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Abstract: Crack development is a clear indicator of the durability of concrete bridges. Traditional
bridge inspections that rely inspectors to climb on bridges with lift cars are unsafe for inspectors and
also time- and labor-consuming. Therefore, this research proposes a solution that applies unmanned
aerial vehicles (UAV) and high-resolution digital cameras to measure concrete bridge cracks. An
experiment was conducted on an Ai-He concrete bridge located in Yangmei District, Taoyuan City,
Taiwan. Two types of images were taken. Close-up images observed cracks more clearly, and
long-range images covered the ground control points. We registered these two types of images to
establish the absolute coordinate system with ground control points and tie points through block
triangulation. This research examines three approaches of generating tie points: (1) manually select
tie points with features on the bridge such as nails and dots, (2) randomly input tie points generated
from Scale-Invariant Feature Transform (SIFT), and (3) randomly input tie points generated from SIFT
as the initial tie points and perform automatic tie generation with the ERDAS Leica Photogrammetry
Suite (LPS) image matching module (automatic tie generation). Afterwards, close-up images were
processed into orthorectified images with 0.1 mm pixel size for crack size measurements. Crack
sizes were determined by a manual measurement approach and an inflection point approach for
comparison. This research established a workflow for UAV bridge inspection that locates and
measures cracks in concrete bridges, which consequently provides a safe and cost-efficient concrete
bridge crack monitoring solution with acceptable accuracies.

Keywords: unmanned aerial vehicle (UAV); image registration; concrete; crack; measurement

1. Introduction
1.1. Background

Numerous natural disasters, such as earthquakes and typhoons, can cause continuous
and gradual damages to infrastructures. Meanwhile, concrete bridges carrying heavy
traffic every day suffer fatigue stress and cyclic loading, which create cracks on the concrete
surface [1] that can consequently result in potential concrete failure. Thus, among the
bridge inspection items, crack inspection has been listed as an important indicator to
evaluate the damage level of bridges. For example, the regulation in Taiwan defines that
any infrastructures with crack widths over 0.2 mm are at high risk and require immediate
maintenance [2]. On the other hand, ref. [3] indicates the maximum tolerable crack widths
in different exposure conditions, as shown in Table 1, for infrastructures with stable service
loading. Furthermore, beams with cracks in widths wider than 0.012 in should be repaired
immediately and the method of maintenance depends on the size of the crack width, as
shown in Table 2 [4].
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Table 1. The maximum tolerable crack widths in different exposure conditions for concrete structures [3].

Exposure Condition Crack Width (in.)

Dry air or protective membrane 0.016
Humidity, moist air, soil 0.012

Deicing chemicals 0.007
Seawater, seawater spray, wetting, and drying 0.006

Water-retaining structures 0.004

Table 2. The method of maintenance in different sizes of crack widths for concrete structures [4].

Crack in Width x (in.) Method of Maintenance

0.012 < x < 0.025 The beam should be repaired by filling the cracks and coating the
end for 4 ft with an approved sealant.

0.025 < x < 0.05 The beam should be filled by epoxy injection and the end for 4 ft
of the beam web coated with an approved sealant.

x > 0.05 The beam should be rejected unless shown that the structural
capacity and long-term durability are sufficient.

In the past decades, well-trained inspectors have climbed on bridges with ladders
or cables to measure cracks with crack scalars, as shown in Figure 1. Since cracks can
be everywhere over a bridge and some regions are unreachable with ladders, inspectors
usually need to be carried by scaffoldings or robotic arms. In order to ensure the safety of
inspectors, refs. [5,6] designed robotic arms to detect cracks on bridges with high-resolution
digital cameras. During their experiment, they measured the distance between bridges and
cameras to establish image scales for the calculation of actual crack sizes.

However, considering the high cost of robotic arms [7], using unmanned aerial vehicles
(UAV) with high-resolution cameras could be a feasible alternative for bridge inspections [8].
Applying UAVs to bridge inspections can reduce the high expense from traditional inspec-
tions and could easily access more regions of a bridge [9].
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1.2. Concrete Bridge Crack Inspection with UAV

In recent years, using UAVs has become an alternative solution for bridge inspections,
which is safe for inspectors, can reach different places of a bridge easily and efficiently,
and avoids the high cost of robotic arms. Ref. [11] proposed a method to inspect extensive
infrastructures in an efficient way with digital images retrieved from a UAV. Since cracks
along concrete edges and corners were excessively detected, a new strategy combining the
hat transform and HSV thresholding techniques was proposed to achieve detection with
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good accuracy. Ref. [12] proposed structure health monitoring with a three-dimensional
model of infrastructures generated from Lidar and image data. Moreover, an infrared
sensor was mounted on the UAV to detect cracks in infrastructures with thermal changes.
However, these two proposed solutions can only detect cracks but not measure the actual
sizes, as the image scales are unknown.

