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Abstract: Unmanned Aerial Vehicle (UAV) path planning has increasingly become the key research
point for civilian drones to expand their use and enhance their work efficiency. Focusing on offline
derivative algorithms, represented by Rapidly-exploring Random Trees (RRT), are widely utilized
due to their high computational efficiency. However, deploying these offline algorithms in complex
and changing disaster environments presents its own drawbacks, such as slow convergence speed,
poor real-time performance, and uneven generation paths. In this paper, the Artificial Potential
Field -Improved Rapidly-exploring Random Trees (APF-IRRT*) path-planning algorithm is proposed,
which is applicable to disaster relief UAV cruises. The RRT* algorithm is adapted with adaptive step
size and adaptive search range coupled with the APF algorithm for final path-cutting optimization.
This algorithm guarantees computational efficiency while giving the target directivity of the extended
nodes. Furthermore, this algorithm achieves remarkable progress in solving problems of slow
convergence speed and unsmooth path in the UAV path planning and achieves good performance in
both offline static and online dynamic environment path planning.

Keywords: Rapidly-exploring Random Trees algorithm; Artificial Potential Field algorithm; UAV
path planning

1. Introduction

Unmanned Aerial Vehicles (UAVs), notably employed as indispensable intelligent
electronic devices in modern life, are showing continuous growth in the proportion of the
global trade market. Civilian drones can be divided into patrol drones, agricultural drones,
meteorological drones, exploration drones, and disaster relief drones according to their
uses. Based on this, UAVs with higher integration, better computing efficiency, and faster
reaction time have been invested immensely in research and development by countries
around the world [1,2]. However, due to the unpredictability of the disaster area (such
as severe weather, disaster areas, etc.), depending solely on radio remote control, is very
challenging for UAVs to accomplish tasks such as precise identification, obstacle avoidance
flight, and coordinated rescue [3]. Therefore, it is of great essence to develop algorithms for
autonomous path planning of disaster relief UAVs.

Disaster relief UAVs generally fly at altitudes between 25 and 150 m above sea level.
Signal interference caused by low-altitude clouds, smoke, and dust is the main natural
threat to drones when flying [4], which means that UAVs should avoid being disrupted by
clouds, smoke, and dust. Therefore, the path-planning algorithm deployed on the UAV has
to be efficient, safe, and equipped with local dynamic planning capabilities.

Currently, the existing path-planning algorithms can be divided into two categories:
the global path-planning algorithm and the local path-planning algorithm. The global
path-planning methods include the A* algorithm [5], the Dijkstra algorithm [6], the Genetic
Algorithm (GA) [7], and the sampling-based Rapidly-exploring Random Trees (RRT) algo-
rithm [8]. The drawback of the heuristic algorithm represented by the A* algorithm is that it
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causes significant performance consumption when the target point is unreachable, which is
unsuitable for complex disaster environments. The original version of Dijkstra’s algorithm
was only suitable for finding the shortest path between two vertices, later more common
variants fixed a vertex as the source node and then found the shortest path from that vertex
to all other nodes in the graph, yielding a shortest path tree. This algorithm picks out the
smallest distance among the unvisited nodes each time and uses this node to update the
distances of other nodes. The GA algorithm can obtain the optimal path in route planning,
but it requires multiple iterations to obtain the optimal solution. Its complex algorithm
leads to low computational efficiency, poor real-time performance, and the inability to use
feedback information from the network in a timely manner.

In disaster areas, the path-planning algorithm needs to prioritize safety and generate
the speed of the UAV moving trajectory not just for the optimal path. Therefore, the RRT
algorithm with faster execution efficiency is introduced to generate UAV motion paths
quickly. Compared with the RRT algorithm, after the sampling point is added to the path
tree, the RRT* algorithm draws a circle with the new point as the center, and considers
whether there is a better parent node, in other words, which nodes can be connected to
make the distance from the starting point to the target point shorter (although those nodes
are not the closest points to the sampling point). If a more suitable parent node is selected,
it then connects them and removes the original connection, which is called rerouting.
Karaman et al. [9] proposed a progressive optimal path based on the RRT* algorithm to
guide the target. Qin et al. [10] put forward a posture constraint strategy which enables
UAVs to fly more smoothly.

