On-Board Small-Scale Object Detection for Unmanned Aerial Vehicles (UAVs)
Abstract
:1. Introduction
- We altered the architecture of CenterNet and used nine different CNN-based backbones. Our modified CenterNet with hourglass104 as a backbone achieved the highest mAP, whereas ResNet18 obtained the highest FPS.
- We implemented SOTA object detectors, i.e., YOLOV1 to YOLOV7, SSD-MobileNetV2, and Faster RCNN, and provided a comparison with the modified CenterNet.
- We validated our methodology on three challenging datasets, namely VisDrone, SSD, and AU-AIR, and we were able to provide promising findings compared to the latest cutting-edge research and well-known object detectors.
- We optimized object detectors and implemented them on edge platforms, i.e., Jetson Nano, Xavier, and NCS2. We found the best inference time using the modified CenterNet, and this research is an extended version of our previous work [4].
2. Related Work
3. Methodology
3.1. Datasets
3.2. CNN-Based Backbones
3.3. Modified CenterNet
3.4. AI-on-the-Edge Implementation
3.4.1. Neuro Compute Stick
3.4.2. Jetson Nano
3.4.3. Jetson Xavier
4. Experimentation and Results Discussion
4.1. Experimental Setup
4.2. Evaluation Protocol
4.3. Results Discussion
4.3.1. Discrete GPU-Based Detection
4.3.2. AI-on-the-Edge Based Detection
4.4. Ablation Study
4.5. Qualitative Analysis
4.6. Comparison of SOTA Vs Our Proposed Approach
Method | Dataset | mAP |
---|---|---|
Improved RetinaNet [27] | VisDrone | 29.4 |
DPNet-Ensemble [28] | VisDrone | 29.62 |
RetinaNet [29] | VisDrone | 31.8 |
VistrongerDet [30] | VisDrone | 33.85 |
Modified CenterNet–Hourglass-104 | VisDrone | 34.85 |
YOLO-V2 [31] | SSD | 68.0 |
Deep Learning [7] | SSD | 68.71 |
PeleeNet+DMS [32] | SSD | 74.44 |
YOLO-V4 [33] | SSD | 74.81 |
Modified CenterNet–Hourglass-104 | SSD | 75.62 |
YOLO-V4 [33] | AU-AIR | 67.35 |
Multimodal CNN and LSTM [34] | AU-AIR | 71.84 |
Visual Saliency [35] | AU-AIR | 81.3 |
CADNet with Encoder/Decode [36] | AU-AIR | 91.2 |
Modified CenterNet–Hourglass-104 | AU-AIR | 91.62 |
Method | Discrete GPU | Xavier | Nano | NCS |
---|---|---|---|---|
Faster RCNN [37] | 7.60 | - | - | - |
DSSD513 [38] | 5.50 | - | - | - |
YOLOV2 [26] | 11.3 | 2.9 | - | 1.8 |
SSD MobileNet [26] | 14.09 | 8 | - | 5.5 |
LiteReconfig [39] | 12 | 1.5 | - | - |
EfficientNet-b2 [40] | 15 | 3.19 | 3.03 | - |
Modified CenterNet–ResNet18 | 40.02 | 7.54 | 4.50 | 4.34 |
Modified CenterNet–ResNet34 | 32.32 | 7.34 | 4.31 | 4.14 |
Modified CenterNet–ResNet50 | 30.19 | 6.94 | 3.92 | 3.9 |
Modified CenterNet–DLA-43 | 28.91 | 6.01 | 3.03 | 3.31 |
Modified CenterNet–ResNet101 | 17.12 | 5.93 | 2.94 | 3.01 |
Modified CenterNet–ResNet152 | 16.07 | 5.54 | 2.54 | 2.54 |
Modified CenterNet–Res2Net50 | 15.73 | 4.41 | 2.45 | 2.41 |
Modified CenterNet–Res2Net101 | 7.21 | 3.43 | 2.46 | 1.43 |
Modified CenterNet–Hourglass104 | 7.19 | 3.34 | 2.34 | 2.34 |
5. Conclusions
Author Contributions
Funding
Data Availability Statement
Acknowledgments
Conflicts of Interest
References
