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Abstract: This paper proposes a random tree algorithm based on a potential field oriented greedy
strategy for the path planning of unmanned aerial vehicles (UAVs). Potential-field-RRT (PF-RRT)
discards the defect of traditional artificial potential field (APF) algorithms that are prone to fall into
local errors, and introduces potential fields as an aid to the expansion process of random trees. It
reasonably triggers a greedy strategy based on the principle of field strength descending gradient
optimization, accelerating the process of random tree expansion to a better region and reducing
path search time. Compared with other optimization algorithms that improve the sampling method
to reduce the search time of the random tree, PF-RRT takes full advantage of the potential field
without limiting the arbitrariness of random tree expansion. Secondly, the path construction process
is based on the principle of triangle inequality for the root node of the new node to improve the
quality of the path in one iteration. Simulation experiments of the algorithm comparison show that
the algorithm has the advantages of fast acquisition of high-quality initial path solutions and fast
optimal convergence in the path search process. Compared with the original algorithm, obtaining the
initial solution using PF-RRT can reduce the time loss by 20% to 70% and improve the path quality by
about 25%. In addition, the feasibility of PF-RRT for UAV path planning is demonstrated by actual
flight test experiments at the end of the experiment.

Keywords: path planning; rapidly-exploring random tree; potential field; greedy strategy; root node
iteration; unmanned aerial vehicles

1. Introduction

With the development of technology for UAVs, the application of UAVs is becoming
more and more widespread. Military UAVs can perform tasks such as intelligence col-
lection, air early warning and electronic jamming [1–3]. Civil applications include aerial
photography [4], agricultural plant protection [5], express transportation [6], geological
mapping [7] and fault inspection [8]. UAVs complete their mission with a variety of
capabilities, one of which is their path-planning capability.

Common path-planning algorithms can be classified as follows. Graph-based planning
methods include A* [9], D* [10], and their optimization algorithms [11,12]. Since this type
of algorithm is not suitable for path searching in high-dimensional space, it is often used for
unmanned vehicles for path planning in the two-dimensional plane. Bionic-based planning
methods, such as GA [13], ACO [14,15], and PSO [16], is a class of algorithms more often
used to deal with patrols or secondary path optimization. Potential-field-based planning
methods mainly include APF and its optimization algorithms [17–19], which have the
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problem of falling into local optimization. Sampling-based planning methods, such as
RRT [20] and PRM [21], can be used to solve high-dimensional path-planning problems.
In addition, their advantages are more obvious as the dimensionality increases. For this
reason, the study of RRT and its optimization algorithm has received considerable attention
from scholars in recent years.

Steven M. LaValle proposed the RRT algorithm [20] in 1998 to solve the robot path-
planning problem, attempting to expand the path through node iteration, making the path
branch like a tree until the branch touches the target point. Kuffner et al. proposed RRT-
connect [22] in 2000, which introduces a dual-tree expansion strategy and adds a greedy
strategy to the expansion of auxiliary trees to reduce the map complexity by expanding
both trees simultaneously. Karaman et al. proposed the RRT* [23] algorithm in 2011, which
improves path quality through root node reconstruction, sacrificing small time costs and
saving a large amount of path costs, making RRT* the most successful variant of RRT.
In 2019, Jeong proposed a Q-RRT* [24] algorithm based on RRT*, which optimizes the
path cost of each node under the current expansion state through root node iteration. In
addition, the development of RRT has also derived a series of optimization algorithms such
as BG-RRT [25], Informed RRT* [26], PQ-RRT* [27], F-RRT* [28], and DPRRT* [29].

This paper proposes an improved path-planning algorithm: PF-RRT, which incorpo-
rates a potential-field-oriented greedy strategy in RRT. It uses the field strength matrix of
the artificial potential field to calculate and determine whether to perform greedy extension
of the random tree, and speeds up the search of the random tree to the target point. After
a new node is generated, one iteration of its root node is performed, making PF-RRT
improve the path quality without increasing the time cost. In addition, the performance
and feasibility of PF-RRT is demonstrated by conducting simulation tests of the algorithm,
ROS-based PX4 simulation flight tests, and actual UAV flight tests in turn.

The structure of this paper is as follows: In Section 2, the path-planning problem
is described and defined, and the ideas of the RRT algorithm and APF algorithm are
introduced to assist in understanding PF-RRT. In Section 3, DG-RRT is proposed to solve
the path-planning problem. In Section 4, the superiority of the algorithm is analyzed by
comparing the simulation experiments in two-dimensional and three-dimensional states,
and the flight states of the UAV in the simulated and real environments are shown.