Ref. [13] proposed a hybrid method for crack detection in bridges with a self-designed
UAV. A camera module (LS-20150) and an ultrasonic displacement sensor (HC-SR04) were
mounted on the UAV to provide digital images and corresponding distances-to-target to
determine the actual image scales. To solve the problem of overestimating crack widths or
losing the information of crack lengths, this research applied a hybrid approach employing
two sets of binarization parameters with Sauvola’s method [14]. After calculation and
adjustment, the sizes of the cracks could be determined. However, in this research, to
determine the actual crack sizes, the UAV camera needed to continuously take vertical
photos on bridge surfaces during the flight to avoid the errors caused by the inclination of
the camera, which was a very challenging task.

In close-range photogrammetry, it is able to establish a scale between object and
image space with the collinear condition equation and exterior orientation parameters
(EOPs) of the digital camera. During the UAV flight mission, UAV onboard GPS sensors
provide approximate coordinates of drones or cameras [15]. However, when onboard, GPS
sensors are not precise and accurate enough for engineering applications [16]. Furthermore,
GNSS signals are easily interfered with by transmission lines, telecommunication towers,
high relief, or nearby buildings, as well as natural factors such as wind, solar weather, or
electromagnetic waves [17]. In this case, the EOPs of the UAV images measured by onboard
GPS sensors cannot achieve accurate georeferencing. Thus, in order to measure the sizes of
small targets such as cracks from UAV images, suitable orientation modeling is required to
address this issue.

In this case, ref. [18] proposed a method that utilized SONY α7R2 with a 50 mm
fixed focal length mounted on a UAV, and the exterior orientation parameters and camera
calibration coefficients were derived with Agisoft PhotoscanPro software. Afterwards, the
authors utilized object-based image analysis (OBIA) [19,20] to classify object features for
distinguishing the crack and non-crack areas with predefined rules. In order to detect cracks
with three-dimensional coordinates, the authors applied semi-global matching (SGM) [21]
to find the conjugate points and conduct space intersection. The author found out the main
concrete spalling area with the elevation model and also provided spatial information,
including the main direction, length, width, area, and volume, to eliminate the extra parts
of cracks and the effect of salt-and-pepper noise. However, the analysis of the measurement
accuracy was not provided, and just one specific case was given in this research.

With the development in computer vision and the optimization of machine learning
(ML) and deep learning (DL) models, cracks can be detected through high-resolution
images and videos. Spatially Tuned RobUst Multi-feature (STRUM) contains three types of
ML classifiers, including support vector machines (SVM), adaboost, and random forest,
with a robust line segment detector and spatially tuned multiple feature computation.
The proposed method could automatically detect cracks on concrete bridges with 90%
accuracy based on thousands of crack images, and the concept of a crack density map was
provided in this research [22]. The accuracy achieved 96.37% for crack detection, with the
image classification model consisting of Atrous convolution, the Atrous Spatial Pyramid
Pooling (ASPP) module, and depth-wise separable convolution based on two convolution
neural networks (CNN). The model was tested with 2068 bridge crack images collected
by the Phantom 4 Pro’s CMOS surface array camera at a resolution of 1024 × 1024. The
crack database was published as an open source to promote the development of crack
detection algorithms for future research [23]. Two other concrete crack datasets, Concrete
Crack Images for Classification (CCIC) [24] and SDNET 2018 [25], are widely applied in
training and testing crack detection algorithms, which are composed of benchmarks with
cracked and non-cracked images in various conditions. With SDNET, the studies provided
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a crack region map by CNN and image stitching [26] and developed the 1D-CNN-LSTM
method approaching 99.05%, 98.90%, and 99.25% accuracy, respectively, on the training,
validation, and testing datasets [27]. The proposed method trained and tested with CCIC
and SDNET and a supplementary dataset from the researchers reached 99.24% accuracy
for concrete crack detection. The method combined with the InceptionResnet-v2 module,
multi-scale feature fusion method, and GKA clustering (K-means clustering method based
on a genetic algorithm) without pretraining [28]. You Only Look Once (YOLO) version
4 was applied in concrete bridge crack detection with videos to reduce the storage and
improve the computational speed [29]. These studies proposed various ML and DL models
with different datasets with high accuracy. However, the models were not yet applied in
a real-world bridge inspection. Furthermore, the sizes and locations of the cracks on the
bridges that influenced the bridge inspection assessments were not considered in these
studies.

