definition
	Sequence Diagram
	Defense Class Diagram

	Impersonation Attack
	Definition
	Sequence Diagram
	Impersonation Class Diagram

	Insider Attack
	Definition
	Sequence Diagram
	Defense Class Diagram

	Jamming Attack
	Definition
	Sequence Diagram
	Defense Class Diagram

	Eavesdropping
	Definition
	Sequence Diagram
	Defense Class Diagram

	Poor Link Quality and High Latency
	Definition
	Sequence Diagram
	Defense Class Diagram

	Man-In-The-Middle Attack
	Definition
	Sequence Diagram
	Defense Class Diagram

	Modification Attack
	Definition
	Sequence Diagram
	Defense Class Diagram

	Replay Attack
	Definition
	Sequence Diagram
	Defense Class Diagram

	Rushing Cyberattack
	Definition
	Sequence Diagram
	Defense Class Diagram

	Selfishness Attack
	Definition
	Sequence Diagram
	Defense Class Diagram

	SPOF Cyberattack
	Definition
	Sequence Diagram
	SPOF Class Diagram

	Sybil Attack
	Definition
	Sequence Diagram
	Defense Class Diagram

	SYN Flood Attack
	Definition
	Sequence Diagram
	Defense Class Diagram

	Wormhole Attack
	Definition
	Sequence Diagram
	Defense Class Diagram

	Brute Force Attack
	Definition
	Sequence Diagram
	Defense Class Diagram

	Leaks of Data Due to Human Mistakes
	Definition
	Sequence Diagram
	Defense Class Diagram

	Data Loss Due to System Crash
	Definition
	Sequence Diagram
	Defense Class Diagram

	Difference of Security Attack and Defense Pattern between Centralized vs. Decentralized
	Attack Pattern Comparison
	Defense Pattern Comparison

	Qualitative Analysis of Security Attack
	Delphi Method
	Results and Analysis
	Black Hole Attack
	Collision Network Attack
	Data Tampering
	Deauthentication Attack
	DDos and Slowloris Attack
	Flooding Attack
	GPS Spoofing Attack
	Telemetry Spoofing Attack
	Gray Hole Attack
	Impersonation Attack
	Insider Attack
	Jamming Attack
	Eavesdropping Attack
	Poor Link Quality and High Latency Attack
	Man-In-the-Middle Attack
	Modification Attack
	Replay Attack
	Rushing Cyberattack
	Selfishness Attack
	SPOF Cyberattack
	Sybil Attack
	SYN Flood Attack
	Wormhole Attack
	Brute Force Attack
	Leaks of Data Due to Human Mistake
	Data Loss Due to System Crash

	Complexity Analysis
	Limitations and Threats to Validity
	Conclusions
	References