- Abbas, S.M.; Singh, S.N. Region-based object detection and classification using faster R-CNN. In Proceedings of the 2018 4th International Conference on Computational Intelligence Communication Technology (CICT), Ghaziabad, India, 9–10 February 2018; IEEE: Piscataway, NJ, USA, 2018. [Google Scholar] [CrossRef]
- Chen, Y.; Zhu, X.; Li, Y.; Wei, Y.; Ye, L. Enhanced semantic feature pyramid network for small object detection. Signal Process. Image Commun. 2023, 113, 116919. [Google Scholar] [CrossRef]
- Jung, H.-K.; Choi, G.-S. Improved YOLOv5: Efficient Object Detection Using Drone Images under Various Conditions. Appl. Sci. 2022, 12, 7255. [Google Scholar] [CrossRef]
- Saeed, Z.; Awan, M.N.M.; Yousaf, M.H. A Robust Approach for Small-Scale Object Detection From Aerial-View. In Proceedings of the 2022 International Conference on Digital Image Computing: Techniques and Applications (DICTA), Sydney, Australia, 30 November–2 December 2022; pp. 1–7. [Google Scholar] [CrossRef]
- Jawaharlalnehru, A.; Sambandham, T.; Sekar, V.; Ravikumar, D.; Loganathan, V.; Kannadasan, R.; Khan, A.A.; Wechtaisong, C.; Haq, M.A.; Alhussen, A.; et al. Target Object Detection from Unmanned Aerial Vehicle (UAV) Images Based on Improved YOLO Algorithm. Electronics 2022, 11, 2343. [Google Scholar] [CrossRef]
- Wang, K.; Wei, Z. YOLO V4 with hybrid dilated convolution attention module for object detection in the aerial dataset. Int. Remote. Sens. 2022, 43, 1323–1344. [Google Scholar] [CrossRef]
- Maktab Dar Oghaz, M.; Razaak, M.; Remagnino, P. Enhanced Single Shot Small Object Detector for Aerial Imagery Using Super-Resolution, Feature Fusion and Deconvolution. Sensors 2022, 22, 4339. [Google Scholar] [CrossRef] [PubMed]
- Xia, G.-S.; Bai, X.; Ding, J.; Zhu, Z.; Belongie, S.; Luo, J.; Datcu, M.; Pelillo, M.; Zhang, L. DOTA: A large-scale dataset for object detection in aerial images. In Proceedings of the IEEE Conference on Computer Vision and Pattern Recognition, Salt Lake City, UT, USA, 18–22 June 2018; pp. 3974–3983. [Google Scholar]
- Ding, J.; Xue, N.; Long, Y.; Xia, G.; Lu, Q. Learning roi transformer for oriented object detection in aerial images. In Proceedings of the IEEE Conference on Computer Vision and Pattern Recognition, Long Beach, CA, USA, 15–20 June 2019; pp. 2849–2858. [Google Scholar] [CrossRef]
- Liu, Z.; Wang, H.; Weng, L.; Yang, Y. Ship rotated bounding box space for ship extraction from high-resolution optical satellite images with complex backgrounds. IEEE Geosci. Remote. Sens. Lett. 2016, 13, 1074–1078. [Google Scholar] [CrossRef]
- Ma, J.; Shao, W.; Ye, H.; Wang, L.; Wang, H.; Zheng, Y.; Xue, X. Arbitrary-oriented scene text detection via rotation proposals. IEEE Trans. Multimed. 2018, 20, 3111–3122. [Google Scholar] [CrossRef]
- Yang, X.; Yang, J.; Yan, J.; Zhang, Y.; Zhang, T.; Guo, Z.; Sun, X.; Fu, K. SCRDet: Towards more robust detection for small, cluttered and rotated objects. In Proceedings of the IEEE International Conference on Computer Vision, Seoul, Republic of Korea, 27 October–2 November 2019; pp. 8232–8241. [Google Scholar]
- Xu, Y.; Fu, M.; Wang, Q.; Wang, Y.; Chen, K.; Xia, G.; Bai, X. Gliding vertex on the horizontal bounding box for multi-oriented object detection. IEEE Trans. Pattern Anal. Mach. Intell. 2021, 43, 1452–1459. [Google Scholar] [CrossRef] [PubMed]