1.3. Research Objective

A workflow for UAV bridge inspection with concrete crack positioning and size
measurements is proposed in this research. To ensure the proposed method can be applied
in real-world scenarios, bridge inspection fieldwork was conducted in this research. A
control survey was involved to establish the 3D absolute coordinates. The proposed
solution provides a safer and more efficient concrete crack inspection with lower expenses
and acceptable accuracy.

2. Methodology
2.1. Workflow

As shown in Figure 2, since the UAV mounts a nonmetric camera, we need to calibrate
the camera to reduce the errors from the principal point displacements and lens distortions.
Afterwards, we take close-up and long-range images on the cracks and the targeted bridge.
As the absolute coordinate system can be constructed through control points covered by
long-range images, we register close-up images to long-range images to obtain the absolute
coordinates of each pixel in the images and resample the images to ortho-images. With
close-up ortho-images, manual measurement and an inflection point approach are applied
in the crack size measurements. Finally, the measured crack sizes are validated with in situ
reference measurements from surveyors.
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2.2. Camera Calibration

In order to eliminate image distortions, as shown in Figure 3, camera calibration is
required. The high-resolution nonmetric prime lens camera mounted on the UAV changes
the image scopes with digital zooms, which does not change the actual focal lengths. Since
taken images from larger digital zooms do not improve the resolution, in our research,
we only apply the original resolution (i.e., 1×) images and derive the interior orientation
parameters (IOPs) through iWitnessPROTM.
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iWitnessPROTM can automatically detect features [30] and uses ten parameters for
image coordinate correction functions. The calibration parameters, as the functions show
below, include the principal points (xp and yp); the distance between image coordinates
and principal points r; the radial distortion parameters K1, K2, and K3; the decentering
distortion parameters P1 and P2; and the affine distortion parameters B1 and B2 [31].

x = x − xp (1)

y = y − yp (2)

r =
√

x2 + y2 (3)

dr = K1r3 + K2r5 + K3r7 (4)

xc = x + x
dr
r
+ P1

(
r2 + 2x2

)
+ 2P2xy + B1x + B2y (5)

yc = y + y
dr
r
+ P2

(
r2 + 2y2

)
+ 2P1xy (6)

where x and y are the distance between the image coordinates and principal points in
two-dimensions, r is the distance between the image coordinates and principal points, dr is
the symmetrical distortion, and (xc, yc) is the image coordinates of the principal point after
corrections.

In order to achieve ten parameters, we set the calibration board to different heights
on a flat plane, as shown in Figure 4, and take images with 1× digital zoom with different
rotations and orientations. Next, we input those images into iWitnessPROTM to calculate
the parameters through self-bundle adjustment [31]. Self-bundle adjustment is a set of
collinearity condition equations with corrections, as shown in the equations below, which
requires multiple overlapped images with normalized features to calculate the exterior
parameters and object space coordinates by adjusting the parameters in the functions
through an iterative process until convergence.

xa = δx − f
m11(XA − X0) + m12(YA − Y0) + m13(ZA − Z0)

m31(XA − X0) + m32(YA − Y0) + m33(ZA − Z0)
+ ∆x (7)
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ya = δy − f
m21(XA − X0) + m22(YA − Y0) + m23(ZA − Z0)

m31(XA − X0) + m32(YA − Y0) + m33(ZA − Z0)
+ ∆y (8)

where (xa, ya) is an image coordinate, (δx, δy) is the principal point displacement, f is the
focal length, m11 to m33 is the rotation matrix, (XA, YA, ZA) is an object space coordinate, (X0,
Y0, Z0) is the coordinates of the perspective center, and ∆x and ∆y are the lens distortions.
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2.3. Image Taking

In the experiment, we take images of the cracks in Ai-He Bridge, a concrete bridge
in Yangmei District, Taoyuan City, Taiwan. We find some features on the bridge such as
nails or dots to serve as control points and check points. For image-taking, there are four
requirements:

(1) For long-range images, there should be at least three control points included to
establish the absolute coordinate system, as shown in Figure 5a.