2. Related Works

In this section, the path-planning problem and its objectives are described. The
principles of RRT and APF algorithms for path searching are also introduced in depth to
aid in understanding the conception of PF-RRT.

2.1. Problem Definition

X= (0, 1)n is a n-dimensional constructed space, Xhinder is an obstacle region, and
X f ree is a blank region satisfying {

X f ree ∩ Xhinder = ∅
X f ree ∪ Xhinder = X

. (1)

Meanwhile, a path-planning problem is defined through (X f ree,Xinit, Xgoal), where
Xinit ∈ X f ree is the initial starting point and Xgoal ∈ X f ree is the target region. Let a
continuous function Φ : [0, 1] 7→ X with bounded variation be a path, and the path Φ is an
unobstructed path when ∀τ ∈ [0, 1] and Φ(τ) ∈ X f ree.

Definition 1. Effective path planning is finding a feasible path Φ for a given motion planning
problem (X f ree,Xinit, Xgoal) and making Φ collision-free, where{

Φ(0) = Xinit
Φ(1) ∈ Xgoal

. (2)
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Definition 2. Optimal path planning is to find a feasible path Φ∗ for a given motion planning
problem (X f ree,Xinit, Xgoal) such that the path cost Φ is minimized and such that it satisfies{

c(Φ∗) = min{c(Φ)}
Φ ∈ X f ree

, (3)

where c(Φ) is the path cost of path Φ from Xinit to Xgoal .

2.2. Rapidly-Exploring Random Tree

“Speed” is the biggest advantage of RRT, and randomness is also its biggest advantage,
which makes it free from the trouble of falling into local optimization. The solution idea
for the feasible path is to quickly expand the path like a tree, spreading from the starting
point xinit to the surrounding areas until the target point xgoal is searched. It is very
common to address the dynamic programming problem by constructing a weighted graph
G = (V, E), where V = {x1, x2, x3, · · · xn} is the vertex set composed of random tree nodes
xi(i ∈ {1, 2, · · · n}) and E is the edge set. Algorithm 1 provides a basic RRT construction
idea, which is an iterative process that tries to generate a feasible new node xnew for each
iteration to expand the random tree after setting the end condition.

Algorithm 1 RRT
Input: Map, xinit, xgoal ;
Output: G = (V, E);
1 : V = {xinit}, E = ∅, i = 0;
2 : while True do
3 : xrand ← Sampling(i);
4 : i← i + 1;
5 : xnearest ← Nearest(G, xrand);
6 : xnew ← GetNode(xrand, xnearest);
7 : if ObstacleFree(xnew, xnearest) then
8 : V ← V ∪ {xnew};
9 : E← E ∪ {(xnearest, xnew)};
10 : if xnew ≈ xgoal then
11 : return (V, E);

The original procedure used in the RRT algorithm is described below:

• Sampling(): Given a weighted map G = (V, E), it returns a random coordinate point
in the map as a guide point xrand.

• Nearest(): Given G = (V, E) and guide point xrand, it calculates the point closest to
xrand in V as the extended proximal point xnearest, and returns it.

• GetNode(): Given xnearest and xrand, it takes xnearest as the starting point xrand as the
guide, intercepts the point at which the set step length of the upper guide distance
xnearest is xnew, and returns to xnew.

• ObstacleFree(): Given xnearest and xnew, it returns True or False after collision checking.
In addition, the calculated distances are all Euclidean distances.

2.3. Artificial Potential Field

The basic principle of the APF is to construct a potential-field function to quantify
the influence of the current position by the potential field. Any position in the map is
subject to the combined force of gravitational and repulsive forces, where the target point
gives the gravitational force and the obstacle provides the repulsive force. It searches for
the direction in which the potential energy decreases as the optimal path at the current
moment, and ultimately moves to the target point. The gravitational and repulsive forces
of an artificial potential field are shown in Figure 1.
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Figure 1. Schematic diagram of comprehensive force.