- Shams, S.; Platania, R.; Lee, K.; Park, S.J. Evaluation of deep learning frameworks over different HPC architectures. In Proceedings of the 2017 IEEE 37th International Conference on Distributed Computing Systems (ICDCS), Atlanta, GA, USA, 5–8 June 2017; pp. 1389–1396. [Google Scholar]
- Süzen, A.A.; Duman, B.; Șen, B. Benchmark analysis of jetson tx2, jetson nano and raspberry pi using deep-cnn. In Proceedings of the 2020 International Congress on Human-Computer Interaction, Optimization and Robotic Applications (HORA), Ankara, Turkey, 26–28 June 2020; pp. 1–5. [Google Scholar]
- Baller, S.P.; Jindal, A.; Chadha, M.; Gerndt, M. DeepEdgeBench: Benchmarking Deep Neural Networks on Edge Devices. In Proceedings of the 2021 IEEE International Conference on Cloud Engineering (IC2E), San Francisco, CA, USA, 4–8 October 2021; pp. 20–30. [Google Scholar]
- Verma, G.; Gupta, Y.; Malik, A.M.; Chapman, B. Performance evaluation of deep learning compilers for edge inference. In Proceedings of the 2021 IEEE International Parallel and Distributed Processing Symposium Workshops (IPDPSW), Portland, OR, USA, 17–21 June 2021; pp. 858–865. [Google Scholar] [CrossRef]
- Cao, Y.; He, Z.; Wang, L.; Wang, W.; Yuan, Y.; Zhang, D.; Zhang, J.; Zhu, P.; Gool, L.V.; Han, J.; et al. VisDrone-DET2021: The vision meets drone object detection challenge results. In Proceedings of the IEEE/CVF International Conference on Computer Vision, Montreal, BC, Canada, 11–17 October 2021. [Google Scholar]
- Robicquet, A.; Sadeghian, A.; Alahi, A.; Savarese, S. Learning Social Etiquette: Human Trajectory Prediction In Crowded Scenes. In Proceedings of the European Conference on Computer Vision (ECCV), Amsterdam, The Netherlands, 11–14 October 2016. [Google Scholar]
- Bozcan, I.; Kayacan, E. Au-air: A multi-modal unmanned aerial vehicle dataset for low altitude traffic surveillance. In Proceedings of the 2020 IEEE International Conference on Robotics and Automation (ICRA), Paris, France, 31 May–31 August 2020; IEEE: Piscataway, NJ, USA, 2020. [Google Scholar] [CrossRef]
- Redmon, J.; Divvala, S.; Girshick, R.; Farhadi, A. You only look once: Unified, real-time object detection. In Proceedings of the IEEE Conference on Computer Vision and Pattern Recognition, Las Vegas, NV, USA, 27–30 June 2016. [Google Scholar] [CrossRef]
- Joseph, R.; Farhadi, A. YOLO9000: Better, faster, stronger. In Proceedings of the IEEE Conference on Computer Vision and Pattern Recognition, Honolulu, HI, USA, 21–26 July 2017. [Google Scholar] [CrossRef]
- Long, J.; Shelhamer, E.; Darrell, T. Fully convolutional networks for semantic segmentation. In Proceedings of the IEEE Conference on Computer Vision and Pattern Recognition, Boston, MA, USA, 7–12 June 2015; pp. 3431–3440. [Google Scholar] [CrossRef]
- Yu, F.; Wang, D.; Shelhamer, E.; Darrell, T. Deep layer aggregation. In Proceedings of the IEEE Conference on Computer Vision and Pattern Recognition, Salt Lake City, UT, USA, 18–22 June 2018; pp. 2403–2412. [Google Scholar] [CrossRef]