(2) In order to clearly identify cracks and measure crack widths precisely, close-up images
are taken, as shown in Figure 5b.

(3) Image registrations are required to register close-up images to the absolute coordinate
system via long-range images; thus we must ensure the sufficiency of overlapped
regions between close-up images and long-range images.

(4) Considering the flight safety, at least 1-m distance between the UAV and the bridge is
suggested while taking images. To avoid crashes with obstacles, the images are taken
from different orientations.
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Figure 5. A long-range (a) and a close-up (b) image of the concrete bridge.

2.4. Image Orientation and Registration

Long-range and close-up concrete crack images are taken during this research. To
establish the absolute coordinate system, 4 control points and 5 check points in the long-
range images are applied, which are measured by the total stations with the free station
measuring method, as shown in Figure 6. The close-up images and long-range images are
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registered through ERDAS Leica Photogrammetry Suite (LPS) block triangulation to fit all
images to the absolute coordinate system.
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2.4.1. Scale-Invariant Feature Transform (SIFT)

SIFT is published by Lowe in 2004, which includes four steps: scale-space extrema
detection, keypoint localization, orientation assignment, and keypoint descriptor. In scale-
space extrema detection, an image pyramid is built through Laplace Transform that can
reduce the ambiguity among images. An image is divided into fourths in every octave to
ensure the features can be extracted from images on different scales. Next, the extrema are
selected among different octaves in the difference of Gaussian scale space as keypoints for
registering images with different scales.

In the stage of keypoint localization, the features are accurately localized with the
calculation of Taylor expansion of the scale-space function, D(x), as shown in Equation (9).
The 0.5 offset x̂ in Equation (10) is set to eliminate the features that lie too close together. The
function D(x̂) in Equation (11) is useful for rejecting instable extrema with a low contrast,
where, if D(x̂) is less than 0.03, it will be discarded. The Hessian matrix, as shown in
Equation (12), is also applied at this stage in order to eliminate small amounts of noises
due to the poorly determined keypoint locations on the edges.

D(x) = D +
∂D
∂x

x +
1
2

xT ∂2D
∂x2 x (9)

x̂ = −∂2D−1

∂x2
∂D
∂x

(10)

D(x̂) = D +
1
2

∂DT

∂x
x̂ (11)

H =

[
Dxx Dxy
Dxy Dyy

]
(12)

To achieve rotation invariance, by assigning consistent orientation at each keypoint
on the image patch, ref. [32] used neighborhood gray value gradients as the orientation
parameters and set the keypoint as the center for resampling. The image patch was
accumulated into the histogram of the gradient orientation with the range 0 to 360 degrees
and 10 degrees as a unit, where the peak among the 36 columns represented the dominant
direction.

For the keypoint descriptor, the information from the previous stages are described as
vectors to maintain invariance of the orientation, reduce noises from the calculations, and
improve the precision of feature matching. To be specific, this research creates a keypoint-
centered 16 × 16 moving window in a scale, and the arrow shows the gradient orientation of
each pixel. Afterwards, the 16 × 16 moving window is divided into 16 (4 × 4) subregions,
which means every subregion includes 8 orientation bins and turns out 128 (16 × 8)
elements in total for each keypoint.
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2.4.2. Automatic tie Point Generation in LPS

Automatic tie point generation in LPS can be divided into three steps with three
different image-matching methods: area-based matching, feature-based matching, and
relation-based matching [33].

Area-based matching determines the correspondence between two image areas accord-
ing to the similarity of their gray level values. Cross-correlation and least square correlation
are involved in this matching method. Cross-correlation calculates the correlation coeffi-
cient of the gray values between a moving window and a target window. Least square
correlation derives the transformation parameters that best fit a search window to a target
window.

Feature-based matching determines the correspondence between two image features
and recognizes the best fit features as matches after the features are extracted from the
Förstner interest operator. The Förstner interest operator requires distinct initial selected
points that should be easily distinguished locally for selecting the optimal window to
generate tie points between two images [34].

Larger features composed of many local features rely on relation-based matching
for image registration [35]. Relation-based matching is also called structural matching,
which establishes a correspondence from the primitives of one structural description to the
primitives of a second structural description. This technique not only uses image features
but also automatically selects features through image structures, which determines the
correspondence of geometrical or topological relations [36].