Any position in space is affected by the gravitational force of the target point, and
the farther away from the target point, the greater the gravitational force received. The
gravitational potential-field function Uatt(q) can be defined as Equation (4):

Uatt(q) =
{ 1

2 Kξ ρ2(q, qgoal) q ∈ Ω
0 q /∈ Ω

, (4)

where q (q ∈ Ω, Ω is the area for path planning) is the current position, Kξ is the gravita-
tional gain parameter, and ρ(q, qgoal) is the Euclidean distance from the target point. The
corresponding gravitational force calculation function through the gravitational potential-
field model is as follows:

Faat(q) = −∇Uatt(q) =
{

Kξ ρ(qgoal − q) q ∈ Ω
0 q /∈ Ω

. (5)

The repulsive-field for the local field is subject to repulsive force when entering a
specific range of the repulsive field, and the closer to the barrier it is, the greater the
repulsive force. The repulsion field function Urep(q) is defined as Equation (6):

Urep(q) =

{
1
2 Kη(

1
ρ(q,qobs)

− 1
ρ0
)

2
ρ(q, qobs) ≤ ρ0

0 ρ(q, qobs) > ρ0
, (6)

where Kη is the repulsive field gain coefficient, qobs is the obstacle position, ρ(q, qobs) is
the distance from the current position to the obstacle, and ρ0 is the repulsive range. The
corresponding repulsive force calculation function through the repulsive potential-field
model is

Frep(q) = −∇Urep(q) =

{
Kη(

1
ρ(q,qobs)

− 1
ρ0
) 1

ρ2(q,qobs)
∇ρ(q, qobs) ρ(q, qobs) ≤ ρ0

0 ρ(q, qobs) > ρ0
. (7)

Combining the gravitational occasion repulsive field, the combined force at the current
position is

F(q) = Faat(q) +
n

∑
1

Frep(n)(q). (8)

2.4. Analysis of the Advantages and Disadvantages of Two Algorithms

APF is essentially a feedback control method that uses a gradient descent mechanism
to construct a feasible path, which has the advantage of being somewhat robust to control.
However, it has the very obvious disadvantage that it tends to fall into local minima in
complex environments. In addition, it is accompanied by an exponential increase in the
number of operations when solving high-dimensional path-planning problems. The RRT
algorithm is the exact opposite of APF. RRT has a great advantage in high-dimensional
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path planning, but the stochastic nature of scaling causes its time advantage to be gradually
canceled out. The ideal answer to solving path-planning problems is to obtain high-quality
feasible paths quickly. By combining the advantages of the rapid scaling of random trees
with the optimal orientation of potential fields, it becomes possible to quickly obtain better
paths in high-dimensional environments.

3. Potential-Field-RRT

The APF algorithm has a good orientation to the path expansion trend, but it is easy
to fall into local misconceptions in a slightly complex map. Combining APF to improve
the RRT algorithm, a greedy algorithm based on potential-field orientation is added to the
expansion process of the random tree, which accelerates its expansion to more optimal
regions and avoids the problem of local errors. In addition, performing one iteration of
the root node after generating new nodes makes it possible to improve the path quality
without increasing the time cost.

3.1. Greedy Strategy Based on Potential-Field Orientation

First, the artificial potential field is constructed to calculate the force field for the
path-planning map area. In practical applications, it is common to slice the large area,
calculate the middle value of the small area as the field average force, and output the force
field in the form of a matrix. This setup has two advantages:

I. It is more convenient to obtain the path field mean force in the form of a look-up
table, and it can improve the efficiency of operation;

I I. It is easier to distinguish between obstacle areas and blank areas based on the data
of the field force matrix, thus making collision detection easy.

Setting the map length and width as W and L, each small area resolution is Rreso,
then the length and width can be divided into the number of regions M = W/Rreso and
N = L/Rreso. Each small area subject to the potential-field force:

Faat(qi,j)=Kξ ρ(qgoal − qi,j)

Frep(qi,j) = Kη(
1

ρ(qi,j ,qobs)
− 1

ρ0
) 1

ρ2(qi,j ,qobs)
∇ρ(qi,j, qobs)

F(qi,j) = Faat(qi,j) +
n
∑
1

Frep(qi,j)

, (9)

where F(qi,j) denotes the position coordinates of the calculated small area (i ∈ [0, M− 1],
j ∈ [0, N − 1]), n denotes the number of obstacles, and the final output Fcon is a two-
dimensional matrix of size M× N. The output field strength data are visualized as shown
in Figure 2a,b.

(a) (b)

Figure 2. Potential-field visualization gradient diagram: (a) potential-field gradient plan; and
(b) potential-field stacking diagram.
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Figure 2a is a flat gradient map; the deeper the color, the greater the force. The output
data are stacked according to the size of the value to build Figure 2b. Ideally, the collision-
free path extends from the high potential energy region to the low potential energy region.
The potential field constructed in this section is only used to assist in the expansion of the
random tree. f is a small-area potential field, which is mainly used to obtain the potential
energy of a node through coordinate transformation and to calculate the average potential
energy of the path. Let the coordinates of the node be node(x, y), then the force on the point
is fnode(x,y):

fnode(x,y) = F(qint(x/Rreso),int(y/Rreso)), (10)

where int(x) means that x is forced to be converted to an integer. The calculation of the
mean field force on a section of the path is performed by sampling the section of the path
and then calculating the potential field for each sample point to find its mean value fx:

fx =
1
m

m

∑
a=1

fnode(xa ,ya) , (11)

where m is the number of sampling points on the path. The selection of whether to use the
greedy algorithm for path expansion is made by calculating and analyzing the fx values on
the path, as shown in Figure 3.

