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Abstract: Anomaly detection has an important impact on the development of unmanned aerial
vehicles, and effective anomaly detection is fundamental to their utilization. Traditional anomaly de-
tection discriminates anomalies for single-dimensional factors of sensing data, which often performs
poorly in multidimensional data scenarios due to weak computational scalability and the problem of
dimensional catastrophe, ignoring potential correlations between sensing data and some important
information of certain characteristics. In order to capture the correlation of multidimensional sensing
data and improve the accuracy of anomaly detection effectively, GTAF, an anomaly detection model
for multivariate sequences based on an improved graph neural network with a transformer, a graph
attention mechanism and a multi-channel fusion mechanism, is proposed in this paper. First, we
added a multi-channel transformer structure for intrinsic pattern extraction of different data. Then,
we combined the multi-channel transformer structure with GDN’s original graph attention network
(GAT) to attain better capture of features of time series, better learning of dependencies between time
series and hence prediction of future values of adjacent time series. Finally, we added a multi-channel
data fusion module, which utilizes channel attention to integrate global information and upgrade
anomaly detection accuracy. The results of experiments show that the average accuracies of GTAF,
the anomaly detection model proposed in this paper, are 92.83% and 96.59% on two datasets from
unmanned systems, respectively, which has higher accuracy and computational efficiency compared
with other methods.

Keywords: anomaly detection; unmanned aerial vehicle; multidimensional data; graph neural
network; attention mechanism; time series

1. Introduction

Unmanned systems are characterized by low power consumption, flexibility and low
cost, and can replace humans for difficult and intense tasks. In recent years, with the rapid
development of unmanned systems, the safety of unmanned systems has attracted attention.
Unmanned systems include unmanned systems platforms such as UAVs, unmanned ships
and unmanned vehicles, among which UAVs are widely used and are the main research
object of this paper. Detecting deviant data or behavioral patterns that do not match the
expected behaviors from the normal data of UAVs and trying to find the reasons for the
occurrence of abnormal behavior can prevent major accidents and guarantee the normal
flight of UAVs, which is of great significance to improve the safety factor and the efficiency
of the use of UAVs.

The study of anomaly detection for unmanned systems has attracted widespread
attention. At present, anomaly detection methods are mainly divided into three categories:
anomaly detection methods based on a priori knowledge, model-based anomaly detection
methods and data-driven anomaly detection methods.
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A priori knowledge-based is one of the earliest anomaly detection algorithms that
synthesizes data from the UAV target system and builds an anomaly detection model
applicable offline based on the expert’s prior knowledge. For example, Sun et al. [1]
built a system knowledge base for UAVs based on a hierarchical fault cause structure
map. Liu et al. [2] studied the UAV flight control system based on the fault tree analysis
method and transformed the expert experience into a fault knowledge base based on the
correspondence between the sign space and the fault space. Singh et al. [3] proposed an
expert system integrating knowledge-based and model neural networks. Qing et al. [4]
established an aircraft fault diagnosis expert system based on case-based reasoning, using a
combination of hierarchical retrieval and nearest neighbor algorithm. However, anomalies
in UAVs are sometimes difficult to grasp, the a priori knowledge-based approach requires
accurate and complete expert knowledge, and the manual knowledge acquisition and
model construction process is time-consuming and labor-intensive.

The model-based anomaly detection method requires the establishment of an accurate
physical model to describe the operating characteristics of the UAV for the purpose of
identifying anomalous data. For example, Chen et al. [5] used FLUENT and ANSYS
software for finite element simulation analysis to determine the fault monitoring nodes,
and finally used the beacon anomaly analysis method to detect anomalies in the data. Tan
et al. [6] introduced a model correction link to reduce the long-term cumulative error of
the system in dynamic operation. Melnyk et al. [7] constructed a distance matrix between
objects based on a vector autoregressive exogenous model between objects and finally
performed anomaly detection based on object differences. Liu et al. [8] studied a fault
detection algorithm for a UAV control system based on parameter estimation, using the
noise estimator to diagnose the fault, and analyzed the relationship between the residual
and “zero” so as to realize the fault detection. Yang et al. [9] proposed a dynamic data
fusion model, which fuses and predicts the physical parameters of the turbofan engine.
However, the portability of the established model is poor, and each UAV system needs to
be modelled separately, which is not practical.

Data-driven anomaly detection methods based on data do not require accurate mecha-
nistic rules and complete expert knowledge, and are performed by analyzing the correlation
of UAV sensor data and building an effective anomaly detection model. For example, Bronz
et al. [10] classified the behavior of the UAV in the normal flight phase and the fault phase
based on the SVM algorithm. Yaman et al. [11] used the SVM algorithm to classify audio sig-
nals and designed a lightweight fault detection algorithm. Pan [12] established a parameter
prediction model based on the genetic algorithm to improve and optimize the neural net-
work. Lv et al. [13] designed a combination of Bayesian information criterion-based density
peak clustering analysis algorithm and shared neighborhood algorithm to accurately clas-
sify and label aeroengine data. Pan et al. [14] introduced a modified S3VM combined with
edge sampling to actively learn an optimized classification model for anomaly detection on
UAV channel telemetry data. Ahmad et al. [15] compared the UAV data anomaly detection
algorithm based on multiple LSTM and multi-output convolution LSTM, and pointed
out that multi-output convolution LSTM is more suitable for multi-dimensional time data
analysis of UAVs. You et al. [16] proposed an algorithm based on Time Convolutional
Network (TCN) model delivery for a UAV sensor data anomaly detection method, which
uses a threshold detection method to determine whether there are anomalies in the UAV
sensor data. Li et al. [17] used the LSTM neural network to make a difference between the
predicted value and the real value, and judged whether the data are abnormal or not by
the distance from the test data to the hyperplane. In order to make the relevant research a
more intuitive presentation [18–21], we list it in the form of a table, as shown in Table 1.
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Table 1. Comparative analysis of state-of-the-art surveys.