2.5. Orthorectification

Orthorectification computes the geographic locations of each pixel on the ground [37],
which is a process of reducing geometric errors inherent within the perspective photog-
raphy and imagery. The input parameters include the UAV imagery, interior orientation
parameters from the camera calibrations, and a digital elevation model (DEM) and exterior
orientation parameters retrieved from block triangulation [38]. Through block triangula-
tion, the least square adjustment techniques minimize the errors associated with camera
instability and topographic relief displacement.

In this research, both the DEM of the bridge and the exterior parameters are retrieved
from block triangulation. The relief displacements for curved surfaces of the bridge can
also be corrected with the DEM.

2.6. Crack Width Measurement

To measure crack widths, we first identify cracks and their locations through the
ortho-images generated from LPS and manually select the tangent line and normal line on
the same section of a crack. Afterwards, we measure crack widths with two approaches:
(1) We identify the edges of a crack manually and apply the measurement tool in ERDAS
IMAGINE 2013 image processing software to determine the distance between the edges as
the crack width. (2) We draw a normal line on the selected sections of cracks with a spatial
profile tool to retrieve the gray value profile for the selected section of the crack, as shown
in Figure 7. Afterwards, we identify inflection points from the gray value profile as the
edges of cracks, and the number of pixels between two inflection points is converted into
the crack width.
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3. Results

The experiment was conducted on Ai-He Bridge, which is located in Yangmei District,
Taoyuan City, Taiwan. The bridge is 6.5 m long and mainly built as a concrete structure.
With the low illumination and the space limitation under the bridge, only cracks on the
side of the bridge were selected targets in this experiment, as shown in Figure 8.
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3.1. Image Orientation and Registration

Since the camera mounted on the UAV only applies digital zoom, which means the
resolution would not be changed while zooming, this research only measures cracks with
1× images. First, we separated images into two groups: long-range images and close-up
images and select four images and seven images for each. Afterwards, we built the absolute
coordinate system through the block triangulation in LPS with four control points, five
check points, and tie points that were selected in three different ways.

The three approaches of tie points extraction were executed as follows:

• Method (1): Manually select tie points with features such as nails and dots on the
bridge.

• Method (2): Randomly input 250 tie points generated from SIFT.
• Method (3): Randomly input 110 tie points generated from SIFT as the initial tie points

and perform automatic tie generation with LPS until 350 tie points are reached.



Drones 2023, 7, 342 10 of 20

As shown in Table 3, the first method by which tie points are manually selected
performs the best results for image registration, with only 1.2 µm for the total image
unit weight root mean square error (RMSE), 6.4 mm deviation in the x direction, 6.6 mm
deviation in the y direction, and 39.1 mm deviation in the z direction.

Table 3. The triangulation summary for method (1).

Total Image Unit Weight RMSE: 1.2 (µm)

Control Point RMSE Check Point RMSE

Ground X (mm) - Ground X (mm) 6.4

Ground Y (mm) - Ground Y (mm) 6.6

Ground Z (mm) - Ground Z (mm) 39.1

Image X (µm) 0.9 Image X (µm) 2.4

Image Y (µm) 1.3 Image Y (µm) 1.9

In Table 4, tie points generated by SIFT perform show the worst result, with 68.1 µm
total image unit weight RMSE, 152 mm deviation in the x direction, 387.8 mm in the y
direction, and 290.9 mm in the z direction. Since 250 tie points are randomly selected, the
poor distribution of tie points is a disadvantage that causes larger errors than applying
well-distributed tie points. Furthermore, according to [39], SIFT can reach 100% correct
matches but with 0.52 pixel accuracy on average, 0.928 pixel deviation in the horizontal
direction and 0.7 pixel deviation in the vertical direction, which leads to larger errors due to
error propagation through the calculation of block triangulation. For these two reasons, the
result for the second method has 68.1 µm total image unit weight RMSE, 152 mm deviation
in the x direction, 388 mm deviation in the y direction, and 291 mm in the z direction, which
consequently cause failure during the orthorectification process.

Table 4. The triangulation summary for method (2).