The RRT* algorithm takes the Artificial Potential Field (APF) algorithm [11] and
Dynamic Window Algorithm (DWA) [12] as the typical cases of local path-planning al-
gorithms. The former is widely used in path-smoothing control, while the latter possess
relatively high dynamic obstacle avoidance capability. However, the adaptive direction of
the existing algorithms is mainly centered around the step size. Most of the optimization
work is premised on the characteristics of the algorithms themselves, with less research on
algorithm fusion.

In the field of global path planning of UAVs, most of them are static, and the planned
path is obtained after the environment is rasterized, which is not a real optimized path, and
thus further optimization is still necessitated. Nonetheless, for rescue and disaster relief
missions, whether they are reconnaissance or transportation missions, not only must the
most basic guarantees be made in terms of path safety, but relatively high requirements
are also required for running time. The improved fusion algorithm proposed in this
paper possesses an enhanced performance in both dynamic and static obstacle avoidance
environments. It is not only satisfied with static obstacle avoidance but also has good
safety performance when encountering moving obstacles. Moreover, although the required
computing time has been shortened a little, the heading angle has improved a lot, and more
importantly, it is suitable for complex and changeable real environments.

From the aforementioned problems, this paper addresses them by improving the RRT*
algorithm in the following four ways:

(a) Employing adaptive step size, which switches to a small and dynamic step size when
approaching obstacles, achieves a step size that changes with path conditions, and
improves path smoothness to some extent.

(b) Employing adaptive search scope, which gives a dynamic constraint to the search
scope, effectively reduces the randomness and blindness of node growth in the search
process, speeds up the convergence speed, and improves efficiency.

(c) Combining with the APF algorithm. Attraction and repulsion forces are introduced
based on expanded random numbers to expand the target point more effectively un-
der the combined force. This algorithm improves operational efficiency, reduces
the turning angle and path cost, and has a safe and efficient real-time obstacle
avoidance capability.
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(d) Cutting and optimizing the path. A novel collision detection method is introduced. If
the collision detection between Q1 and Q2 is passed, and there is no collision with the
obstacle, the node is banned, the number of turns is reduced, which keeps the path as
smooth as possible.

After the improvement of the RRT* algorithm and the integration of the APF algorithm,
the convergence speed and path smoothness of the new algorithm APF-IRRT* in both offline
static and online dynamic environments are improved, the real-time performance is greatly
improved, and the practical implementation is enhanced.

In light of the above discussions, this paper seeks to propose a novel fusion algorithm
capable of performing in both dynamic and static obstacle avoidance environments. This
algorithm is not only satisfied with static obstacle avoidance, but also has good safety
performance when encountering moving obstacles. In this way, the required internal
calculation time can be shortened, and its maximum deflection angle can be controlled,
whilst improving the rescue speed, and its safety has been greatly improved, which is more
suitable for complex and changeable rescue environments.

The remainder of the article is organized as follows: Section 2 generalizes the path
planning problem into a mathematical model; Section 3 shows the basic principles of RRT,
RRT*, and APF algorithms; Section 4 describes the details of the method proposed in this
paper; Section 5 shows the overall technical route and the acquired data in this paper;
Section 6 presents the detailed results of different experiments, then discusses the results of
the test phases; finally, the conclusions are presented in Section 7.

2. Problem Description

Firstly, the horizontal area of an altitude is supposed to be the entire task space Z,
where Z represents the state space of the entire system simultaneously [13]. Z f ree ⊂ Z
indicates a safe area for flying, and Zobs ⊂ Z indicates a hazardous area with obstacles,
expressed as:

Z f ree ∪ Zobs = Z and Z f ree ∩ Zobs = ∅ (1)

where xstar ∈ Z f ree indicates UAV initial position range; xgoal ∈ Z f ree indicates target posi-
tion range. Then, the dynamic equation of UAV can be expressed by the following equation:

.
x(t) = Γ(x(t), h(t)), x(0) = x0 (2)

where x(t) ∈ Z is the state system; h(t) ∈ H is the control input of the system, where the
control input set of the system is represented by H; and Γ is described as the function of the
UAV system model built. When t = 0, the initial state of the UAV is x0 ∈ X f ree.

3. Basic Principles of Algorithm
3.1. Traditional RRT Algorithm

The path planning problem involves finding a collision-free path from the starting
point to the target point within the specified area. It can be classified into global path
planning and local path planning. The former is the original path planning problem and
involves searching for an optimal path throughout the entire space.