Research Year Objective Dataset Accuracy Limitations

Bronz et al. [10] 2020 The SVM algorithm of the
characteristic trajectory Flight Log 95%

The computational
limitations of the

inference hardware
should be carefully
taken into account

during training

Yaman et al. [11] 2022

A lightweight method has
been proposed for the early
detection of faults in UAV

motors

Helicopter; 100%;
Fault settings are not

comprehensive
Duocopter; 100%
Tricopter; 99.06%;

Quadcopter 90.53%

Pan et al. [12] 2021
Established ANN-NARX

parameter prediction model
for aeroengine

Actual flight test
data of an engine

sortie
95.2%

Fault simulation state
recognition rate is

relatively low

Lv et al. [13] 2020 DPCA algorithm based on
unsupervised learning

Aeroengine gas path
component fault

data
91% Experimental analysis

with simulated data

Pan et al. [14] 2020
An anomaly detection model
based on active learning and

improved S3VM classification

Telemetry data from
UAV

Labeled samples 5:
90.8%; Labeled sample

classification is lessLabeled samples 10:
92.7%

Ahmad et al. [15] 2022

Compared two deep learning
tools to detect anomalies in

the values of the UAV
attributes

Data from four
flights of a

fixed-wing aircraft
called Thor

Average: 90%
Less precision when

detecting anomalies in
consecutive faults

You et al. [16] 2022 An FTCN-based Anomaly
Detection Framework

The flight data of the
UAV in a calm

environment and in
a crosswind

environment of
3 m/s

94.76%

Fine-tuning the model
on a small training

dataset in the source
domain leads to biased

predictions

Li et al. [17] 2021
Prediction and Anomaly

Detection Using LSTM Neural
Networks

GPS and IMU sensor
data, ground street

view image data
Average: 90.68%

The detection rate of
random position offset

attack and replay
attack is not high

enough

The Graph Deviation Network (GDN) model [22] is a multivariate time series anomaly
detection method based on graph neural networks, which performs anomaly determination
by learning a graph of relationships between data patterns and obtaining anomaly scores
through prediction and deviation scoring based on an attention mechanism. However, in
complex multi-dimensional time series problems, GDN has shortcomings in two aspects.
Firstly, the GAT module is susceptible to over-smoothing as the GAT module may suffer
from over smoothing when the graph data are very dense and have highly correlated
characteristics, leading to loss of information and not capturing local features of the data
and global features of the data well [23,24]. Secondly, GDN does not fully utilize edge
features, as GDN exploits connectivity only, resulting in a failure to properly merge feature
patterns from different data [25]. These two aspects make the accuracies of prediction and
anomaly detection using GDN relatively low in multidimensional time series problems.

In view of the above two problems, the GDN model is improved, and an anomaly
detection model, GTAF (an improved GDN model with transformer [26], graph attention
network [27] and multi-channel fusion mechanism), is proposed in this paper for the
anomaly detection of sensing data from unmanned systems. GTAF adopted GDN as the
base framework and added a multi-channel transformer model for the prediction and a
multi-channel data fusion module for the prediction results fusion. In GTAF, the multi-
channel transformer model is combined with the original graph attention network (GAT) of
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GDN to capture the features of time series and learn the dependencies between them better
so as to predict future values of adjacent time series more accurately; the multi-channel
data fusion module is added to optimize the prediction of time series and improve the
anomaly detection accuracy.

The primary contributions of this paper are as follows: (1) We proposed a new anomaly
detection model, GTAF, which adds a multi-channel transformer and combines it with
GAT to successfully enhance the prediction capacity. (2) We added a multi-channel data
fusion module to aggregate the results of different channels and integrate information
to obtain better prediction results, further enhance the abnormal score, and attain good
detection performance. (3) Extensive experiments were conducted by comparing the
performance of GTAF with other models (such as iForest [28], LOF [29], DAGMM [30], and
OmniAnomaly [31], etc.), as well as ablation experiments, in order to verify the performance
of GTAF.

The remaining parts of this paper are organized as follows. Section 2 introduces the
materials and methods: Section 2.1 describes the framework of GNN, Section 2.2 defines
the problem, Section 2.3 details the main idea of the GTAF model and the basic principles
involved, Section 2.4 explains the dataset of this paper and Section 2.5 elaborates experi-
mental design. Section 3 introduces the experimental results and discussion: Section 3.1
describes the attribute correlation experiment of the GFTD dataset, Section 3.2 describes
the comparison experiment of anomaly detection, Section 3.3 is the evaluation for anomaly
types, Section 3.4 describes the ablation experiments and Section 3.5 describes a parameter
sensitivity experiment. Finally, Section 4 presents the conclusion of the work.

2. Materials and Methods
2.1. Problem Definition

In order to detect the anomalies in sensing data from unmanned systems, anomaly
detection methods based on prediction for multidimensional time series predict the value
using a pre-trained model and then use the distance between the true value and the
predicted value as the anomaly score. The following symbols are defined in the model:

Dt: Time series data as input.
i: Index of nodes in the graph for the sensing data time series.
vi: Similarity of the multivariate time series, vi ∈ Rd, i ∈ {1, 2, . . . , N}, and d denotes the
number of nodes in the graph.
Aij: Relationship between nodes, representing the edge from node i to node j, i.e., the
directed relation between node i and node j.
eji: Similarity between the embedding vector vi and its candidate relation Ci.
Utime

i : Input value with time information.
Unorm

i : Normalized value of time information.
Cen

i : Final hidden vector matrix encoded.
Hs

i : Prediction result by multichannel attention after linear transformation.
Ỹs

t : Prediction result after multi-channel data fusion.
Erri(t): Deviation between predicted and measured values.
ai(t): Deviation after normalization.
A(t): Exception score after aggregation of the function.
As(t): Exception score after simple moving average (SMA) processing.

The problem to be solved for GTAF, the anomaly detection model proposed in this
paper, is to take the sensing time series Dt as input and obtain the corresponding anomaly
detection evaluation score As(t) so as to determine the anomaly detection result based on
the relationship between the score and the threshold value.

2.2. The Framework of GNN

The purpose of GNN is to learn a state embedding vector, hv ∈ Rs, for each node,
which contains the information of each node’s neighbor nodes. hv represents the state
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vector of the node; this vector can be used to generate the output ov. Assume that f (·) is a
function with parameters, called a local transition function; this function is shared among
all nodes and updates the node state according to the input of neighboring nodes. Suppose
g(·) is a local output function (local output function), which is used to describe how the
output is generated:

hv = f
(

xv, xco[v], hne[v], xne[v]

)
(1)

ov = g(hv, xv) (2)

xco[v] represents the feature vector of node v, hne[v] represents the feature vector of the
edge associated with node v, xne[v] represents the state vector of the neighbor node of node v,
and xne[v] represents the feature vector of the neighbor node of node v. Assuming that all the
state vectors, all output vectors, all feature vectors and all node features are superimposed
and represented by H, O, X, XN , respectively, then a more compact representation can
be obtained:

H = F(H, X) (3)

O = G(H, XN) (4)

Among them, F and G are respectively called the global transfer function and the
global output function, which are the stacked versions of f and g for all nodes in the graph.
According to Banach’s fixed point theorem, GNN uses the following traditional iterative
method to calculate the state parameters:

Ht+1 = F
(

Ht, X
)

(5)

Among them, Ht represents the tensor of the iterative cycle of t. For any initial value
H0, Equation (5) can quickly converge to obtain the final fixed-point solution of Equation (3).