Total Image Unit Weight RMSE: 68.1 (µm)

Control Point RMSE Check Point RMSE

Ground X (mm) - Ground X (mm) 152

Ground Y (mm) - Ground Y (mm) 387.8

Ground Z (mm) - Ground Z (mm) 290.9

Image X (µm) 5448.6 Image X (µm) 178.6

Image Y (µm) 1222.7 Image Y (µm) 744.5

In the third method, to achieve the requirement of feature-based matching and auto-
matically generate tie points, we first input 110 tie points generated from SIFT, which is
enough to perform automatic tie point generation in LPS. According to the results pub-
lished by [40], automatic tie point generation in LPS can reach 0.41 pixel RMSE, which is
better than SIFT. Moreover, since the overall method includes relation-based matching, tie
points are better distributed compared to the random selection in the second method. In the
experiment of the third method, with some trial and error, we obtained the result of using
total 350 tie points to achieve 11 µm total image unit weight RMSE, 19.9 mm deviation in
the x direction, 4.3 mm deviation in the y direction, and 11 mm direction in the z direction,
as shown in Table 5. As a result, manual tie point selection can still perform the best, while
automatic tie point generation with LPS can achieve acceptable results.
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Table 5. The triangulation summary for method (3).

Total Image Unit Weight RMSE: 11 (µm)

Control Point RMSE Check Point RMSE

Ground X (mm) - Ground X (mm) 19.9

Ground Y (mm) - Ground Y (mm) 4.3

Ground Z (mm) - Ground Z (mm) 11

Image X (µm) 8.5 Image X (µm) 1.6

Image Y (µm) 5 Image Y (µm) 1.6

3.2. Orthorectification

Through block triangulation, all images are fitted into an absolute coordinate system,
where the elevation of the upper part of the bridge is set as 0, and the DEMs of the bridge
are generated with three different methods, as shown in Figure 9. The digital images are
projected onto the DEM of the bridge and resampled to the ortho-images with 0.1 mm
pixel size by bilinear interpolation. Through the generated DEM, the sizes and locations
of the cracks in the concrete bridges are obtained in this research. Comparing the three
results with different tie point generation methods, the DEM and the illustration of ortho-
images retrieved from the manual tie point selection are shown in Figures 9a and 10a, and
the automatic tie point generation with SIFT-LPS is shown in Figures 9c and 10c. These
two results are similar, which indicates that automatic tie point generation can achieve
acceptable accuracy. However, according to the generated DEMs, the results retrieved
from both manual selection and automatic tie point generation are not as smooth as the
actual surface of the bridge and have large errors on the lower part of the bridge, as shown
in Figure 9a,c, which were caused by the lack of control points. Furthermore, according
to the triangulation summary, block triangulation with automatic tie point generation
from SIFT-LPS includes larger errors in the horizontal direction, which can be observed in
Figure 10c and, consequently, become an error source for the crack size measurements.

In addition, the large error of block triangulation with automatic tie point generation
from SIFT (i.e., the second method) results in a bumping DEM and large distortions in the
orthorectification process, as shown in Figures 9b and 10b. While there are three images
terribly distorted (i.e., image 76, 91, and 92), these images cannot be applied in the crack
size measurements.

3.3. Crack Size Measurement

Since there are three approaches in the stage of image registration and two methods for
the crack size measurements, as shown in Table 6, six combinations of results are examined
here.

(1) M1: Measure cracks manually in the ortho-images that the tie points retrieved manually.
(2) M2: Measure cracks with inflection points in the ortho-images that the tie points

retrieved manually.
(3) M3: Measure cracks manually in the ortho-images that the tie points retrieved only

from SIFT.
(4) M4: Measure cracks with inflection points in the ortho-images that the tie points

retrieved only from SIFT.
(5) M5: Measure cracks manually in the ortho-images that the tie points retrieved from

SIFT and LPS.
(6) M6: Measure cracks with inflection points in the ortho-images that the tie points

retrieved from SIFT and LPS.
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Table 6. Six methods for crack size measurements.

Tie Point Generation
Crack Size Measurement Manual

Measurement
Measurement with Inflection

Point

Manual tie point selection M1 M2
Tie point generation with SIFT M3 M4

Tie point generation with SIFT-LPS M5 M6

Due to the difficulty in obtaining in situ measurements, our experiment only has eight
cracks: (a), (b), (c), (d), (e), (f), (g), and (h) to evaluate, as shown in Figure 11. This research
measures crack sizes in ortho-images with ERDAS IMAGINE 2013. As shown in Figure 11,
considering cracks have different widths along their propagation, we selected the widest
cross-section on each crack for crack width measurements. Gray value profiles of cracks
are also provided in Figure 12 that can tell the difference in gray values when the tangent
line meets the crack in the selected cross-section.
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Table 7 shows the in situ crack size measurements from the surveyors; Table 8 shows
the mean difference, mean relative difference, and root mean square difference (RMSD)
from each method; Table 9 contains the crack size measurements, absolute difference (AD),
and relative difference (RD) of each crack from each method; and Figure 13 is a bar chart
showing the relative difference of each crack from each method. The following are our
observations.
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Table 7. The in situ crack size measurements from the surveyors (unit: mm).