The RRT algorithm, proposed in the late 20th century, is particularly noteworthy for
its superior performance of speed and flexibility in many scenarios [14]. However, it also
presents the disadvantage of fulling of randomness in its search process, leading to its
unstable efficiency.

Furthermore, the lack of target directivity in the iterative process also makes the search
paths different and leads to randomness. As shown in Figure 1, it can be seen that the RRT
algorithm struggles to find the exit in the closed terrain with a narrow channel, resulting
in excessive computation and time consumption. Although the above problems can be
improved by changing the step size or setting the adaptive step size, reducing the step size
will lead to a tremendous amount of calculation and a longer calculation time. Additionally,
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some improved RRT algorithms try to make up for some defects by interpolation correction
yet fail to obtain a satisfactory effect.
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Figure 2. Schematic diagram of the RRT algorithm. 

Figure 1. Lacks practicality in scenarios where borrow aisles exist.

The RRT algorithm initializes the map with only the root starting point Qstart and
target point Qgoal . A random point Qrand is then generated according to a search strategy
probability, P, which may either take Qgoal as Qrand or scatter Qrand within a specific range
of Qgoal . The node closest to the Qrand on the map and the starting point of the Qstart above
process is named Qnear. A new node Qnew is then generated in the direction of the vector
pointing from Qnear to Qrand, with the step length represented by the distance parameter,
step. The value of step is crucial to the algorithm’s accuracy, and careful selection is a
top priority.

If there exists a potential collision between Qnew and the parent node Qnear, the path
will be abandoned, and a new node will be generated. The loop continues until the distance
between Qnew and the Qgoal is less than ε, where ε is used to judge whether it is close enough
to the target point or reaches the target point. Figure 2 shows the schematic diagram of the
RRT algorithm.
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Figure 2. Schematic diagram of the RRT algorithm.

Obstacles are an array of artificial inputs. The detection of obstacles adopts a hypo-
thetical idea, first selects a certain area, and stipulates that all sampling points falling in this
area are invalid and will not be included in the growth tree. In other words, the selected
area can be equivalent to a “hole”, and the sampling points falling in the “hole” will not
be regarded as Qrand and will not participate in the above judgment process. In this way,
the generated path will bypass the area, and there will be no intersection at the edge or
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inside of the area, so the area is equivalently regarded as an obstacle and the obstacles can
be detected in real-time.

To ensure the feasibility and controllability of the algorithm, a maximum search count
limit COUNT_MAX needs to be set in advance to complete the search within the given
number of cycles. Otherwise, it is set to jump out of the cycle to end the task.

Therefore, the RRT algorithm encompasses six basic steps: import map information,
generate random points, extend towards the generated point, add collision detection, set
the cycle limit, and use the greedy algorithm to find the shortest path.

3.2. The RRT* Algorithm

The RRT* algorithm is an improvement on the traditional RRT algorithm. Instead
of immediately starting the next cycle after generating a new node Qnew, it reselects the
parent node and reroutes the new node through collision detection. As is shown in Figure 3,
the round icon represents the node, and the label on the node represents the order of
node generation.
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The improved performance of the RRT* algorithm can be seen by adding weights
to the directed weight graph. The innovative step reset and reroute the parent node is
demonstrated in Figure 3b. By finding a path with the least cost from Qstart to the latest
node Qnew, the algorithm resets the parent node. The threshold range for reselecting
the parent node is a circle with the new node Qnew as the center and the parameter r as
the radius.

Any node in the circle is regarded as a potential parent node and compared with the
original parent node to see if the path cost is lower. As shown in Figure 3c, node 3 is chosen
as the new parent node for node 7, and the connection between the original node 6 and
node 7 is erased. The algorithm then generates a new search tree.
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To sum up, the RRT* algorithm improves the way of selecting parent nodes based on
the original RRT algorithm. The cost function determines the node with the lowest cost in
expanding nodes as the parent node. At the same time, nodes on the existing tree will be
reconnected after each iteration to ensure computational complexity and an asymptotic
optimal solution.

3.3. The APF Algorithm

Because the working environment of UAVs is highly complex, even with access to
global map information, path planning remains challenging. A crucial aspect is moving
towards the target position away from the obstacles, which necessitates the construction of
a potential field function that incorporates these effects.