2.3. GTAF Model
2.3.1. Main Idea

The GTAF model proposed in this paper is an anomaly detection method for time
series data based on graph neural networks, and its structure is shown in Figure 1.
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As can be seen from Figure 1, the GTAF model mainly includes four steps, which are
listed as follows:
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(1) Relevance learning: According to the sensing data inputted, graph nodes embedding
vectors are set up, and then the directed graph is constructed so as to associate
the features in sensing data and facilitate information exchange. After that, the
similarity between vectors embedded in the nodes and their candidate relationships
are calculated.

(2) Prediction with Transformer and GAT: The sensing data contextual information vec-
tors are obtained using Transformer. The temporal information is processed and
fed into the multi-headed attention mechanism, and then layer normalization is
performed to prevent gradient disappearance or gradient explosion. The interdepen-
dencies between the multivariate sequences are captured using the graph attention
network (GAT), and finally the prediction results are obtained.

(3) Multi-channel data fusion: Based on the multi-channel transformer mechanism, the
characteristics of different sensing data are integrated using the bi-directional long
short-term memory network (Bi-LSTM) [32] as the structure for computing channel
attention, and then the results of different channels are evaluated and aggregated
according to the evaluation weights; the mean square error is used as the loss function.

(4) Anomaly judgement: The deviation between the predicted value and the observed
value is calculated, normalized and then aggregated using an aggregative function to
obtain the score for the final anomaly judgement.

2.3.2. Relevance Learning

In the proposed model, GTAF, graph structure is used to learn the dependencies
among sensing data. In many multivariate time-series data, each of the time series may
possess features highly deviating from others, and these features can be associated with
each other in very complex ways. Relevance learning means to capture the relevance
among different features of their behaviors in a multi-dimensional way.

(1) Vector definition

A vector vi is defined to represent the similarity of the multivariate time series, where
vi ∈ Rd, i ∈ {1, 2, . . . ,N}, i denotes the time series nodes and d denotes the number
of nodes.

(2) Establishment of directed graph

A directed graph is constructed according to the relationships between multivariate
time series data, in which nodes represent data of the time series and the edges represent
the feature relationships among the nodes, and the adjacency matrix of the directed graph
is denoted as A.

(3) Similarity calculation

For each node i, its dependency candidate relation is expressed as Ci ∈ {1 . . . . . . , N}/{i}.
If a priori information is available, Ci can be customized; otherwise, it is the full set except
itself. For node i, the similarity eji of the embedding vector of node i to its candidate relation
Ci can be calculated using Equation (6):

eji =
vi

Tvj

‖vi‖·‖vj‖
, f or j ∈ Ci (6)

The first k such normalized dot product is then selected, and TopK means the normal-
ized metric for the first k values. The elements Aji in the directed graph A can be expressed
as Equation (7). The value of k can be determined according to the desired sparsity:

Aji = 1, {j ∈ TopK({eki : k ∈ Ci})} (7)

2.3.3. Prediction with Transformer and GAT

In the proposed GTAF model, the multi-channel transformer mechanism and graph
attention network (GAT) are integrated to optimize the prediction performance. The
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transformer is used to obtain the contextual information vector and the GAT is used to
capture the interdependencies between user behaviors in order to achieve better prediction
results of the model.

(1) Embedding temporal information

The biggest feature of the transformer model is that it discards network structures
such as RNNs and CNNs. The transformer model initially showed its talents in the field of
machine translation. In recent years, many scholars have applied it to the fields of sequence
data prediction and target detection, and have achieved good results [33]. Guo et al. [34]
constructed an attention-based spatio-temporal graph network model for the prediction
of traffic flow, where the attention was implemented using the transformer model. Xu
et al. [35] built a spatio-temporal feature extraction module using the encoding block of the
transformer.

The structure of a single channel transformer is shown in Figure 2. In GTAF, a three-
channel transformer structure is used. The inputs to the transformer in the different
channels are expressed as Xs

i , (s = o, d, h). For the encoding layer, since the dimension size
of the input is not the same as that of the output, it is necessary to embed the input matrix
Oi into the hidden layer dimension space to facilitate the correlation operation with the
decoding layer. The calculation is as Equation (8):

Eemb
i = Xs

i Wen
s + ben

s (8)
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In Equation (8), Wen ∈ Rn×ds
model , ds

model indicates the size of the hidden layer of the
Transformer structure for that channel.

In GTAF, considering that the Transformer structure does not carry sequential infor-
mation, temporal information is added to the model in order to fully exploit the temporal
properties of the multivariate time series data.

The temporal labels are discretized using one-hot encoding, then all the codes are
stitched together. Suppose that the stitched vector is Ten

i ∈ Rl×dtime , where dtime denotes the
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length of the stitched codes. Then a mapping matrix is generated according to Equation (9)
to map Ten

i to the dimension of the coding structure:

PE(pos, L) =


sin
(

pos/10,000
l

do
model

)
, i is even number

cos
(

pos/10,000
l

do
model

)
, i is odd number

(9)

In Equation (9), pos ∈ [1, dtime] indicates the position of Ten
i in the sequence, and

l ∈
[
1, ds

model
]

indicates the dimension to be mapped. Using the above equations, the
dimensional transformation matrix can be expressed as Aen

s ∈ Rdtime×dmodel . As a result, the
input with temporal information can be calculated using Equation (10), where dlabel means
the number of time labels:

Utime
i =

Ten
i Aen

s√
dlabel

+ Uemb
i (10)

Next, the temporal information Utime
i is fed into the multi-headed attention module to

adjust the sequence characteristics, as is shown in Figure 3, where the inputs Q, K, V are all
Utime

i . The calculation in Figure 3 can be expressed as Equation (11):

MultiHead(Q, K, V) = Concat(head1, . . . , headh)Wen
s

headl = Attention
(

QWen
Q,l , KWen

V,l , VWen
V,l

)
=

Softmax

(
QWen

Q,l(KWen
K,l)

T

√
dk

)
VWen

V,l

(11)
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In Equation (11), Wen
s ∈ Rhdv×ds

model , Wen
Q,l ∈ Rds

model×dk ,Wen
K,l ∈ Rds

model×dk , Wen
V,l ∈

Rds
model×dv , where h denotes the number of attention heads, dk = dv = ds

model/h and T
means the transpose operation of a matrix.

(2) Layer normalization

Suppose the result matrix is Usel f
i after completing the adjustment. Considering that

some information may be lost during the adjustment, the original input is added to the
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result matrix according to the idea of residual networks, so as to keep the completeness of
all information. The calculation is as Equation (12):

Unorm
i = LN

(
Usel f

i + Utime
i

)
(12)

In Equation (12), LN denotes the layer normalization method [36]. The purpose of
layer normalization is to effectively prevent gradient disappearance or gradient explosion.