- Hei, L.; Deng, J. Cornernet: Detecting objects as paired key- points. In Proceedings of the European Conference on Computer Vision (ECCV), Munich, Germany, 8–14 September 2018. [Google Scholar] [CrossRef]
- Hossain, S.; Lee, D.-J. Deep learning-based real-time multiple-object detection and tracking from aerial imagery via a flying robot with GPU-based embedded devices. Sensors 2019, 19, 3371. [Google Scholar] [CrossRef] [PubMed]
- Li, C.; Yang, T.; Zhu, S.; Chen, C.; Guan, S. Density map guided object detection in aerial images. proceedings of the IEEE/CVF conference on computer vision and pattern recognition workshops. arXiv 2020, arXiv:2004.05520. [Google Scholar]
- Samyal, A.S.; Akshatha, K.R.; Hans, S.; Karunakar, A.K.; Satish Shenoy, B. Analysis and adaptation of yolov4 for object detection in aerial images. arXiv 2022, arXiv:2203.10194. [Google Scholar]
- Raza, M.A.; Naeem, H.B.; Yasin, A.; Yousaf, M.H. Birdview retina-net: Small-scale object detector for unmanned aerial vehicles. In Proceedings of the 2021 16th International Conference on Emerging Technologies (ICET), Islamabad, Pakistan, 22–23 December 2021; IEEE: Piscataway, NJ, USA, 2021; pp. 1–6. [Google Scholar] [CrossRef]
- Wan, J.; Zhang, B.; Zhao, Y.; Du, Y.; Tong, Z. VistrongerDet: Stronger Visual Information for Object Detection in VisDrone Images. In Proceedings of the IEEE/CVF International Conference on Computer Vision, Montreal, BC, Canada, 11–17 October 2021. [Google Scholar]
- Tang, T.; Deng, Z.; Zhou, S.; Lei, L.; Zou, H. Fast vehicle detection in uav images. In Proceedings of the 2017 International Workshop on Remote Sensing with Intelligent Processing (RSIP), Shanghai, China, 18–21 May 2017; IEEE: Piscataway, NJ, USA, 2017; pp. 1–5. [Google Scholar] [CrossRef]
- Jing, Z.; Xi, L.; Meng, W.; Liheng, Y.; Li, Z. Coarse-to-fine object detection in unmanned aerial vehicle imagery using lightweight convolutional neural network and deep motion saliency. Neurocomputing 2020, 398, 555–565. [Google Scholar] [CrossRef]
- Ammar, A.; Koubaa, A.; Ahmed, M.; Saad, A.; Benjdira, B. Vehicle detection from aerial images using deep learning: A comparative study. Electronics 2021, 10, 820. [Google Scholar] [CrossRef]
- He, M.; Hohil, M.; LaPeruta, T.; Nashed, K.; Lawrence, V.; Yao, Y.-D. Performance evaluation of multimodal deep learning: Object identification using uav dataset. In Artificial Intelligence and Machine Learning for Multi-Domain Operations Applications III; SPIE: Bellingham, WA, USA, 2021; Volume 11746, pp. 602–608. [Google Scholar]
- Gupta, H.; Verma, O.P. Monitoring and surveillance of urban road traffic using low altitude drone images: A deep learning approach. Multimed. Tools Appl. 2022, 81, 19683–19703. [Google Scholar] [CrossRef]
- Bozcan, I.; Kayacan, E. Context-dependent anomaly detection for low altitude traffic surveillance. In Proceedings of the 2021 IEEE International Conference on Robotics and Automation (ICRA), Xi’an, China, 30 May–5 June 2021; IEEE: Piscataway, NJ, USA, 2021; pp. 224–230. [Google Scholar] [CrossRef]
- Ren, S.; He, K.; Girshick, R.; Sun, J. Faster r-cnn: Towards real-time object detection with region proposal networks. In Proceedings of the Advances in Neural Information Processing Systems (NIPS), Montreal, QC, Canada, 7–12 December 2015; pp. 91–99. [Google Scholar] [CrossRef]