Because of the directivity of the UAV to the target point, the target point provides
attraction, whereas obstacles elicit repulsion. The potential energy of any point in the
map can be obtained by superimposing the attractive and repulsive potential fields. Path
planning is accomplished by searching for and moving toward potential energy reduction.
The working principle is shown in Figure 4, where Frep indicates the repulsion of obstacles
to the UAV, and Fatt indicates the attraction of target points to the UAV.
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The algorithm stipulates that the UAV will be subjected to the attraction of the target
point at any position in the map, and the attraction is inversely proportional to the distance
of the target point [15]. Uatt(q) is defined as an attractive potential field function:

Uatt(q) = 1
2 ζdist2

(
q, qgoal

)
(3)

where q is the current position of the UAV, qgoal is the position of the target point, ζ is the
scale coefficient of the attractive potential field, and dist(q, qgoal) represents the Euclidean
distance between the UAV and the target point. The gradient is expressed in ∇Uatt(q).

Correspondingly, Urep(q) is defined as the repulsive potential field function:

Urep(q) = 1
2 η

(
1

dist(q, qgoal)
− 1

dist∗

)
(4)

where η is the scale coefficient of the potential repulsion field, dist
(

q, qgoal

)
represents

the distance between UAV and the obstacle, and dist∗ (d∗) is the repulsion field range of
the obstacle. If dist

(
q, qgoal

)
> dist∗, then the potential repulsion field Urep(q) = 0. The

gradient is expressed in ∇Urep(q).
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Therefore, the total potential field function of UAV is the superposition of attractive
potential field and repulsive potential field, known as

U(q) = Uatt(q) +
n

∑
1

Urep(q) (5)

The total gradient is expressed as

∇U(q) = ∇Uatt(q) +∇Urep(q) (6)

The resultant force is expressed as

F(q) = −∇U(q) (7)

4. Algorithm Improvement

The RRT* algorithm distributes numerous extraneous points during global sampling
to enhance its search’s randomness, occupying significant memory space and eventually
leading to slow convergence and overly convoluted paths. On the other hand, in the artifi-
cial potential field method, the complexity, danger, and particularity of the environment
may result in an abundance of points with the lowest energy in the map or even positions
where the attractive and repulsive forces cancel each other out. This can make the UAV
become trapped in local optimization or stagnation. Therefore, to address these issues,
this paper proposes an improvement to the RRT* algorithm by combining it with the APF
algorithm and integrating the ideas of attraction and repulsion to make the algorithm more
sensitive and efficient.

4.1. Adaptive Search Step

Although the RRT* algorithm has a few improvements relative to the traditional RRT
algorithm, the algorithm hardly determines the optimal path due to the fixed expansion
step size. Therefore, the dynamic adaptive step size is adopted in this paper. The basic
principle is: when Qnew approaches obstacles, the small step size is adopted for expansion;
in contrast, when it is far away from the obstacle, it can be expanded with a large step
size. The dynamic step size can realize that the step size changes with the change of
path conditions, which accurately solves the problem of practicality. It also improves the
smoothness of the path to a certain extent, which is practical [16]. Meanwhile, the dynamic
step is expressed as Sv:

Sv =

{(
1 + kln

(
r
r1

))
× step r ≤ r1

step r > r1
(8)

where k is the proportion constant which is used to control the adjustment range of step size,
r and r1 are the actual and safe critical distance between Qnew and obstacles, respectively. It
can be seen from the formula that when the actual distance r is less than the safe distance r1,
the step size will be reduced under the control of the proportional coefficient k, effectively
realizing the mutual consideration between obstacle avoidance and smoothness. The latest
node Qnew can be represented as follows:

Qnew = Qnew + Svcosθ (9)

4.2. Adaptive Search Range

In the RRT* algorithm, the sampling mechanism of the algorithm itself has not changed,
and the problem of slow convergence still exists. Therefore, the angle-increasing sampling
method is introduced based on the RRT algorithm. It is to retain the original random
sampling of the whole map, give a constraint to the search scope, and limit the initial search
scope to a particular angle space. Figure 5 shows the basic principle of this method, taking



Drones 2023, 7, 323 8 of 17

the direction of the resultant force F of Qnear as the starting axis, counterclockwise as the
positive direction, the initial angle θ = 15◦, and the increment ∆ = 15◦.
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The technique involves sampling within the range of ±θ around the direction of F,
followed by collision detection on the connection between the new node Qnew and Qnear.
If the detection fails, the ∆ is increased to the current angle θ, and then the sampling
and collision detection are performed again within the range of ±(θ + ∆). This process
continues until (θ + ∆) falls within the range [0, π]. This method can effectively reduce the
randomness and blindness of node growth in the search process, as well as accelerate the
convergence speed and improve efficiency.