(a) (b)

Figure 3. Schematic diagram of greedy strategy based on potential-field orientation: (a) comparing
average field force; and (b) path extension.

Figure 3a,b show the schematic diagram of greedy strategy expansion based on the
potential-field orientation, where Figure 3a generates random guide points xrand, after
calculating the proximity point xnearest, after touch detection that satisfies fx < Fthreshold
(Fthreshold is a set threshold defining the obstacle area and blank area) after intercepting the
end point of the set step as a new node xnew according to the single-step expansion step after
intercepting xnearest as the center of the circle −−−−−−−→xnearestxrand as the direction. The difference
between other random tree algorithms is that instead of regenerating new bootstrap points
immediately after generating new nodes to start the expansion of new arguments, the
bootstrap points generated in the previous round are then used to further expand in the
current direction by a factor of two steps to generate feasible nodes xmay, and calculate the
field-average force flast on path lxnearestxnew and the field-average force fx on path lxnewxmay .
When satisfied fx < flast, xnew is used as the proximal point xnearest, and xmay is stored as
the new node xnew to repeat the round. The bootstrap point xrand is regenerated when
fx > Fthreshold or fx ≥ flast is obtained based on the potential-field matrix F. The expansion
of the random tree is re-performed, as shown in Figure 3b.

As shown in Figure 4a,b, the potential-field stacking plots are shown for APF and
combined with RRT improvement, respectively. As the blue area deepens, the potential-
field force gradually increases. The yellow ‘star’ is the starting point, the blue ‘triangle’ is
the end point, and the red route is the output path. In addition, the green route in Figure 4b
is the extended random tree. In complex maps, APF is prone to fall into local minima, and
the stochastic nature of RRT allows it to eliminate that problem. In addition, it can be seen
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from Figure 4b that the gradient descent mechanism makes the random tree expand more
diffusely in the better region, so it can accelerate the search to the target point.

(a) (b)

Figure 4. Comparison of the effect before and after algorithm improvement: (a) APF; and (b) RRT-
based APF.

3.2. Root Node Iterates Once

To obtain a higher-quality path solution, when a new node xnew is created, instead of
storing xnearest as its root node, an iteration is performed on its root node. If the new path
constructed passes the touch detection, the root node is updated forward once. Compared
with the conventional algorithm, which directly takes nearest point xnearest as the root node,
this approach sacrifices only a little time cost for more path cost. The schematic diagram is
shown in Figure 5.

(a) (b)

Figure 5. Schematic diagram of root node iteration once: (a) probing the root node; and (b) path re-
configuration.

Where xparent
nearest is the root node of the proximal point xnearest, when the new node xnew is

obtained, xnearest is no longer directly stored as its root node xparent
new . As shown in Figure 5a,

assuming that a triangle is constructed with xparent
nearest, xnearest, and xnew as the vertex, it is

known from the triangle theorem:

lxnewxparent
nearest

< lxnearestxparent
nearest

+ lxnewxnearest . (12)

Therefore, its root node is selected by verifying the connectivity of lxnewxparent
nearest

and

calculating the field-averaged force fx on lxnewxparent
nearest

, as shown in Equation (13):

{
xparent

new = xparent
nearest fx < Fthreshold

xparent
new = xnearest fx ≥ Fthreshold

. (13)
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When the calculated field-averaged force fb is less than the threshold Fthreshold, as
shown in Figure 5b, the reconfiguration path selects xparent

nearest as the root node of the new
node xnew. The core idea of PF-RRT is to reduce the time cost of the search by accelerating
the paths to better regions through a potential-field-oriented greedy strategy. In addition,
a root node iteration is performed when a new node is generated, and the feasibility of
path reconstruction is verified. The complete idea of the PF-RRT algorithm is shown in
Algorithm 2.