- Fu, C.-Y.; Liu, W.; Ranga, A.; Tyagi, A.; Berg, A.C. Dssd: Deconvolutional single shot detector. arXiv 2017, arXiv:1701.06659. [Google Scholar]
- Xu, R.; Lee, J.; Wang, P.; Bagchi, S.; Li, Y.; Chaterji, S. LiteReconfig: Cost and content aware reconfiguration of video object detection systems for mobile GPUs. In Proceedings of the Seventeenth European Conference on Computer Systems, Rennes, France, 5–8 April 2022. [Google Scholar] [CrossRef]
- Tergel, M.-O.; Shenoy, R. Energy and Cost Consider- ations for GPU Accelerated AI Inference Workloads. In Proceedings of the 2021 IEEE MIT Undergraduate Research Technology Conference (URTC), Cambridge, MA, USA, 8–10 October 2021; IEEE: Piscataway, NJ, USA, 2021. [Google Scholar] [CrossRef]
Parameters | Jetson Xavier NX | Jetson Nano | NCS2 | P5000 |
---|---|---|---|---|
Type | Embedded GPU | Embedded GPU | Embedded GPU | Discrete GPU |
Architecture | Volta | Maxwell | Movidius | Pascal |
Cuda Cores | 384 | 128 | 16 | 2560 |
Memory | 8 GB | 4 GB | 500 MB | 16 GB |
FLOPS | 472 GFLOPS | 472 GFLOPS | 150 GFLOPS | 8.9 TFLOPS |
Power | 10 W | 5 W | 2 W | 180 W |
Cost (USD) | 400 | 100 | 90 | 2500 |
Backbones | mAP | FPS | ||
---|---|---|---|---|
AU-AIR | SDD | VisDrone | ||
resnet18 | 70.38 | 43.38 | 19.05 | 40.02 |
resnet34 | 72.51 | 50.51 | 22.01 | 32.32 |
resnet50 | 77.52 | 52.52 | 24.03 | 30.19 |
DLA-34 | 80.31 | 64.31 | 25.90 | 28.91 |
resnet101 | 82.03 | 69.03 | 25.12 | 17.12 |
resnet152 | 86.37 | 71.37 | 28.17 | 16.07 |
res2net50 | 88.93 | 72.43 | 28.51 | 15.73 |
res2net101 | 90.52 | 74.52 | 34.43 | 7.21 |
hourglass-104 | 91.62 | 75.62 | 34.82 | 7.19 |
Model | Backbones | Jetson Xavier | Jetson Nano | NCS | |||||||||
---|---|---|---|---|---|---|---|---|---|---|---|---|---|
AU-AIR | SDD | VisDrone | FPS | AU-AIR | SDD | VisDrone | FPS | AU-AIR | SDD | VisDrone | FPS | ||
CenterNet | ResNet18 | 70.02 | 42.83 | 18.22 | 7.54 | 70.02 | 42.83 | 18.22 | 4.50 | 70.21 | 42.93 | 18.32 | 4.34 |
CenterNet | ResNet34 | 72.26 | 49.59 | 21.01 | 7.34 | 72.26 | 49.59 | 21.01 | 4.31 | 72.46 | 49.99 | 21.81 | 4.14 |
CenterNet | ResNet50 | 77.22 | 51.55 | 23.28 | 6.94 | 77.22 | 51.55 | 23.28 | 3.92 | 77.32 | 51.95 | 23.98 | 3.9 |
CenterNet | DLA-43 | 80.11 | 64.32 | 24.92 | 6.01 | 80.11 | 64.32 | 24.92 | 3.03 | 80.21 | 64.09 | 24.12 | 3.31 |
CenterNet | ResNet101 | 81.69 | 68.25 | 24.35 | 5.93 | 81.69 | 68.25 | 24.35 | 2.94 | 81.89 | 68.75 | 24.95 | 3.01 |
CenterNet | ResNet152 | 85.78 | 70.31 | 27.17 | 5.54 | 85.78 | 70.31 | 27.17 | 2.54 | 85.98 | 71.01 | 27.47 | 2.54 |
CenterNet | Res2Net50 | 88 | 71.32 | 27.29 | 4.41 | 88 | 71.32 | 27.29 | 2.45 | 88.03 | 71.72 | 27.69 | 2.41 |
CenterNet | Res2Net101 | 90.15 | 73.29 | 33.12 | 3.43 | 90.12 | 73.29 | 33.12 | 2.46 | 90.21 | 73.89 | 33.22 | 1.43 |
CenterNet | hourglass104 | 89.98 | 73.20 | 33.08 | 3.41 | 90.04 | 73.19 | 33.05 | 2.41 | 90.18 | 73.79 | 33.19 | 1.4 |
YoloV6 | Efficientrep | 87.93 | 72.02 | 31.01 | 3.94 | 89.06 | 69.91 | 32.69 | 3.89 | 89.05 | 72.72 | 32.86 | 2.34 |