(3) Dependency capture

In GTAF, a graph attention network is used to capture the interdependencies among
data. Suppose that the graph contains N nodes, each with a feature vector of Gi and
dimension F, as Equation (13) shows:

G = {G1, G2, . . . , GN} (13)

A new feature vector δ′i can be obtained after performing a linear transformation to
the node feature vector G, as Equations (14) and (15) show:

δ′ = WGi (14)

δ′ =
{

δ′1, . . . . . . , δ′N
}

(15)

In Equation (14), W ∈ RF′×F is the matrix of the linear transformation, where F′ is the
dimension of the transformation matrix.

The feature vectors of the node i and node j are stitched together, and then the inner
product is calculated with a 2F′ dimensional vector a. The LeakyRelu function is adopted
as the activation function, as is shown in Equations (16) and (17):

aij =
exp
(

LeakyRelu
(

aT
[
Wsδ′i‖Wsδ′j

]))
∑k∈Ni

exp
(

LeakyRelu
(

aT
[
Wsδ′i‖Wsδ′j

])) (16)

G̃′i = concat

(
σ

(
∑

j∈Ni

ak
ijWs

kτj

))
(17)

At the end of the coding layer, the final encoded hidden vector matrix is obtained by a
simple feed-forward network with a non-linear mapping and a combination with the resid-
ual. The equation is as Equation (18), where Wen

s,0 ∈ Rds
model×2ds

model , Wen
s,1 ∈ R2ds

model×ds
model .

Cen
i = LN

(
Unorm

i +Relu
(
Unorm

i Wen
s,0 + ben

s,0
)
Wen

s,1G̃′i + ben
s,1

)
(18)

(4) Decoding

The input for the part of the decoding layer is unknown, so an initial value is needed
to start decoding. The output value yi is used as the initial activation value, and other
positions are all set to 0 for the beginning. Suppose the input matrix is Ỹs,temp

i and the result
after time encoding is Ỹs,time

i . The attention module in the decoder is different from that
in the encoder. Because the future cannot be seen in the decoder, a mask is added to hide
the data of the future, and then the output is obtained after connecting the residuals using
layer normalization.

In the core of the decoder, the multi-headed attention modules Q, K, V are Ỹs,norm
i , Cen

i
and Cen

i , respectively, where Ỹ
s,norm
i ∈ R1×ds

model represents the data of the last valid time
slot, through which the impact of different past time slots on the future can be captured
flexibly. Suppose the current valid time slot is t; the decoder hidden vector cde

t+1 can be
obtained through a simple feed-forward network with residual connections, and finally
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the predicted output of t + 1 is obtained through a linear mapping. The calculation is as
Equation (19):

ỹs
t+1 = cde

t+1Wde
s + bde

s (19)

In Equation (19), Wde
s ∈ Rds

model×m. After replacing ỹs
t+1 with the data from the t + 1

time slot in Ỹs,temp
t , the decoding continues to the next step, where the last valid time slot

becomes t + 1. The final prediction for the channel Ỹs
t is obtained after r cycles.

2.3.4. Multi-Channel Data Fusion

Predicted values can be obtained using a single-channel transformer mechanism, but
it also has some limitations. Therefore, in GTAF, a multi-channel transformer mechanism
is used to make full use of the characteristics of each channel. The results of different
channels using the channel attention approach are evaluated and aggregated according to
the evaluation weights so as to obtain a better prediction performance. The overall process
is shown in Figure 4.
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(1) Evaluation of channel attentions

In GTAF, the bi-directional long short-term memory (Bi-LSTM) network is used as the
base structure for the calculation of channel attentions, as is shown in Figure 5.
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Suppose the predicted values obtained for the three channels are Ỹo
i , Ỹd

i , and Ỹh
i ,

respectively. For the predicted value of a channel time slot:

cs
p = Concat

(
LSTM+

(
ỹs

p, c+p−1; λ+
)

, LSTM−
(

ỹs
p, c−p+1; λ−

))
(20)

In Equation (20), LSTM+ and LSTM− denote the forward and reverse LSTM cells,
respectively; λ+ and λ− denote their parameters, respectively; c+p−1 and c−p+1 denote the
previous output states of LSTM+ and LSTM− at the time of inputting, respectively. The size
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of cs
p is 2dfusion, and dfusion is the size of the hidden vector of the forward or inverse LSTM.

The calculations inside the forward and reverse LSTM cells are shown as Equations (21)–(26):

fp = sigmoid
(

W1

[
ỹs

p, c+p−1

]
+ b1

)
(21)

ip = sigmoid
(

W2

[
ỹs

p, c+p−1

]
+ b2

)
(22)

op = sigmoid
(

W3

[
ỹs

p, c+p−1

]
+ b3

)
(23)

ẽp = tamh
(

W4

[
ỹs

p, c+p−1

]
+ b4

)
(24)

ep = fp � ep−1 + ip � ẽp (25)

c+p = op � tanh
(
ep
)

(26)

In the above equations, fp, ip and op represent the results of the forgetting, input and
output gates, respectively, at the time slot, and ep is the state inside the LSTM cell.

(2) Aggregation

First, a linear transformation is performed, which can be achieved by Equation (27),
where WL ∈ R2dfusion×m.

Hs
i = Cs

i WL, (s = o, d, h) (27)

Next, it is stacked to obtain Hi ∈ Rr×m×3, then the Softmax function is executed on the
last dimension of Hi, and the last dimension of its result is split into three parts to obtain
Wo, Wd, and Wh.

The final prediction can be achieved by aggregation according to Equation (28):

Ỹi = Wo � Ỹo
i + Wd � Ỹd

i + Wh � Ỹh
i (28)

(3) Error minimization

The predicted output of the model should be as close as possible to the true value, so
the mean square error between the predicted output Ỹi

(t) and the observed data Yi
(t) is

used as a loss function to minimize the error.

LMSE =
1

Ttrain−w

Ttrain

∑
t=w+1

‖Ỹ(t)
i −Yi

(t)‖
2

2

(29)

2.3.5. Anomaly Judgement

To detect anomalies, the deviation between the predicted and observed values of node
i at time t can be calculated as Equation (30):

Erri(t) =
∣∣∣Y(t)

i − Ỹ(t)
i

∣∣∣ (30)

Then the deviation of each data item is normalized according to Equation (31), where
µ̃i is the median of Erri(t) and σ̃i is the interquartile range of Erri(t):

ai(t) =
Erri(t)− µ̃i

σ̃i
(31)

To express the result of anomaly detection of data item at the time t, the function max
is used for aggregation.

A(t) = max
i

ai(t) (32)
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Finally, simple moving average (SMA) is used to generate a smoothing score As(t). If
the value of As(t) exceeds a preset threshold, the data item at the time slot t is marked as
an anomaly.

2.4. Datasets

The purpose of this paper is to use the GTAF model to detect anomalies in unmanned
system data. The following two data sets were chosen as the experimental data for the
experiments in this paper.