Algorithm 2 PF-RRT
Input: Map, xinit, xgoal ;
Output: G = (V, E);
1 : V = {xinit}, E = ∅, i = 0, flast = Fthreshold = 50;
2 : Fcon = FieldCalculation(Map);
3 : while True do
4 : xrand ← Sampling(i);
5 : i← i + 1;
6 : xnearest ← Nearest(G, xrand);
7 : while True do
8 : xnew ← GetNode(xrand, xnearest, Fcon);
9 : fx ← ObstacleFree(xnew, xnearest, Fcon);
10 : if fx < Fthreshold and fx < Flast then
11 : V ← V ∪ {xnew};
12 : if ObstacleFree(xnew, nearestnearest, Fcon) < Fthreshold then
13 : xnearest ← nearestnearest;
14 : E← E ∪ {(xnearest, xnew)};
15 : flast ← fx;
16 : xnearest ← xnew;
17 : else break;
18 : if xnew ≈ xgoal then
19 : return (V, E);

The following explains the original procedure in the PF-RRT that differs from the RRT:

• FieldCalcuation(): Given the map information, the map is sliced, and the potential-
field force matrix Fcon is calculated and output according to Equation (9).

• ObstacleFree(): Unlike other RRT algorithms, here the field-averaged force fx of the
detected segment path is calculated and returned based on the input potential-field
force matrix Fcon.

4. Simulation Experiment and Analysis

As shown above, PF-RRT consists of two parts, path expansion and root node iterative
optimization, in order to obtain high-quality initial solutions faster. Based on the idea of
the original RRT (shown in Algorithm 1), RRT, RRT*, and Q-RRT* are programmed and
used as comparison algorithms to verify the performance of PF-RRT.

This paper conducts a series of experiments to evaluate the performance of the PF-
RRT algorithm. The simulation experiment selects RRT as the benchmark algorithm
for longitudinal comparison, and the classical RRT* and the newer Q-RRT* as the cross-
sectional comparison algorithm, and then quantifies the output of RRT as the benchmark
value normalized cross-sectional algorithm output to prove the performance advantages
and disadvantages of the four algorithms in obtaining the initial solution. Meanwhile,
iterative convergence experiments are conducted to compare the four algorithms and verify
the performance of PF-RRT.

4.1. Simulation Environment and Its Initial Conditions

Pycharm was chosen as the simulation platform, the programming language is
Python 3.7, and the computing processing core is Intel Core i7-7700, RAM 16G DDRT.
Figure 6a,b show the simple fragmented obstacle map and the more complex maze map in
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a two-dimensional plane, with the size of 200 m (horizontal direction) × 200 m (vertical
direction). Figure 7a,b show the columnar map and the fragmented map in the three-
dimensional space, with the size of 30 m (horizontal) × 30 m (vertical)× 20 m (vertical). In
each map, the red pentagram represents the starting point, the blue triangle represents the
target point xinit, and the gray area is the impassable obstacle area.

In order to obtain more realistic and comparable data, the single extension step size is
set to 5 for each algorithm in the 2D environment, and the root node reconstruction search
radius is set to 15 for both RRT* and Q-RRT*. The single extension step for each algorithm
in the 3D environment is set to 1.5, and the root node reconstruction search radius for RRT*
and Q-RRT* is 3. In order to keep the program construction as consistent as possible, the
same program modules are used for all parts except for the original program specific to the
algorithm itself.

(a) (b)

Figure 6. Two-dimensional test map: (a) 2D-map1; and (b) 2D-map2.

(a) (b)

Figure 7. Three-dimensional test map: (a) 3D-map1; and (b) 3D-map2.

4.2. Analysis of Experimental Results in the Two-Dimensional Plane

The simulation experiments are set up with 1000 sets of repeated trials to obtain the
initial solutions from each algorithm searching in 2 different 2D test maps. The correspond-
ing experiments counts 1000 initial solution path costs and search times for each algorithm
in each map. In addition, iterative experiments are used to compare the convergence states
of the optimal paths obtained by different algorithms in the same time span.

Figure 8a–d show the path expansion results of each of the four algorithms when
searching for the target point in 2D-map1. Intuitively, the path of the RRT algorithm is
more sinuous; the extended path of RRT* is “bundle-like” and relatively more rounded;
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Q-RRT* is an optimization algorithm based on RRT*, which iteratively searches the parent
node during path reconstruction to make its path quality rise to a higher level, and the
corresponding time loss is higher. Influenced by the potential-field orientation, the greedy
strategy is no longer triggered arbitrarily and is only triggered when −−−−−−−→xnearestxnew points
to the direction of the falling potential field, making the path expand rapidly toward the
target point.

(a) (b) (c) (d)

Figure 8. Experimental results of 2D-map1: (a) RRT; (b) RRT*; (c) Q-RRT*; and (d) PF-RRT.

