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Abstract: Precise and robust feature extraction plays a key role in high-performance tracking to
analyse the videos from drones, surveillance and automatic driving, etc. However, most existing
Siamese network-based trackers mainly focus on constructing complicated network models and
refinement strategies, while using comparatively simple and heuristic conventional or deformable
convolutions to extract features from the sampling positions that may be far away from a target
region. Consequently, the coarsely extracted features may introduce background noise and degrade
the tracking performance. To address this issue, we present a propose-and-refine tracker (PRTracker)
that combines anchor-free style proposals at the coarse level, and alignment convolution-driven
refinement at the fine level. Specifically, at the coarse level, we design an anchor-free model to
effectively generate proposals that provide more reliable interested regions for further verifying.
At the fine level, an alignment convolution-based refinement strategy is adopted to improve the
convolutional sampling positions of the proposals, thus making the classification and regression
of them more accurate. Through using alignment convolution, the convolution sampling positions
of the proposals can be efficiently and effectively re-localized, thus improving the accuracy of the
extracted features. Finally, a simple yet robust target mask is designed to make full use of the initial
state of a target to further improve the tracking performance. The proposed PRTracker achieves a
competitive performance against six tracking benchmarks (i.e., UAV123, VOT2018, VOT2019, OTB100,
NfS and LaSOT) at 75 FPS.

Keywords: accurate tracking; robust tracking; anchor-free; alignment convolution;
propose-and-refine

1. Introduction

Given the initial state of a target object, visual tracking aims to estimate the state
(usually represented by a bounding box) of the target in each frame of a video sequence.
Accurate and robust tracking is required by various practical applications such as intel-
ligent drones for urban monitoring [1], computer interactions [2], automatic driving [3]
and video surveillance [4]. Recently, although numerous top-performing trackers [5–14]
have been proposed, it is still quite difficult to achieve accurate and robust tracking in
dynamically complicated scenes containing similar objects, non-rigid object deformation,
background clutters and fast motion. As shown in Figure 1 and Table 1, through empirical
analysis, we find that the accuracy of features extracted in each tracker is greatly affected
by convolutional sampling locations in different convolution operations, e.g., conven-
tional [15], deformable [16], and alignment convolutions. The conventional convolution
utilizes regular sampling grids to extract the features. When the features are used in a
tracker [5], it cannot handle large-scale and deformation changes. As the deformable
convolution adds 2D learnable offsets to the regular grid sampling locations, it is robust to
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geometric transformations. However, when it is used in a tracker [17], it still introduces
interference noises due to the lack of supervision information. Consequently, one critical
obstacle is how to extract precise and robust features to accurately describe the target while
discriminating it from the backgrounds. To address this issue, most existing methods focus
on the two aspects of building an accurate and robust tracker, i.e., feature learning and
coarse-to-fine refinement.

Figure 1. Three typical convolutional methods used to extract features in each tracker: (a) An image;
(b) using a conventional convolution to extract features. The extracted features are inaccurate to
deal with deformation changes due to regular sampling grids. (c) Using a deformable convolution
to extract features. This uses learnable offsets to obtain sampling points; however, this may brings
outliers instead. (d) Using the proposed alignment convolution with the supervision of proposals
to extract features. The convolutional sampling points can be effectively re-localized to make the
classification and regression of proposals more accurate and robust. See Section 4 for empirical results
of the three strategies.

Feature learning: to construct a robust feature representation, classical Siamese
network-based trackers [5,18,19] use large-scale offline training samples to train a two-flow
deep Siamese network. However, they merely rely on a conventional convolution to extract
features and a heuristic multi-scale searching mechanism to estimate the location and size of
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a target, respectively. These basic yet key operations may introduce background noise. As
a result, they suffer from inaccurate feature extraction, and thus cannot accurately predict
the target deformations. To improve the accuracy, recent trackers explore anchor-based
and -free solutions from different aspects. The most representative anchor-based trackers
are SiamRPN [20] and its follow-up work (e.g., DaSiamRPN [21] and SiamRPN++ [9]).
SiamRPN introduces a regional proposal network (RPN) [22] for similarity matching and
bounding box regression. DaSiamRPN [21] and SiamRPN++ [9] improve the robustness of
SiamRPN through distractor-aware training and a deeper network, respectively. Although
these anchor-based trackers can handle changes in the scale and aspect ratio of the targets,
they are sensitive to the numbers, sizes and aspect ratios of anchor boxes. In addition,
because the scale and aspect ratio of the anchor boxes are fixed, even if heuristics are used
to adjust the parameters, they are still difficult to handle objects with large shape and pose
variations. To address this issue, the anchor-free methodology [6] is introduced for visual
tracking. The simple yet effective anchor-free trackers [6,23,24] directly classify objects and
regress their bounding boxes from pre-defined positions, thus avoiding the design of the
anchor boxes. They use the classification information from the pre-defined locations to
choose the optimal bounding box. However, most of the pre-defined positions may be far
away from the target areas. Consequently, their tracking accuracy is still degraded due to
inaccurate feature extraction from coarse regression boxes and conventional convolutions.