Surveyor
Crack

(a) (b) (c) (d) (e) (f) (g) (h)

Surveyor 1 1.4 1.4 0.55 0.9 0.35 0.45 0.55 0.6

Surveyor 2 1.3 1.2 0.5 0.95 0.35 0.45 0.45 0.65

Surveyor 3 1.4 1.1 0.6 1 0.35 0.45 0.4 0.65

avg. measurement 1.37 1.23 0.55 0.95 0.35 0.45 0.47 0.63
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Table 8. The mean difference, mean relative difference, and root mean square difference from each
method (unit: mm).

Method Mean Difference Mean Relative
Difference

Root Mean Square
Difference

M1 0.15 25.41% 0.18
M2 0.80 147.37% 0.9
M5 0.40 72.42% 0.46
M6 1.04 187.1% 1.13

Table 9. The crack size measurement, absolute difference (AD), and relative difference (RD) of each
crack from each method (unit: mm).

Crack (a) (b) (c) (d) (e) (f) (g) (h)

M1 1.5 1.4 0.6 1.2 0.7 0.5 0.5 0.8

AD 0.13 0.17 0.05 0.25 0.35 0.05 0.03 0.17

RD 9.76% 13.51% 9.09% 26.32% 100% 11.11% 7.14% 26.32%

M2 1.5 1.67 1.67 2.22 1.64 0.9 1.55 1.24

AD 0.13 0.44 1.12 1.27 1.29 0.45 1.08 0.61

RD 9.76% 35.41% 203.64% 133.68% 368.57% 100% 232.14% 95.79%

M3 1.5 - - - 1.3 0.9 - -

AD 0.13 - - - 0.95 0.45 - -

RD 9.73% - - - 271.14% 100% - -

M4 2.08 - - - 2.38 1 - -

AD 0.71 - - - 2.03 0.55 - -

RD 51.82% - - - 580% 122.22% - -

M5 1.4 1.7 1.4 1.3 0.9 0.7 0.9 0.9

AD 0.03 0.47 0.85 0.35 0.55 0.25 0.43 0.27

RD 2.44% 37.84% 154.55% 36.84% 157.14% 55.56% 92.86% 42.11%

M6 1.42 2.33 1.67 2.33 1.67 1.39 2.14 1.33

AD 0.05 1.10 1.12 1.38 1.32 0.94 1.67 0.70

RD 3.90% 88.92% 203.64% 145.26% 377.14% 208.89% 358.57% 110.47%

• First of all, as aforementioned, M3 and M4 have large errors in block triangulation,
and three ortho-images cannot be generated that are required for cracks (b), (c), (d),
(g), and (h). Hence, as shown in Table 9, there is no measurement from M3 and M4
for these cracks. With only three measurements, we decided to exclude these two
methods from Table 8. Please also notice that these unavailable measurements are not
shown in Figure 12.

• As shown in Table 8, M1 with the fully manual method achieves the best results, with
0.18 mm RMSD, 0.15 mm mean difference (MD), and 25.41% mean relative difference
(MRD), which can also be easily observed in Figure 12.

• In addition to M3 and M4, M6 (i.e., the most automatic solution) has the worst results,
as shown in Figure 12. As shown in Table 9, M6 achieves 1.13 mm RMSD, 1.04 mm MD,
and 187.1% MRD, which shows that the distribution of tie points is more important
than the number of tie points. Moreover, tie points selected with SIFT are not accurate
enough to establish an accurate 3D absolute coordinate system. The errors from
the tie point selection and the generation of DEMs propogate the final crack size
measurements.
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• In the experiment, the ortho-images are resampled to a 0.1 mm resolution, which is
smaller than the original pixel size of the images (i.e., about 0.5 mm). During the inter-
polation process, non-crack pixels near crack edges receive values from crack pixels,
which can eventually be mistaken as cracks. Therefore, the crack width measurements
from ortho-images are always larger than the in situ measurements, which also causes
displacement of the inflection points during crack size measurements.