YoloV7 | RepConN | 88.01 | 72.53 | 31.85 | 3.03 | 89.18 | 72.42 | 33.09 | 2.34 | 90.09 | 73.02 | 33.21 | 2.31 |
Model | Backbone | AU-AIR | SDD | VisDrone | FPS | |||
---|---|---|---|---|---|---|---|---|
[email protected] | [email protected] | [email protected] | [email protected] | [email protected] | [email protected] | |||
CenterNet | ResNet18 | 72.93 | 69.63 | 59.93 | 41.63 | 40.63 | 21.76 | 40.02 |
CenterNet | ResNet34 | 61.91 | 71.43 | 61.91 | 47.43 | 50.65 | 24.43 | 32.32 |
CenterNet | ResNet50 | 79.33 | 76.92 | 66.33 | 49.92 | 52.78 | 25.91 | 30.19 |
CenterNet | DLA-43 | 83.02 | 79.82 | 70.42 | 61.82 | 53.04 | 27.76 | 28.91 |
CenterNet | ResNet101 | 85.32 | 80.13 | 74.32 | 66.01 | 54.90 | 29.03 | 17.12 |
CenterNet | ResNet152 | 88.72 | 84.31 | 79.72 | 69.31 | 55.56 | 29.67 | 16.07 |
CenterNet | Res2Net50 | 90.04 | 85.49 | 80.04 | 70.49 | 56.43 | 30.14 | 15.73 |
CenterNet | Res2Net101 | 91.31 | 90.03 | 84.31 | 72.43 | 57.41 | 31.65 | 7.21 |
CenterNet | hourglass-104 | 92.20 | 89.40 | 84.20 | 74.40 | 57.25 | 35.55 | 7.19 |
YoloV1 | CNN | 60.32 | 43.98 | 50.42 | 39.18 | 32.41 | 12.72 | 17.53 |
YoloV2 | Darknet-19 | 66.32 | 50.38 | 55.32 | 41.38 | 34.21 | 13.22 | 16.32 |
YoloV3 | Darknet-53 | 70.32 | 62.51 | 58.09 | 49.51 | 41.02 | 18.01 | 15.23 |
YoloV4 | CSP-Darknet-53 | 73.03 | 67.52 | 68.03 | 52.52 | 42.21 | 20.28 | 12.62 |
YoloV5 | FPN | 80.42 | 76.92 | 71.43 | 60.43 | 44.32 | 28.92 | 12.17 |
YoloV6 | Efficientrep | 88.51 | 81.14 | 75.61 | 63.51 | 50.35 | 31.45 | 11.98 |
YoloV7 | RepConN | 90.93 | 88.03 | 79.43 | 65.03 | 53.11 | 33.35 | 11.32 |
SSD | MobileNetV2 | 72.82 | 68.37 | 74.98 | 43.38 | 43.32 | 20.17 | 32.12 |
Faster-RCNN | RPN | 83.91 | 76.78 | 69.3 | 49.51 | 47.37 | 23.65 | 11.29 |
Class | AP | ||
---|---|---|---|
VU-AIR | SSD | VisDrone | |
Pedestrian | - | 32.62 | 32.62 |
Person/Human | 90.43 | - | 16.23 |
Bicycle | 80.82 | - | 11.43 |
Car | 88.64 | 44.57 | 57.79 |
Van | 91.43 | - | 44.57 |
Truck | 89.31 | - | 35.99 |
Tricycle | - | - | 35.81 |
Awn.. | - | - | 33.19 |
Bus | 94.21 | 35.99 | 54.68 |
Motor/Bike/Motorbike | 79.67 | 16.23 | 27.19 |
Skateboarder | - | 11.43 | - |
Cart | - | 57.79 | - |
Trailer | 90.53 | - | - |
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2023 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Saeed, Z.; Yousaf, M.H.; Ahmed, R.; Velastin, S.A.; Viriri, S. On-Board Small-Scale Object Detection for Unmanned Aerial Vehicles (UAVs). Drones 2023, 7, 310. https://doi.org/10.3390/drones7050310
Saeed Z, Yousaf MH, Ahmed R, Velastin SA, Viriri S. On-Board Small-Scale Object Detection for Unmanned Aerial Vehicles (UAVs). Drones. 2023; 7(5):310. https://doi.org/10.3390/drones7050310
Chicago/Turabian StyleSaeed, Zubair, Muhammad Haroon Yousaf, Rehan Ahmed, Sergio A. Velastin, and Serestina Viriri. 2023. "On-Board Small-Scale Object Detection for Unmanned Aerial Vehicles (UAVs)" Drones 7, no. 5: 310. https://doi.org/10.3390/drones7050310
APA StyleSaeed, Z., Yousaf, M. H., Ahmed, R., Velastin, S. A., & Viriri, S. (2023). On-Board Small-Scale Object Detection for Unmanned Aerial Vehicles (UAVs). Drones, 7(5), 310. https://doi.org/10.3390/drones7050310