Coarse-to-fine refinement: some Siamese-based trackers rely on a coarse-to-fine
paradigm to balance accuracy and robustness. Representative trackers include Siam R-
CNN [7] and SPM [10] that are composed of a coarse matching stage and a refinement
stage. In the refinement stage, they use the RoI operators to extract the features of the
interested regions for classification and regression, such as RoIAlign [25] and PrPool [26].
Compared with the above trackers (e.g, SiamRPN [20], SiamRPN++ [9], SiamBAN [6])
directly predicting a regression box, Siam R-CNN [7] and SPM [10] have higher accuracy
due to the refinement strategies. However, one limitation of Siam R-CNN [7] is the complex
model that needs a cascaded scheme to ensure detection accuracy. As a result, it runs very
slowly, i.e., less than 5 FPS. SPM [10] depends on the candidate results from the coarse
results to trigger its refining process. However, effectively generating the better candidate
results that facilitate the refining process is crucial. Moreover, despite their success, Siam
R-CNN [7] and SPM [10] are limited by the fact that they cannot extract accurate features
due to using conventional convolutions with fixed sampling positions.

In summary, for feature learning-based trackers [6,9,20], such approaches either rely
on anchor-based mechanism or utilize anchor-free mechanism to achieve tracking target.
However, they are sensitive to the numbers, sizes and aspect ratios of anchor boxes, or the
pre-defined positions may be far from the target area. Therefore, their tracking accuracy
is still degraded due to inaccurate feature extraction from coarse regression boxes and
conventional convolutions. For coarse-to-fine refinement-based trackers [7,10], although
such methods obtain good performance, they are limited by the complexity of the model
and they are not efficient in generating proposals.

In this paper, inspired by the observations that feature extraction is crucial and the
coarse-to-fine mechanism is a powerful tool, we propose a novel propose-and-refine tracker
(PRTracker) for accurate and robust tracking. The proposed PRTracker effectively fuses
anchor-free style proposals at the coarse level, and alignment convolution-driven refine-
ment at the fine level. At the coarse level, an anchor-free model is utilized to effectively
generate proposals that provide more reliable interested regions, while discarding the
majority of backgrounds. At the fine level, an alignment convolution-based refinement
strategy is adopted to improve the convolution sampling positions of the proposals, thus
making the classification and regression of the proposals more accurate. The initial propos-
als generated at the coarse level are used as supervised information to make the sampling
grids more stable. The benefit from alignment convolution is that the convolution sampling
positions of the proposals can be efficiently and effectively re-localized, thus improving the
accuracy of extracted features. Finally, we design a simple yet robust target mask to make



Drones 2023, 7, 343 4 of 22

full use of the initial state of the targets to further improve the tracking performance. To
sum up, the main contributions of this work are three-fold:

• The paper explores a major challenge that leads to inaccurate target localization, while
often not discussed in the tracking literature. Based on careful investigation, this paper
discovers the inaccurate convolution sampling points likely to lead to incorrect feature
extraction, which degrades a tracker.

• The paper designs a simple yet efficient propose-and-refine mechanism that is driven
by an alignment convolution to classify and refine the proposals. By naturally ac-
centuating the advantages of each component, the proposed PRTracker can not only
effectively obtain reliable proposals, but also provide more accurate and robust fea-
tures for further classification and regression.