• In addition, as shown in Table 9, crack size measurements from the inflection points
with the M2, M4, and M6 solutions have obviously larger differences than the ones
measured manually in cracks (c), (d), (e), (f), (g), and (h).

• As the reference data were measured by three surveyors and the cracks were very thin,
surveyors faced difficulties when identifying the precise locations of crack edges. To
be specific, there were 0.05 mm to 0.3 mm differences between the measurements from
three surveyors, implying that it is hard to retreive very accurate ground truth data
for the validation of crack size measurements.

• Overall, these observations in Table 9 indicate that manual work may still be more
reliable than automatic processes when measuring very small targets (i.e., cracks) from
UAV images.

• Furthermore, we discussed some detailed observations as follows.
• As shown in Figure 11, both cracks (a) and (b) are large and clear on the images.

Therefore, as identifying the edges of these cracks is relatively easy, these two cracks
have smaller differences in the in situ measurements. This also shows that the depths
of the cracks and the illlumination of the crack areas strongly influenced the clearance
of the images and further impacted the accuracy of the crack measurements.

• As shown in Figure 10, cracks (c), (e), and (f) are situated at the lower part of the bridge,
where the low illumination conditions result in low gray values and low contrast,
which cause difficulties in identifying the edges of cracks. Furthermore, the generated
DEMs for the lower part of the bridge have large errors. As a result, these three cracks
have larger differences in the in situ measurements than the ones located in the upper
part of the bridge that receive enough illumination.

• Furthermore, for thin and shallow cracks, such as cracks (c), (e), and (f), which are
blurry in the images, determining the edges of these cracks is a difficult task that may
result in larger uncertainty. Thus, in Table 9, the accuracies of these cracks are relatively
worse than other cracks when using both the manual and automatic methods.

• Moreover, since crack (e) is located in a concrete erosion area, the crack edges cannot
be precisely identified, which also results in a large difference, as shown in Figure 12.
The erosion areas and the texures of the concrete can cause huge errors for crack size
measurements.

• In general, based on our experience, high-resolution images are always preferable.
Multiple images taken from different orientations to measure the same cracks would
also be helpful and more reliable.
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4. Suggestions

Based on the experimental results, we believe that the proposed procedure could be
applied to provide acceptable crack width measurements via UAVs. However, based on our
experience, several improvements could be made for higher accuracy, which are explained
as follows.

• During our experiment, since the cracks are very thin, where some are close to the
image resolution, identifying the crack edges is a very difficult task for both man-
ual measurements and image processing. Therefore, higher-resolution cameras are
required to take clearer images for crack size measurements.

• Taking images of cracks under low illumination condition results in a low contrast,
which increases the difficulty and uncertainty when identifying the crack edges. There-
fore, lighting equipment should be included.

• Identifying the edges of cracks that are located in concrete erosion areas is also diffi-
cult, where multiple images taken from different orientations can help to reduce the
uncertainty.

• Since taking images closer can help obtain higher-resolution close-up images, the
distance between the UAV and the bridge could be shortened if some safety equipment
was included.

5. Conclusions

This research proposes a procedure of applying UAV and image registration to concrete
bridge crack inspection. To establish the absolute coordinate system while measuring and
locating cracks precisely, we register close-up images to long-range images with block
triangulation and ground control points. During the registration process, three approaches
are applied for tie point generation. Afterward, ortho-images are produced to measure the
crack sizes in the absolute coordinate system, where two crack size measurement methods
are applied. The proposed solution was examined on the Ai-He concrete bridge located in
Yangmei District, Taoyuan City, Taiwan.

Overall, there are four main contributions/observations in this research:

(1) We propose a safe and efficient concrete crack inspection method by using UAVs.
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(2) We register close-up images and long-range images to establish the absolute coordi-
nates of the cracks.

(3) Compared to the in situ measurements from three surveyors, the best proposed
approach can measure crack widths with a 0.18 mm root mean square difference
(RMSD), 0.15 mm mean difference, and 25.41% mean relative difference.

(4) The manual crack size measurements with automatic tie point generation combined
with SIFT and LPS perform an acceptable result with a 0.46 mm RMSD, 0.4 mm mean
difference, and 72.42% mean relative difference.

(5) Even for surveyors collecting in situ measurements, it is still challenging to identify
the edges of cracks, which means that the results could still be affected by subjective
judgements.
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