(1) GFTD [37]

The dataset contains data of antenna components from 1 January 2016 to 31 December
2016, including 8 remote sensing attributes: antenna temperature, current, switch status
information, etc., and 2 status attributes: working or emergency stop, as shown in Table 2.

Table 2. Attributes in the dataset GFTD.

Components Attribute Code Attribute Description

Azimuth axis
TB8 Temperature
IB1 Current

Elevation axis
TB3 Temperature
IB2 Current

Cable TB9 Cable temperature

Signal antenna

TB2 Temperature
VB11 Power status
ZL5 Heater

ZB1_EMG Emergency stop status #1
ZB2_EMG Emergency stop status #2

The anomalies of the GFTD dataset are classified into three types: point anomalies,
collective anomalies and correlation anomalies [38]. A point anomaly means an outlier
in a set of data points. A collective anomaly refers to the fact that an individual may
not be anomalous when checked individually, but the simultaneous occurrence of these
individuals forms an anomaly. An association relationship anomaly means that there are
correlations among the data and an anomaly exists for the correlations. The three types of
anomalies in the dataset GFTD are described in detail in Table 3.

Table 3. Description of GFTD dataset anomalies.

ID Anomaly Type Amount

1 Point anomalies 60
2 Collective anomalies 80
3 Association anomalies 242

(2) SMAP [39]

This dataset SMAP (Soil Moisture Active Passive) contains a total of 429,735 data items
from 55 remote sensing channels, including 24 categories, and is divided into four levels:
L1, L2, L3 and L4. The L1 attributes contain instrument-related data and are presented as
granules based on SMAP half-orbits. The L2 attributes are geophysical soil moisture data
on fixed Earth grids based on L1 attributes and auxiliary information. The L3 attributes are
daily complex data based on L2 attributes and freeze-thaw status data. The L4 attributes
provide global spatial and temporal information on permafrost and soil moisture, which are
model-derived value-added data attributes for soil moisture and net ecosystem exchange of
carbon at the surface and root zone. The details of the dataset SMAP are shown in Table 4.
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Table 4. Details of the SMAP dataset.

Attribute Code Attribute Description Gridding (Resolution)

L1A_Radiometer Parsed radiometer remote sensing -
L1A_Raddar Parsed SMAP radar remote sensing -

L1B_TB Geolocated, calibrated brightness temperature in time order 36 km
L1B_TB_E Backus-Gilbert interpolated, calibrated brightness temperature in time order 9 km

L1B_S0_LoRes Low-resolution radar sigma0 in time order 5 × 30 km
L1C_S0_HiRes High-resolution radar sigma0 on swath grid 1 km

L1C_TB Parsed radiometer remote sensing 36 km
L1C_TB_E Backus-Gilbert interpolated, calibrated brightness temperature on EASE2 grid 9 km

L1B_TB_NRT Near realtime geolocated, calibrated brightness temperature in time order 36 km
L2_SM_A Radar soil moisture 3 km
L2_SM_P Radiometer soil moisture 36 km

L2_SM_P_E Radiometer soil moisture 9 km
L2_SM_AP SMAP active-passive soil moisture 9 km

L2_SM_P_NRT Near real-time radiometer soil moisture 36 km
L2_SM_SP SMAP radiometer/copernicus sentinel-1 soil moisture 3 km
L3_FT_A Daily global composite radar freeze/thaw state 3 km
L3_FT_P Daily composite freeze/thaw state 36 km

L3_FT_P_E Daily composite freeze/thaw state 9 km
L3_SM_A Daily global composite radar soil moisture 3 km
L3_SM_P Daily global composite radiometer soil moisture 36 km

L3_SM_AP Daily global composite active passive soil moisture 9 km
L4_SM Surface and root zone soil moisture 9 km
L4_C Carbon Net Ecosystem Exchange 9 km

Anomalies in the SMAP dataset are classified into 2 types: point anomalies and
contextual anomalies, as shown in Table 5. Contextual anomalies refer to the performance
of a point in time that is significantly different from that in the time slot before and after.
Detailed statistics on the amount of anomaly sequences, the total number of point anomaly
sequences, the total number of contextual anomalies, the total number of remote sensing
channels and the total amount of detected data are shown in the following table.

Table 5. Statistical information on anomalies in the SMAP dataset.

ID Anomaly Type Amount

1 Point anomalies 43
2 Contextual anomalies 26

2.5. Design of Experiments
2.5.1. Model Parameters

Anomaly detection was performed on the above two datasets, and 70% of data in
each of them were used as the training datasets with the holdout cross validation and the
remaining 30% as the test datasets. The parameters of the model are listed in Table 6.

Table 6. Experiment-related parameters.

Parameter Value Meaning

do
model 256 Implicit vector of inflow data channel
dtime 82 Vector after one-hot encoding of time tag

h 4 Attention head of multi-head attention module
dd

model 128 Implicit vector of outgoing data channel
dh

model 128 Implicit vector of fusion data channel
dfusion 128 Implicit vector of LSTM cell

Batch size 256 Batch size
Epoch 3000 Maximum round of complete training

Stop condition 200 200 consecutive rounds of error
Learning rate 0.05 Learning rate
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2.5.2. Environment of Experiments

The experiments in this paper are based on the deep learning framework Pytorch
for model testing. The specific environment configurations of experiments are shown in
Table 7.

Table 7. Configuration of hardware and software for experiments.

Item Detail

CPU AMD Ryzen5 5600X 6-Core Processor@3.7 GHz
RAM 16 GB DDR4@3200 MHz

Operating system
GPU

Ubuntu 18.04.3 LTS
NVIDIA GeForce RTX 2060 SUPER

CUDA CUDA 10.2
Python
PyTorch

Python 3.8
PyTorch 1.8.1

2.5.3. Evaluation Indicators

In this paper, three metrics, Precision (P), Recall (R) and F1 score, are used to evaluate
the performance of the model.

Precision is the accuracy rate of detection, which indicates the percentage of detected
genuine anomalies in the whole detected anomaly sequence. Recall indicates the percentage
of detected genuine anomalies in all samples correctly identified. F1 score is the harmonic
mean of the accuracy and recall rates, taking into account the accuracy and recall rates of
the model. The expressions of P, R and F1 are shown as Equations (33)–(35), respectively:

P =
TP

TP + FP
(33)

R =
TP

TP + FN
(34)

F1 = 2× P× R
P + R

(35)

In the above three equations, TP, FP, TN and FN denote true positives (number
of normal samples detected as normal), false positives (number of anomalous samples
detected as normal), true negatives (number of anomalous samples detected as anomalous)
and false negatives (number of normal samples detected as anomalous), respectively.