4.3. Fusion with the APF Algorithm

To better solve the path planning problem of UAVs in emergency rescue and disaster
relief, the traction force of target points on UAV and the repulsion force of obstacles
in the APF algorithm are integrated into the RRT* algorithm. The essence of the RRT*
algorithm is to expand the search tree, filter available nodes, and add them to the search
tree. After the introduction of the APF algorithm, the target attraction function Fatt(Q) and
obstacle repulsion function Frep(Q) are constructed for each node as a unit when the node
is expanded so that the search tree can move towards the target point under the effect of
the resultant force.

This approach significantly increases the search’s purpose and target and speeds up
the convergence speed [17]. The function expression of Fatt(Q) and Frep are as follows:

Fatt = ζ
(

Qgoal −Qnear

)
(10)

Frep = η
(

1
d −

1
d∗

)
1
d2∇d (11)

where ζ indicates the coefficient of attraction and η indicates the coefficient of repulsion.
dist(Qnear, Qobs) is simplified by d to represent the distance between the drone and the
obstacles. Equation (2) illustrates that the UAV is within the repulsive force range of the
obstacle, that is, 0 < d < d∗ when d > d∗, the repulsion force is zero.

The resultant force of the new node is expressed as the vector sum of attractive and
repulsive forces:

F = Fatt + Frep (12)

The generation of new nodes is also the superposition of two directed vectors:

Qnew = step
(

d
‖d‖ +

F
‖ F‖

)
(13)

However, in this case, it is often trapped in a local optimum issue for which we can
add a disturbance (random walk) or backtrack at the local minimum to jump out of the
local minimum.

The node expansion mode after the algorithm fusion is shown in Figure 6.
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4.4. Sectional Cutting Optimization Method

Although the APF-IRRT* algorithm after algorithm fusion has relatively improved
in sampling adjustment and convergence speed, the core mode of random sampling
nevertheless remains unchanged, which leads to the path still having twists and turns.
This is very unfavorable for UAVs in operations. Therefore, to circumvent the UAV from
turning to the target point and causing problems such as too fast a speed or too large an
angle and to reduce the tortuosity of the path, the original method of traversing from the
starting point needs to be improved.

Since the obstacles in this paper are superimposed by circles, for the collision detection
of a solid circle, it is only necessary to judge whether the distance between the vertex
and the center of the circle is less than the radius. A new rerouting method is introduced
after collision detection. Suppose the path goes through Q1, Q2, and Q3. If the collision
detection between Q1 and Q3 is passed, and there is no collision with the obstacle, the node
Q2 is banned, the number of turns is reduced, and the path is kept as smooth as possible.
Secondly, the global path obtained by the fusion algorithm is cut, and the local path after
cutting is optimized. In this process, it is necessary to connect the points into a line and
calculate the steering angle; γmax represents the max angle.

γ = arctan
(

Ynear−Ynew
Xnear−Xnew

)
(14)

5. Algorithm Flow

The steps of the new algorithm after fusing are as follows, and the flow chart is shown
in Figure 7:

(1) Parameter setting: initialize the coordinates of the starting point Qstart and the target
point Qgoal , give the attractive coefficient ζ and repulsion coefficient η, search step,
and the value of the maximum number of samples COUNT_MAX.

(2) Randomly generate the sampling point Qrand, calculate the resultant force direction of
attraction and repulsion of Qnear after finding it, and then form a vector parallelogram
in the direction of Qrand. Calculate the direction of the new node Qnew and judge
whether it is within the range of θ and carry out collision detection. If it is within the
range of θ and does not pass through obstacles, go on to step (3); otherwise, increase
the angle ∆ to continue searching. If no suitable Qnew is found within the range of
[0, π], give up the current random point Qrand and continue searching for the next
random point.

(3) Search for potential parent nodes within a given range nearby Qnew, reselect the parent
node, and reroute the line between Qnew and Qnear.

(4) Judge whether dist
(

Qnew, Qgoal

)
between Qnew and Qgoal is less than the given value.