• The paper extensively validates the proposed PRTracker against six benchmarks in-
cluding LaSOT [27], VOT2018 [28], VOT2019 [29], NfS [30], OTB100 [31] and UAV123
[32]. The results show the accuracy and robustness of the proposed PRTracker.

The rest of this paper is organized as follows: we briefly present an overview of the
related work in Section 2. The framework of the proposed PRTracker is described in detail
in Section 3. The experimental results and corresponding analyses are systematically shown
in Section 4. Finally, we conclude the paper in Section 5.

Table 1. Illustrations of the different properties of the existing convolution-based trackers.

Types Sample Mode Coarse-to-Fine Refinement

Conventional
Convolution-Based

Trackers [6,9,20]
Regular Grid Sampling No

Deformable
Convolution-Based

Trackers [17]
Learnable Offset Sampling No

Alignment
Convolution-Based Trackers

(Proposed PRTracker)

Learnable Offset Sampling
with the Proposal Supervision

Signal
Yes

2. Related Work

With the rapid development of deep learning, many excellent works [5,9,10,20,21,25,33–37]
have emerged in the research community of objecting tracking. This section provides a
brief overview of the related methods, i.e., coarse target localization and coarse-to-fine
localization in object tracking.

2.1. Coarse Target Localization in Object Tracking

Multi-scale searching mechanism-based trackers: the trackers based on multi-scale
searching mechanisms typically rely on a simple and heuristic-scale pyramid to estimate the
location and size of a target. Representative approaches include discriminative correlation
filter (DCF)-based trackers [33,38] and Siamese network-based trackers [5]. By revisiting
the core DCF formulation, ECO [33] introduces a factorized convolution operator, a com-
pact generative model, and a conservative model update strategy into DCF, respectively.
Consequently, it improves the spatial-temporal efficiency based on a C-COT model [38].
SiamFC [5] uses a new fully convolutional Siamese network as a basic tracking model. It
exceeds the real-time requirement. However, the scale pyramid-based test makes these
trackers inflexible to accurately estimate the scale and aspect ratio of a target.

Anchor-based trackers: anchor-based trackers treat a tracking task as a classification-
regression problem, in which the bounding box coordinates and target–background proba-
bilities are directly predicted. One popular anchor-based tracker is SiamRPN [20] which
introduces a region proposal network (RPN) into a Siamese network-based tracker. Through
directing classification and regression anchors, SiamRPN avoids the multi-scale search and
achieves accurate results. Inspired by the success of SiamRPN, numerous anchor-based
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trackers have been proposed. DaSiamRPN [21] adopts a distractor-aware feature-learning
scheme to promote the discriminative power of its network. SiamRPN++ [9], SiamMask [35]
and SiamDW [34] introduce modern deep neural networks into anchor-based trackers to
improve their tracking performance, such as ResNet [39], ResNeXt [40], and MobileNet [41].
Although anchor-based trackers [9,10,20] can handle changes in scale and aspect ratio, it is
necessary to carefully design anchor boxes based on heuristic knowledge, which introduces
many hyperparameters and computational complexity.

Anchor-free trackers: recently, a few of anchor-free trackers [6,8,23] have been pro-
posed. Different from anchor-based trackers, the anchor-free trackers treat each pixel as an
anchor point, and thus can directly predict the position of a target. In contrast to anchor-
based trackers, anchor-free trackers avoid hyperparameters associated with the anchor
boxes and is more flexible and general. However, the above anchor-free trackers have the
problem of misalignment between the predicted bounding boxes and the sampling features.
Most of the pre-defined positions may be far away from the target areas. Consequently,
their tracking accuracy is still degraded due to inaccurate feature extraction from coarse
regression boxes and conventional convolutions.