2.5.4. Control Methods

To verify the performance of the proposed model, GTAF, in the experiments, it is
compared with two classical multidimensional time series anomaly detection methods,
iForest and LOF, and five current advanced deep multidimensional time series anomaly
detection methods, DAGMM, OmniAnomaly, LSTM-VAE, THOC and GDN.

(1) iForest is an efficient anomaly detection method based on ensembles, which treats
points that are sparsely distributed and far from the high-density population as
anomalies. iForest has linear time complexity and is suitable for anomaly detection of
large-scale data, but a large amount of dimensional information that is still unused
after the random forest is constructed because each cut is a random selection of
1 dimension. This makes the method not suitable for high-dimensional time series
anomaly detection.

(2) LOF is a method for detecting outliers in a multidimensional dataset. It introduced a
local outlier factor (LOF) for each object in the dataset, indicating its outlier degree,
which quantifies how much of an outlier an object is. The outlier factor is local, i.e.,
only the restricted neighborhood of each object is considered. The method is loosely
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related to density-based clustering. However, it does not require any explicit or
implicit notion of clustering.

(3) DAGMM is an unsupervised deep learning model based on a self-encoder and a
Gaussian mixture model. The low-dimensional representation of the input and the
reconstruction error are obtained by a deep self-encoder, and the multidimensional
time series are modelled by a multilayer recurrent neural network. The model is then
optimized by the reconstruction error and the Gaussian mixture function likelihood
function, and the decoupled training of the two networks makes the overall model
more robust. However, such circular optimization leads to slow training of the model
and a lack of capture of dependencies between the metrics.

(4) OmniAnomaly is a stochastic recurrent neural network that utilizes random variable
concatenation and planar normalized flow to obtain the normal patterns of multi-
variate time series by learning their robust representations, reconstructing the input
data through feature representations and using reconstruction probabilities to iden-
tify anomalies. The method combines gated recurrent units (GRU) and VAE [40],
and the model takes into account both the time-dependence and the stochasticity of
multi-dimensional time series.

(5) LSTM-VAE [41]: LSTM [42] is a recurrent neural network that captures time-dependent
behaviors but does not suffer from the problem of vanishing gradients. LSTM-VAE
uses LSTM and VAE layers connected serially to project multimodal observations and
their temporal dependencies into the latent space at each time step. Because LSTM is
designed to be suitable for processing temporal data, LSTM-VAE is able to learn rich
temporal dependencies.

(6) THOC [43] is a time-domain single-class classification model for time series anomaly
detection that captures temporal dynamics at multiple scales using an extended recur-
rent neural network with jump connections. Using multiple hyperspheres obtained
by a hierarchical clustering process, a class of targets called multiscale V-vector data
descriptions is defined. This allows a set of multi-resolution temporal clusters to
capture temporal dynamics well. To further facilitate representation learning, the
method drives the hypersphere centers to be orthogonal to each other and adds a
self-supervised task to the temporal domain.

(7) GDN is a multidimensional time series anomaly detection method based on graph
neural networks, which learns the relationship graph between data patterns and
obtains anomaly scores through prediction and deviation scoring based on an at-
tention mechanism. It is an excellent deep model for multidimensional time series
anomaly detection because it can effectively learn inter-dimensional dependencies and
has good interpretability for inter-dimensional deviation anomalies by constructing
inter-dimensional dependency graphs through graph neural networks.

2.5.5. Scheme of Experiments

(1) Correlation among attributes: In order to verify the influence of different attributes
on the GTAF anomaly detection model, the correlation analysis of the attributes in
the GFTD dataset was carried out using Spearman’s correlation coefficients as a way
to analyze the possible influence of the relevant attributes on the anomaly detection
results of the sensing data.

(2) Comparison experiments for anomaly detection: In order to verify the performance
of GTAF, the model proposed in the paper, GTAF and several other models such as
iForest, LOF, DAGMM, OmniAnomaly, LSTM-VAE, THOC and GDN are used to
conduct experiments on the sensing data from the two datasets GFTD and SMAP so
as to compare their performances in anomaly detection. For each anomaly detection
model, the performance of the various models was evaluated using precision, recall
and F1 scores.

(3) Evaluation for anomaly types: In order to analyze the ability to detect different types
of anomalies such as point anomalies, collective anomalies and associated anomalies
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in GFTD data, and to analyze the impact of the proportion of anomalous data on the
detection performance, two sub-datasets of temperature and current were constructed
by selecting some data from the GFTD dataset, the temperature sub-dataset containing
TB2, TB3, TB8 and TB9, and the current sub-dataset containing IB1 and IB2. Similarly,
the SMAP dataset is also divided into four sub-datasets, L1, L2, L3 and L4, to analyze
the anomaly detection of the GTAF model in each dataset.

(4) Ablation experiments: To verify the effect of each improvement feature of GTAF, some
variant models, such as GTA, GTF, GT and TAF, were constructed by eliminating parts
of features of GTAF. These variant models and GTAF were used on the datasets GFTD
and SMAP, and their performances were compared.

(5) Parameter sensitivity: In order to study the parameter sensitivity of the model and
explore the anomaly detection performance of the model under different model
combinations, parameter sensitivity experiments were conducted. The parameter
values of GTAF and the four variant models GTA, GTF, GT, and TAF on the datasets
GFTD and SMAP are compared and analyzed.

3. Results and Discussion
3.1. Attribute Correlation of GFTD Dataset

The attributes of the GFTD dataset are described in detail in Section 2.3, and the
attribute correlation heatmap is shown in Figure 6, which analyzes the correlation between
the individual data attributes.
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The Spearman correlation coefficient between TB3 and TB8 is 0.98, that between TB8
and TB9 is 0.91 and that between TB3 and TB9 is 0.89. It can be concluded that TB3, TB8
and TB9 are strongly correlated, i.e., the azimuth axis temperature is positively correlated
with the elevation axis temperature and the cable temperature. The Spearman correlation
coefficients between TB2 and TB3, TB2 and TB8, and TB2 and TB9 are 0.65, 0.62 and 0.6,
respectively, and the signal antenna temperature is also correlated with other components.
The Spearman correlation coefficients between the temperature attributes TB2, TB3, TB8,
TB9 and the current attribute IB1, as well as the power state VB11, are smaller and show a
relatively low correlation with the current attribute IB2 and no correlation with the heater
attribute ZL5. As can be seen, several temperature attributes of the components are strongly
correlated, while temperature is weakly correlated with attributes such as current or heater,
and four temperature attributes are most relevant for the anomaly characterization.
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3.2. Comparison Experiments for Anomaly Detection
3.2.1. Anomaly Detection for GFTD Dataset

For the GFTD dataset, the GTAF model proposed in this paper and other control
models were used to undergo anomaly detection, and the results are shown in Table 8,
where the best results for the indicators are bolded.

Table 8. Results of anomaly detection analysis of GFTD dataset.