Figure 9a,b show the statistics of the path cost and search time for each of the 4
algorithms in 2D-map1 for 1000 iterations of testing and their data distribution. Figure 9c
shows the path-cost loss rate and time loss rate of different algorithms relative to RRT,
which are calculated as follows: 

lc(i) =
1000
∑

a=1

ca(i)
Cmean(RRT)

lt(i) =
1000
∑

a=1

ta(i)
Tmean(RRT)

, (14)

where lc(i) and lt(i) are relative path-cost loss rate and time loss rate (i denotes the algorithm
category), ca(i) and ta(i) are path cost and time; in addition, Cmean(RRT) and Tmean(RRT)
denote the mean value of path cost and mean value of search time for the initial solution of
RRT. The data in Figure 8a–c show that Q-RRT* and PF-RRT obtain better path quality for a
single solution of the simple map, but the average time loss of Q-RRT* is about 7.7 times
that of PF-RRT. PF-RRT makes the random tree accelerate to approach the target point
quickly in a simple map by a greedy strategy based on potential-field orientation, and the
iterative optimization of one root node makes the path smoother.
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Figure 9. Statistical results of 2D-map1: (a) Cinit; (b) Tinit; and (c) Lcost & Ltime.

The results show that DG-RRT is able to obtain higher-quality initial solutions in
relatively less time in a simple environment. In 2D-map1, the time loss of PF-RRT is only
22.6% of that of RRT, and its path quality is improved by about 22.1%.
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As the nemesis of sampling-based algorithms, maze maps make the sampling process
more complicated because of their winding paths. At the same time, it is used as a test
map because it has fewer path channels and the trend of feasible solutions is more or
less the same, so it is more intuitive to observe the strengths and weaknesses of its paths.
Figure 10a–d show the status of the four algorithms for obtaining path solutions in single-
channel maze maps, Figure 11a,b show the corresponding path cost and search time
statistics, and Figure 11c shows the relative path-cost loss rate and time loss rate calculated
based on Equation (14).

(a) (b) (c) (d)

Figure 10. Experimental results of 2D-map2: (a) RRT; (b) RRT*; (c) Q-RRT*; and (d) PF-RRT.
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Figure 11. Statistical results of 2D-map2: (a) Cinit; (b) Tinit; and (c) Lcost & Ltime.

Q-RRT* is an upgraded version of RRT*, and the time loss is further increased with
the improvement of the path quality. Even though the iterative process of one root node
increases the arithmetic power requirement, the preprocessed field strength matrix for
obstacle perception and touch detection greatly improves the computational efficiency and
reduces the time loss by 68.3% compared with the original RRT algorithm. The results in
Figure 11c shows that PF-RRT is able to maintain its characteristics and obtain better path
results with less time loss in relatively complex maps. Meanwhile, the error bars based on
the statistics in Figure 11c shows that the path search results of PF-RRT are more stable
compared to several other algorithms.

Figure 12a,b show the cost of optimal paths for each of the four algorithms in 2D-map1
and 2D-map2 in the same time span, where Coptimal is the optimal path generation value. It
can be seen that all algorithms except RRT have optimal convergence properties and are
able to converge to 1.05Coptimal from Figure 12, with PF-RRT taking the shortest time to
plan the suboptimal path. Statistical results show that the average time for PF-RRT to plan
suboptimal paths is 0.1s and 7.5s in 2D-map1 and 2D-map2, respectively, requiring only
50% and 75 % of the time of Q-RRT*. Since PF-RRT generates near-suboptimal paths faster
than other algorithms and it generates a solution in a much faster time, it is more suitable
in a two-dimensional environment.
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Figure 12. Optimal convergence diagram in two-dimensional environment: (a) 2D-map1; and
(b) 2D-map2.

4.3. Analysis of Experimental Results in Three-Dimensional Space

The UAV flight environment is three-dimensional space, for which two sets of experi-
ments were designed to test the performance of the algorithms based on three-dimensional
space, and the test maps are shown in Figure 6a,b. Figures 13a–d and 14a–d show the path
search states of RRT, RRT*, Q-RRT*, and PF-RRT algorithms in 3D-map1 and 3D-map2.
Simultaneously, 1000 sets of repetitive tests were conducted to obtain the initial solution
search status of the 4 algorithms in each map, and the statistics are shown in Tables 1 and 2.