If it is less than that, the search is completed, and skip to step (5); otherwise, skip back
to step (2) and select Qrand again.
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(5) Connect the discrete points, generate the path and then divide it, smooth each path,
and calculate whether the maximum turning angle γmax meets the requirements. If
yes, the final path is generated, and the algorithm ends and returns COUNT_ MAX
and other parameters; if not, go to step (2) to select a new point.
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6. Algorithm Simulation and Analysis

To ascertain the performance of the improved fusion APF-IRRT* algorithm, offline (static)
and online (dynamic) path planning experiments were conducted under the 100× 100 m
scale, simulated air obstacle map environment to obtain the final path map, time consuming,
heading angles, angle of deflection, and other data. In offline planning, the obtained data
are compared with the RRT algorithm, the RRT* algorithm, and the improved RRT* (IRRT*)
algorithm. Meanwhile, in the online planning, the data obtained are compared with the APF
algorithm through the above comparison to verify its improvement of convergence speed and
smoothness in static and dynamic environments, as well as better practicability.

6.1. Offline Path Planning Experiment

The algorithm in this paper is simulated with MATLAB 2022(b) software in the Window11
system environment. The hardware configuration of the experimental platform is CPU i9-
10980XE, GPURTX2080Ti, memory 128GB. First, establish a 100× 100 m simulation map and
set parameters: the starting point coordinates are (5, 6), the target point coordinates are (95, 86),
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the fixed search step is 0.5, the attractive coefficient ζ = 1, the repulsive coefficient η = 5, the
obstacle influence range dist∗ = 3, the initial value of the sampling range 0 < θ < 15◦, the
maximum number of samples COUNT_ MAX = 30,000, and the adaptive coefficient K = 2.81.
The time, heading angles, angle of deflection, and γmax of the obtained path are compared in
the given constraint range r1 = 5. In this map, color ripples represent the interference source,
blue clouds represent cloud obstacles, red is the starting point, and green is the target point.
The final paths obtained by the four algorithms are represented by black (Figure 8a), purple
(Figure 8b), rose (Figure 8c), and pink (Figure 8d), respectively.
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From the above figures, it can be observed intuitively in Figure 8b that the RRT*
algorithm fared better than the traditional RRT algorithm, but it is still far from the UAV
flight requirement. As is glaringly revealed in Figure 8c, the IRRT* algorithm has the most
petite inflection point; meanwhile, the instantaneous turning angle is too large and still
exists. However, it seems to appear more concise because of constraints on search range.
The fused APF-IRRT* algorithm in Figure 8d is optimal in terms of path smoothness, with
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no inflection point, continuous angle, and smooth path. The charts of heading angle change
and deflection angle change of the four algorithms are displayed in Figures 9 and 10.
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The data obtained are summarized in Table 1.

Table 1. Comparison of offline planning simulation data.

Algorithms Time (s) γmax (◦)

RRT 94.58 120.98
RRT* 67.5 109.90
IRRT* 54.2 45.74

APF-IRRT* 63.3 8.95
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It is noticeable from Figure 9 that the heading angle of the APF-IRRT* algorithm is
always in a continuously changing attitude, and there is no dramatically instantaneous
change of the angle, which effectively improves the safety of the UAV during actual flight.
Table 1 clearly shows that in terms of time consumption, the RRT algorithm takes 94.58 s,
which is the longest among the four algorithms. The shortest algorithm is the IRRT*
algorithm, which takes 54.2 s; meanwhile, the convergence speed is improved by 40.38%
and 19.7%, compared to the traditional RRT algorithm. The APF-IRRT* algorithm takes
63.3 s, ranking second. In Figure 10, the maximum rotation angle of the RRT algorithm
is 120.98◦, followed by the RRT* algorithm at 109.90◦. The improved RRT algorithm has
a relatively obvious exactness, with a maximum rotation angle of 45.74◦. For the fusion
algorithm, although it takes 9.1 s more than the IRRT* algorithm, its γmax was only 8.95◦,
which was 80.43% higher than perfusion. Remarkably, the APF-IRRT* algorithm obtains
a safer and more effective flight path with a satisfying convergence rate in static offline
planning. Hence, it has better practicability.