Point Anomalies Collective Anomalies Association Anomalies

P R F1 P R F1 P R F1

iForest 59.34 53.74 56.40 56.84 64.38 60.37 75.98 77.94 76.94
LOF 58.45 90.58 71.05 59.51 87.80 70.94 58.35 90.42 70.93

DAGMM 75.79 77.10 76.44 79.22 70.75 78.42 77.82 70.75 74.11
OmniAnomaly 88.67 91.17 89.89 83.34 94.49 88.57 77.97 95.86 85.99

LSTM-VAE 79.36 74.29 72.79 75.92 83.30 76.25 82.52 82.56 80.12
THOC 89.65 88.46 89.05 85.51 63.66 72.98 83.34 94.49 88.57
GDN 91.32 93.99 92.06 89.63 97.54 91.71 87.31 85.99 85.30
GTAF 92.28 96.66 94.12 92.52 99.03 94.17 93.70 93.90 93.80

As can be seen from Table 8, the precision of GTAF for GFTD data point anomalies
is 92.28%, which is 55.51%, 57.87%, 21.75%, 4.07%, 16.28%, 2.93% and 1.05% higher than
that of iForest, LOF, DAGMM, OmniAnomaly, LSTM-VAE, THOC and GDN, respectively.
The precision of GTAF for collective anomalies was 92.52%, which is 62.77%, 55.47%,
16.79%, 11.02%, 21.87%, 8.20% and 3.22% higher than that of the other seven models,
respectively. The precision of GTAF for correlation anomalies was 93.70%, which is 23.32%,
60.58%, 20.41%, 20.17%, 13.55%, 12.43% and 7.32% higher than that of the other seven
models, respectively. The recall rates of GTAF for point anomalies, collective anomalies
and correlational relationship anomalies were 96.66%, 99.03% and 93.90%, respectively,
which were better than the recall rates of the other methods. Similarly, the F1 scores
of GTAF of 94.12%, 94.17% and 93.80% for point anomalies, collective anomalies and
associative relationship anomalies, respectively, outperformed the recall rates of the other
seven methods.

From Table 8, it can be seen that the GTAF model has an advantage over the other
methods in terms of detection accuracy in all metrics. In terms of stability, the GTAF model
also has an advantage in detecting point anomalies, collective anomalies and correlation
anomalies. In terms of sensitivity to correlation anomalies, the GTAF model has an out-
standing advantage, with the other methods outperforming the other methods in terms of
average F1 scores for correlation anomalies.

3.2.2. Anomaly Detection for SMAP Dataset

The results of the experiments of GTAF and the other seven time series anomaly
detection methods on the SMAP dataset are shown in Table 9.

As can be seen in Table 9, GTAF has a precision of 96.92% and 96.36% for point
anomalies and contextual anomalies in SMAP data, respectively, a recall rate of 93.13%
and 94.10%, and an F1 score of 94.99% and 95.27%, which are higher values than those of
iForest, LOF, DAGMM, OmniAnomaly, LSTM- VAE, THOC and GDN, also demonstrating
the performance of the GTAF model.

The experimental results show that GTAF outperforms the most popular multidimen-
sional time series anomaly detection methods in terms of performance metrics for two
anomaly types of the SMAP dataset, demonstrating that GTAF learns better temporal and
inter-metric dependencies as well as local and global data features. The five modes, iForest,
LOF, DAGMM, THOC, and LSTM-VAE, mainly model temporal dependencies and are
more sensitive to local temporal dependencies in data. OmniAnomaly focuses more on
inter-metric anomalies, and GDN has a good construction of inter-metric dependencies
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through graph neural networks, but neither of the above two approaches focuses enough on
temporal dependencies. In summary, GTAF can learn the temporal and inter-dimensional
dependencies of multidimensional time series more effectively, and can build richer feature
representations in terms of data localization and data globalization, making up for the
shortcomings of previous multidimensional time series anomaly detection methods that
cannot capture multi-level information dependencies at the same time.

Table 9. Comparison results of anomaly detection.

Point Anomalies Context Anomalies

P R F1 P R F1

iForest 53.94 86.54 66.45 69.42 59.07 63.83
LOF 47.72 85.25 61.18 58.92 56.33 57.60

DAGMM 77.82 70.75 74.11 86.45 56.73 68.51
OmniAnomaly 89.02 86.37 87.67 83.34 81.99 82.66

LSTM-VAE 85.49 79.94 82.62 88.67 67.75 78.81
THOC 88.45 90.97 89.69 92.06 89.34 90.68
GDN 94.37 95.13 94.75 94.37 93.03 93.70
GTAF 96.92 93.13 94.99 96.36 94.10 95.27

3.3. Evaluation for Anomaly Types
3.3.1. Anomaly Types in GFTD Dataset

It can be seen from the analysis in Section 3.1 that the correlation between the tempera-
ture attributes is strong and there are also certain correlations between the current attributes,
so the attributes are divided into two sub-datasets with strong correlation: temperature and
current. The three types of anomalies, point anomaly, collective anomaly and association
anomaly, are experimented with, and the results are shown in Figure 7.
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In Figure 7, the average F1 scores of the GTAF model were 93.55%, 92.81% and 93.90%
for the three types of anomalies in the temperature dataset and 94.52%, 93.47% and 93.60%
in the current dataset, respectively. For the point anomaly type and collective anomaly
type, the F1 scores of the GTAF model in the temperature data set were smaller than those
in the current dataset, indicating that temperature had some influence on the anomaly
detection results and the temperature data were more volatile and correlated with the
anomalies. However, for the association anomaly type, the F1 score of the GTAF model
with the temperature dataset is higher than that in the current dataset, indicating that the
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GTAF model links the correlation between temperature attributes and captures the anomaly
relationship between them, leading to a relatively higher F1 score.

3.3.2. Anomaly Types in SMAP Dataset

As described in Section 2.3, the dataset SMAP contains four levels of anomalies, L1,
L2, L3 and L4, and two types of anomalies, point anomalies and contextual anomalies. The
GTAF model performs anomaly detection for each level of data, and the results for the two
types of anomalies in SMAP dataset are shown in Figure 8.
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As can be seen from Figure 8, the GTAF model has a relatively high F1 score of 94%
or more on all four sub-datasets for both the two types, point anomalies and contextual
anomalies. For the type of point anomalies, GTAF performs well on the L3 product with
an F1 score of 96.50%, better than the F1 scores of 95.52%, 94.64% and 94.93% of the GTAF
model on the L1, L2 and L4 attributes, indicating that the GTAF model is better at capturing
outliers and detecting data anomalies in the L3 attributes. In terms of contextual anomaly
types, GTAF performed well on the L4 product with an F1 score of 96.30%, which is better
than the F1 scores of 96.15%, 96.02% and 96.30% for the L1, L3 and L4 attributes, indicating
that GTAF also performs well on data with strong contextual environmental correlations
between spatio-temporal and soil moisture information such as L4.