Figure 13a–d show the path search diagram in 3D-map1 for the four algorithms RRT,
RRT*, Q-RRT*, and PF-RRT. Table 1 shows the eigenvalues of the path-cost statistics and
time statistics of the four algorithms in obtaining the initial solution, where cmean, cmedian,
cmax, and cmin are the mean, median, maximum, and minimum values of the 1000 sets of
path cost statistics in 3D-map1, respectively. Meanwhile, tmean, tmedian, tmax, and tmin are
the mean, median, maximum, and minimum values of 1000 sets of search time statistics,
respectively. The statistical results show that PF-RRT has a higher quality and more stable
path, and that it takes less time on average to search.

(a) (b) (c) (d)

Figure 13. Experimental results of 3D-map1: (a) RRT; (b) RRT*; (c) Q-RRT*; and (d) PF-RRT.

Table 1. Eigenvalues of the 1000 sets of initial solution data in 3D-map1.

Method cmean/m cmedian/m cmax/m cmin/m tmean/s tmedian/s tmax/s tmin/s

RRT 56.83 56.51 77.67 44.26 0.90 0.26 21.74 0.02
RRT* 45.93 45.43 60.44 37.90 1.37 0.39 28.21 0.03

RRT-C 39.52 39.07 49.91 35.71 1.49 0.48 20.14 0.04
DG-RRT 38.74 38.37 47.10 34.58 0.79 0.21 17.10 0.01

Figure 15a,b compare the paths output by the four algorithms in 3D-map1. It is
obvious, both in the three-dimensional view and in the top view, that PF-RRT has a much
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smoother path. In the top view of Figure 15b, the effect of the path crossing the obstacle
can be seen because of the perspective view of the route.

(a) (b) (c) (d)

Figure 14. Experimental results of 3D-map2: (a) RRT; (b) RRT*; (c) Q-RRT*; and (d) PF-RRT.

RRT
RRT*
Q-RRT*
PF-RRT

(a)

RRT
RRT*
Q-RRT*
PF-RRT

(b)

Figure 15. Trajectory comparison chart of 3D-map1: (a) stereogram; and (b) top view.

Figure 14a–d show the final paths output from the path search in 3D-map2 for four
different algorithms. Table 2 shows the 4 algorithms performing 1000 sets of replicate
trials in 3D-map2 to obtain the eigenvalues of the time and cost statistics during the initial
solution, where its special symbols express the same meaning as in Table 1.

Table 2. Eigenvalues of the 1000 sets of initial solution data in 3D-map2.

Method cmean/m cmedian/m cmax/m cmin/m tmean/s tmedian/s tmax/s tmin/s

RRT 56.24 55.51 75.01 34.24 0.96 0.27 15.54 0.03
RRT* 45.68 45.34 59.29 35.56 1.79 0.53 20.36 0.06

RRT-C 39.25 39.04 45.71 37.83 2.64 1.01 18.05 0.12
DG-RRT 37.96 37.58 49.69 34.52 0.87 0.17 13.06 0.01

The effect plots shown in Figures 15 and 16 clearly show that the trajectories obtained
by Q-RRT* and PF-RRT planning are smoother compared to RRT and RRT*. Based on the
cmean and tmean data in Tables 1 and 2, it is obvious that PF-RRT has more advantages in
both path quality and search time. In addition, comparing the time extremes tmax and tmin
in the statistics of Tables 1 and 2 with the path acquisition time in two dimensions, it is
found that the time span for path search in three dimensions is larger and the uncertainty
is higher.
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Figure 16. Trajectory comparison chart of 3D-map2: (a) stereogram; and (b) top view.

To facilitate comparison of the combined efficiency of the four algorithms, the relative
path-cost loss rate lc(i) and relative time loss rate lt(i) are calculated for each algorithm
in the two maps, respectively, as shown in Equation (15), and the combined loss rate is
calculated by assigning weights µ and ω.{

Lcom(i) = µ · lc(i) + ω · lt(i)
µ + ω = 1

(15)

Here, the weight of lc(i) and lt(i) are set to 1:1, and by calculating the results according
to Equation (15), the combined loss rate and its regional distribution of different algorithms
in 3D-map1 and 3D-map2 are obtained, as shown in Figure 17a,b, respectively. The results
show a very good improvement in the overall performance of PF-RRT in 3D space, and the
integrated loss rate is only 77.7% compared with the original RRT. At the same time, the
error bars indicate that the results of PF-RRT are more stable.
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Figure 17. Distribution map of Lcom: (a) 3D-map1; and (b) 3D-map2.

Figure 18a,b show the four algorithms in 3D-map1 and 3D-map2, respectively, in
the same time span. From Figure 18, it can be seen that only Q-RRT* and PF-RRT in 3D
space have the optimal convergence characteristics and can converge to 1.05Coptimal . The
average time taken by PF-RRT to plan suboptimal paths in the two maps is 1.50 s and
1.75 s, respectively. Meanwhile, Q-RRT* not only has a worse initial result performance
than PF-RRT, but also has a more limited convergence.
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Figure 18. Optimal convergence diagram in three-dimensional environment: (a) 3D-map1; and
(b) 3D-map2.