6.2. Online Path Planning Experiment

Because of the complexity of the actual disaster environment, the offline planning
of UAVs often cannot safely reach the terminal for rescue, so the dynamic online path
planning of the algorithm is essential. In the above-simulated map environment, when
all parameters remain unchanged, different speeds and directions (random speeds and
fixed directions) are assigned to each obstacle, which can more closely simulate the rapidly
changing battlefield environment and more effectively test the reliability of the algorithm.
Figure 11 depicts the moving direction of each obstacle.
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The paths generated by the APF algorithm and the APF-IRRT* algorithm are shown
in yellow and red, respectively, in Figure 12a,b. The simulation diagram of the online
planning experiment results is as follows.
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Judging from the above two figures, it is interesting to recognize that in a dynamic
environment, when the APF algorithm encounters a moving obstacle, it falls into a local
minimum and generates oscillation, as shown in Figure 12c, which significantly affects
the safety and reliability of UAV flight. In contrast, the path obtained by the APF-IRRT*
algorithm is relatively smooth and stable. The charts of heading angle change and deflection
angle change of the two algorithms are presented in Figures 13 and 14.

The data obtained are summarized in Table 2.

Table 2. Comparison of online planning simulation data.

Algorithms Time (s) γmax(◦)

APF 84.17 159.99
APF-IRRT* 72.67 23.94

It is apparent from Table 2 that the heading angle of the APF algorithm has a long time
and large amplitude oscillation, and the angle close to 160◦ makes it impossible for the UAV
to operate in the virtual environment. In addition, although the APF-IRRT* algorithm is not
stable in the static environment under the dynamic environment, and the heading angle
changes in several cases, the maximum turning angle is only 23.94◦, which is acceptable.
The required time is 72.67 s, which is only 13.67% shorter than the APF algorithm, but the
smoothness is improved by 85.03%. The fused APF-IRRT* algorithm also performs well in
a dynamic environment.
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7. Conclusions

This paper proposed a new APF-IRRT* fusion algorithm for rescue and disaster
relief UAVs. This algorithm firstly improves the RRT* algorithm; it not only reduces the
calculation time, but also greatly improves the safety. Secondly, the introduction of the
APF algorithm made it not only suitable for ordinary static obstacle environments, but
also possesses better obstacle avoidance capabilities in changing dynamic environments
to ensure its safety, which has effectively solved the problem of dangerous and complex
surroundings of rescue drones. The path planning problem in the environment provides
an effective option for the global path planning of the UAV in a specific environment. The
algorithm mainly presents the characteristics of simple modeling, with few parameters
to be adjusted, not being affected by the shape of obstacles, simple calculation, and easy
implementation. Based on the algorithm in this paper, the global optimization path of
the robot can be quickly and effectively planned. To ensure computational efficiency
and prediction correctness, the target directivity of the extended node was given, which
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effectively overcomes the inherent blindness of the RRT algorithm. The step-size adaptive
and angle-increasing sampling methods were also utilized to limit the sampling range, thus
reducing the tortuosity of the generated path and the time consumed.

To further enhance the path’s smoothness, the generated path was optimized by
calculating the angle value between the line connecting the new node’s parent node
and the original path. The simulation results demonstrate that the fusion APF-IRRT*
algorithm dramatically improves the issues of slow convergence speed and tortuous path
of the traditional RRT algorithms in the static environment. Meanwhile, the APF-IRRT*
takes 63.3 s, ranking second. Despite it taking 9.1 s more than the IRRT* algorithm, the
maximum instantaneous steering angle recorded was only 8.95◦, an increase of 80.43%,
which greatly improved its flight stability and safety. In the dynamic environment, in
spite of the fusion algorithm, the UAV was less stable in the static environment, and the
change of heading angle also had several cases of turns that were too fast. The maximum
turning angle registered was only 23.94◦, which was within the acceptable range. The
required time was 72.67 s, which was 13.67% shorter than the APF algorithm and 85.03%
higher in smoothness.

Despite an enhanced performance and high practicability in static and dynamic envi-
ronments of the fused APF-IRRT* algorithm, UAVs need more sensitive reaction speeds
and smooth paths to maintain high mobility in the disaster environment. Therefore, the
next research step is to optimize the mathematical model and algorithm to overcome the
bottleneck so that the convergence speed will not change when it is reduced to a certain
extent. More importantly, obstacles can be in various forms, while this paper only uses the
shape of clouds—which needs to be improved in future research.
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