2.2. Coarse-to-Fine Localization in Object Tracking

Recently, numerous top-performing trackers [7,10,42,43] rely on a coarse-to-fine strat-
egy consisting of a coarse and refinement stage to gradually obtain accurate and robust
tracking results. Generally speaking, they firstly predict the coarse target states at a coarse
stage. Then, the coarse target states are adjusted at a refinement stage. In ATOM [43],
an online classification module is firstly utilized to estimate the coarse target positions.
Meanwhile, some samples around the coarse target positions are randomly generated. At
the refinement stage, more precise bounding boxes are obtained by maximizing the overlap
between ground truth and these samples. In SPM [10], candidate results generated by a
coarse stage are utilized to crop the ROI regions for further refining. However, the ROI
regions may be inaccurate if the coarse results are unreliable. In contrast, we employ coarse
results as the initial results. Then, we further adjust the convolution sampling points to
obtain accurate features before classification and regression. Siam R-CNN [7] improves
its accuracy by maintaining a tracklet and matching the similarity between coarse results
and a template. The refinement strategy of Siam R-CNN is similar to post-processing,
which is complex and computationally intensive. Meanwhile, in other fields, some new
strategies have been proposed in some of the work to improve the video understanding
capabilities. For example, Gomaa et al. [44] used top- and bottom-hat transformations aided
by the morphological operation to capture the target object in the detection phase, and then
performed motion feature point analysis using a combined technique between KLT tracker
and K-means clustering to achieve a better decision result. Based on a YOLOv2 algorithm,
Gomaa et al. [45] used a two-stage strategy of detection and tracking to implement the
feature point motion analysis and vehicle detection and counting method. Chang et al. [46]
explored a new convolution autoencoder architecture that can dissociate the spatio-temporal
representation to separately capture spatial and temporal information, thereby improving
the detection performance of fast moving outliers. In contrast, we found that the inaccu-
rate convolution sampling points in the target regions are the main challenge that greatly
degrades the classification and regression results. Therefore, this paper introduces an align-
ment convolution to adaptively re-localize the convolution sampling points, thus refining
the classification and regression results. Based on a plug-and-play style refinement module,
Alpha-Refine [42] is able to efficiently refine a base tracker’s outputs. However, its tracking
performance may be limited by the base tracker. By end-to-end training, the proposed
PRTracker can effectively optimize the coarse and refinement stages together.

2.3. Feature Alignment in Object Detection

Feature alignment usually refers to the alignment between convolutional features
and proposals/RoIs, which is very important for object detection and localization. In two-
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stage object detection, the RoI operators (e.g., RoIPooling [47], RoIAlign [25], PrPool [26]
and Deformable RoIPooling [16]) are usually used to extract fixed-length features inside
the RoIs. The fixed-length features can effectively represent the object appearances. In
one-stage detectors [48,49], an important requirement is to maintain a full convolutional
structure, improving the processing speed. However, the used RoI operators cannot
meet this requirement due to the introduction of fully connected layers. Recently, some
detectors [50,51] used a deformable convolution to achieve feature alignment. Their offset
values are usually obtained by calculating the offsets between a pre-defined anchor box and
a refined anchor box. Although the deformable convolution can change the convolution
sampling points, it lacks explicit supervision information for effectively training. Thus,
the obtained convolution sampling points may be unstable. Ocean [8] adopts a feature
alignment schema that is independent of the classification results for tracking. It directly
extracts object-aware features from the estimated bounding boxes, without considering the
classification scores. In this work, we designed an alignment convolution to re-localize the
convolution sampling points, thus capturing more accurate features. To effectively adjust
the convolution sampling points, we take the coarse results generated at the coarse stage
as the supervision information during training. At the refinement stage, the convolution
sampling points can be effectively refined based on the coarse results.

3. The Proposed Tracker

In this section, we develop a novel tracking method, PRTracker, that learns to propose
and refine for accurate and robust tracking via an alignment convolution. As shown in
Figure 2, the PRTracker consists of a Siamese network backbone, a propose-and-refine
module and a target mask. The shared parameters of the Siamese backbone network are
responsible for extracting features from both a template and search patch. Meanwhile,
we provide the initial state of a target to the template features through the target mask.
After this, the template and search features are introduced into the DW-Corr module for
learning the target representation. Finally, we use the learned features as inputs to the
propose-and-refine module for target localization. Specifically, the propose-and-refine
module first generates proposals at the coarse level. Then, it classifies and refines them
through an alignment convolution at the fine level. Below we give a detailed description of
each component in the framework, and then summarize the proposed PRTracker.