4.4. 3D Simulation and Physical Flight

Based on the performance testing map, a realistic 3D scene was built here for simu-
lation testing to verify the effectiveness of the algorithm. The simulation model of PX4
UAV was loaded into the ROS system under Ubuntu environment, a simple UAV flight
environment scenario was set up by Gazebo9. Finally, the PF-RRT path-planning program
is loaded into the simulated UAV and simulated flight tests are performed. The simulation
experiment senses the environment using LIDAR and visualizes the environment and flight
trajectory using Rviz.

PF-RRT is used as the global path-planning algorithm in the flight test, and the test
results are shown in Figure 19a–c, where Figure 19a is the PX4 UAV simulation model,
and the map shown in Figure 19b is built for the flight test, and finally, the UAV’s travel
trajectory is marked and displayed in Rviz as shown in Figure 19c. In the simulation flight,
the planned path is updated by refreshing the current position of no earth in real time and
using PF-RRT until the UAV approaches the target point and finally obtains the complete
flight trajectory. The output trajectory is smoother, as shown in Figure 19c, and the shorter
time required for PF-RRT to obtain the initial solution makes the refresh frequency of
real-time path planning higher.

(a) (b) (c)

Figure 19. Simulation in ROS: (a) the model of PX4; (b) simulation map; and (c) flight path.

The current UAV pilot study is based on ’red track’ rail fault detection. The test site
is the red track test line of Jiangxi University of Technology Golden Campus. The UAV
selected is PX4 equipped with 2D LIDAR and lntel T265 camera. The purpose of the test to
be achieved is as follows:

I. Accurate arrival at the designated detection point;
I I. Planning a no-touch path.
In the actual flight, PF-RRT is used as a global path-planning algorithm and an initial

unobstructed path is obtained. The local path-planning algorithm then uses a dynamic
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windowing algorithm to prevent other irresistible force factors, such as birds, maintenance
personnel, and trains running on the track.

Figure 20a–c show the actual flight effect of the UAV, where Figure 20a shows the PX4
UAV. Figure 20b shows the UAV inspecting the suspended track of the ’red track’, and
Figure 20c shows the UAV flight trajectory shown by the ground station. At present, it has
been initially achieved by drones to monitor the track at fixed points. The preliminary test
results prove that it is also feasible to use PF-RRT for path planning of UAVs and to apply
UAVs to spot detection, cruising, and tracking in complex environments in the field.

(a) (b) (c)

Figure 20. Physical flight testing: (a) PX4; (b) flying along an orbit; and (c) flight trajectory.

5. Conclusions

In this paper, an efficient path-planning algorithm, PF-RRT, is proposed based on
RRT. It is based on the idea of preprocessing the map by constructing a potential field and
constructing a greedy strategy oriented by the potential field to accelerate the extension
of the path towards a better region, which makes the random tree search reach the target
point quickly. In addition, the path quality is improved in path reading by performing one
iteration of the root node for the new node. The experimental results show that PF-RRT
performs better in both simple or complex environments, and in two-dimensional planes
or three-dimensional spaces. PF-RRT is able to reduce the time loss by 20% to 70% and
improve the path quality by about 25% compared to RRT in the process of obtaining the
initial solution. PF-RRT not only obtains high-quality initial solutions quickly, but also has
better convergence properties. UAV real-time path planning is more responsive, by using
the PF-RRT algorithm to quickly obtain feasible paths in high-dimensional environments.
The feasibility of UAV path planning using PF-RRT was verified by simulation flight and
actual flight testing.

In addition, PF-RRT is a tree extension algorithm, and the greedy strategy based
on potential-field orientation can be combined with any other random tree optimization
algorithm to further improve the performance. The performance of the current algorithm
for UAV path planning based on PF-RRT and the feasibility of its actual flight have been
initially verified, but there are several directions for further research, as follows:

I. The proposed PF-RRT algorithm has a great advantage over other algorithms in
obtaining the initial solution in a two-dimensional environment, and further explores
how to ensure that its advantage is not reduced when performing a path search in three-
dimensional space;

I I. Applying 3D LIDAR to current UAVs to enhance their environmental awareness
and to adapt to interference from dynamic obstacles;

I I I. The incorporation of cameras and machine vision technology in UAVs enables
them to perform fault detection in unmanned conditions in complex environments.
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