3.4. Ablation Experiments

In order to further validate the rationality and effectiveness of the various modules
of GTAF, the model proposed in this paper, ablation experiments of GTAF are performed
using the full experimental dataset. The five models are listed as follows:

(1) GTAF: the full model proposed in this paper, which uses the transformer model, the
graph attention network and the multi-channel fusion module on the basis of GDN.

(2) GTA: GTAF w/o F, i.e., the multichannel fusion module is removed from GTAF.
(3) GTF: GTAF w/o A, i.e., the graph attention network is removed from GTAF.
(4) GT: GTAF w/o AF, i.e., the graph attention network and multi-channel fusion module

are removed from GTAF.
(5) TAF: GTAF w/o G, i.e., the directed graph part for the correlation learning is removed

from GTAF.

The results of ablation experiments of the above five models on the three perfor-
mance metrics of P, R and F1 scores on the two experimental datasets are shown in
Tables 10 and 11.
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Table 10. Results of ablation experiments using GFTD dataset.

Point Anomalies Collective Anomalies Association Anomalies

P R F1 P R F1 P R F1

GTAF 92.28 96.66 94.12 92.52 99.03 94.17 93.70 93.90 93.80
GTA 87.31 85.99 85.30 82.52 82.56 80.12 87.11 82.18 87.53
GTF 88.08 96.10 91.16 84.03 91.18 86.51 82.35 85.47 82.99
GT 79.36 74.29 72.79 80.81 82.22 81.51 80.15 84.46 82.25
TAF 77.44 80.12 78.79 75.22 79.60 77.35 73.40 80.51 76.45

Table 11. Results of ablation experiments using SMAP dataset.

Point Anomalies Contextual Anomalies

P R F1 P R F1

GTAF 96.92 93.13 94.99 96.36 94.10 95.27
GTA 94.77 92.64 93.69 92.25 90.99 91.66
GTF 95.82 92.33 94.04 93.11 93.28 93.19
GT 94.42 92.15 93.27 90.17 90.22 90.19
TAF 91.32 89.99 90.65 88.08 93.10 90.52

GTAF, the model proposed in this paper, improved the average F1 scores by 11.53%
and 2.65% compared with the variant model GTA, 8.23% and 1.62% compared with the
variant model GTF, 19.25 and 3.71% compared with the variant model GT, and 21.28% and
5.02% compared with the variant model TAF for both experimental datasets, respectively.

Compared with the model GT, the model GTA improved the average F1 scores on
the two datasets by 6.93% and 2.92%, respectively, demonstrating that the graph attention
network can capture dependencies and predicts well with the transformer model fusion,
but the absence of the multichannel fusion module causes the model’s inability to fully
learn global information.

Compared with the model GT, the model GTF improved the F1 scores on the two
experimental datasets by 10.18% and 2.06% respectively, demonstrating that the adoption
of the multichannel fusion module helps the model to learn richer and more effective
features both globally and locally on the data.

The model GTF achieved an increase of 3.04% and 1.01% in the mean F1 scores on
the two experimental datasets, respectively, compared to the model GTA, demonstrating
that the multichannel fusion module is able to aggregate the results, resulting in better
anomaly detection.

The performance of the model TAF is lower than that of GTAF, in both datasets,
suggesting that the graph structure is also critical for the capture of anomalous data.

The analysis of the ablation experimental results demonstrates that, in the proposed
model, GTAF, the combination of the multichannel fusion module and the transformer-
model fused with the graph attention network can capture both local and global infor-
mation dependencies of the multidimensional time series, thus exhibiting better anomaly
detection performance.

3.5. Parameter Sensitivity

In the construction of the GTAF model, the parameter D = dtime (vector size after
timestamp encoding) has an important impact on the prediction part of the Transformer
model and the graph attention mechanism. In order to investigate the parameter sensitivity
of the model and to explore the anomaly detection performance of the model under different
combinations of parameters, parameter sensitivity experiments are conducted in this paper.
In this section, experiments are conducted for different values of the parameter D to verify
its effect on the model.
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The value interval of D in the experiments is set as (10, 80). The impact of the
parameter D on the performances of the proposed GTAF model and the four ablation
models on the two data sets were examined, and the experimental results are shown in
Figure 9. Among them, GTAF indicates the proposed model, GTA indicates GTAF w/o F
model, GTF indicates GTAF w/o A model, GT indicates GTAF w/o AF model and TAF
indicates GTAF w/o G model.
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In the dataset GFTD, the anomaly detection performance metrics of the five anomaly
detection models trended upwards in the interval (10, 50) and peaked at a D value of 50;
similarly, in the dataset SMAP, F1 scored best when D was in the interval (10, 50), and the
anomaly detection F1 score slowly decreased when D was greater than 50. In the dataset
GFTD, the performance metrics of the five anomaly detection models trended downwards
in the interval (50, 80) and stabilize at (70, 80); in the dataset SMAP, the F1 score decreased
when D was in the interval (50, 80). It is worth noting that all three indicators of the GTAF
model remain at high levels in both datasets GFTD and SMAP.

After the description of the above details, we can explain this situation [44,45]. Sen-
sitivity analysis was performed on three performance metrics: Precision, Recall and F1
score. The anomaly detection performance of each model initially improved as the D
value increased because the input time series could not characterize the local contextual
information well when D was too small. However, when the D value is too large, subtle
local anomalies are more likely to be hidden in the large number of normal time points,
which makes the anomaly detection performance decrease. The GTAF model performs
better in all performance indicators when the D value is 50, so the D value of 50 is the most
suitable for this experiment.

4. Conclusions

To improve the performance of anomaly detection for sensing data, a composite model,
GTAF, is proposed in this paper, which is based on GDN, combining transformerwith a
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graph attention network and incorporating a multi-channel data fusion module. The
proposed model, GTAF, captures the unique features of each time series using embedding
vectors; then, it uses directed graphs to learn the dependencies between time series data,
while the Transformer module fuses with the graph attention mechanism to predict the
values using the graph deviation score to identify deviations in the learned relationships,
and the deviation between the true and predicted values is the final score for anomaly
judgement. The performance of the proposed GTAF model is examined using two datasets
from unmanned systems, and outperforms other state-of-the-art methods, demonstrating
the effectiveness of the design of GTAF.

However, anomaly detection for unmanned systems should be able to detect anomalies
in real-time flight data, which the GTAF model did not fully investigate. Thus, for future
directions of research in anomaly detection on real-time data, the lightweighting of the
model and the optimization of internal structure of the model will be studied to increase
the anomaly detection rate and reduce the false positive rate in order to meet a wide range
of requirements for anomaly detection in unmanned systems.
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