Figure 2. The framework of the proposed PRTracker. First, we extract template and search features
using a ResNet-50 convolutional neural network. Next, we feed the template and search features
into the DW-Corr module for learning the target representation. Finally, we use the learned features
as inputs to the propose-and-refine module for target localization. The DW-Corr represents the
depth-wise cross-correlation operation and the AlignConv represents the alignment convolution. The
propose-and-refine module contains two sub-networks, one to generate and refine proposals, and the
other to classify proposals.
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3.1. The Siamese Network Backbone

The goal of the Siamese network backbone is to extract features from both a template
and search patch. As is well known, modern deep neural networks [39–41] have been
proven to be effective in Siamese network-based trackers [9,34,35]. To clearly show the
effectiveness of the propose-and-refine module, we use a modified ResNet-50 [39] as the
backbone network and extract features from the conv4 block. To increase the resolution of
the feature maps, we remove the convolution stride of the conv4 block. At the same time, to
maintain the receptive fields, the atrous rate of all 3× 3 convolutions of the conv4 block is
set to 2. The Siamese network backbone takes a pair of pictures as the input, i.e., a template
patch (denoted as z), and a search patch (denoted as x). Table 2 shows the details of the
Siamese network backbone.

Table 2. The details of the Siamese network backbone in the proposed framework. Details of each
building block, template, and search features are shown in square brackets.

Block Backbone Search Branch
Output Size

Template Branch
Output Size

conv1 7 × 7, 64, stride 2 125 × 125 61 × 61

conv2_x

3 × 3 max pool, stride 2
1× 1, 64

3× 3, 64

1× 1, 256

× 3
63 × 63 31 × 31

conv3_x


1× 1, 128

3× 3, 128

1× 1, 512

× 4 31 × 31 15 × 15

conv4_x


1× 1, 256

3× 3, 256

1× 1, 1024

× 6 31 × 31 15 × 15

adjust 1 × 1, 256 31 × 31 7 × 7

xcorr depth-wise 25 × 25

3.2. Alignment Convolution

Extracting accurate and robust features is a challenging and important problem in
visual tracking. As shown in Figure 3, the conventional convolution samples the features
at contiguous locations. If a target undergoes complicated appearance variations, the
conventional convolution may introduce a lot of background interference information due
to only extracting features with fixed sampling positions from a rectangular area. To focus
on the ROI of a rectangular area, the deformable convolution changes the spatial sampling
locations by learning the offsets. However, the convolution sampling positions of the
deformable convolution are learnt without explicitly supervised information. To effectively
re-localize the convolution sampling points, thus capturing more accurate features, we
design an alignment convolution trained with explicitly supervised information for the
propose-and-refine module. Specifically, given a bounding box and a position within the
bounding box, the alignment convolution will sample from nine positions, i.e., one given
position, four corner positions of the bounding box, and four vertical mapping positions
of the position on the sides of the bounding box. For example, the given position is (x, y),
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and the distances from the position to the left, top, right, and bottom of the bounding box
are l′, t′, r′ and b′, respectively. The nine sampling positions of the alignment convolution
will be (x− l′, y− t′), (x, y− t′), (x + r′, y− t′), (x− l′, y), (x, y), (x + r′, y), (x− l′, y + b′),
(x, y + b′) and (x + r′, y + b′), respectively. Therefore, given the offsets l′, t′, r′ and b′, the
alignment convolution can be easily implemented with a deformable convolution with a
given offset [16]. In comparison, the deformable convolution generates the learnable offsets
through the convolution operation, making the sampling points random around the current
location, and the alignment convolution is designed with the supervised information.
Therefore, the alignment convolution can not only capture the geometric information, but
also context information of the bounding box. It is worth noting that the computation of the
offset values is not part of the convolutional computation, which comes from the first stage
of the proposal generation process. Thus, the alignment convolution does not increase the
computational burden compared with conventional convolution. Section 4.3 discussions
more the effectiveness of the three different convolutions for the proposed tracker.

(a) (b) (c)

Figure 3. Illustration of the sampling locations in different convolutions with a 3× 3 kernel. (a) The
conventional convolution. (b) Deformable convolution [16]. (c) Proposed alignment convolution,
which can effectively refine the convolution sampling positions and improve the accuracy of the
extracted features.

3.3. The Propose-and-Refine Module

The propose-and-refine module proceeds by first obtaining a set of proposal solutions
via an anchor-free model at the coarse level, and then optimizing them via an alignment
convolution at the fine level. Specifically, as shown in Figure 2, the input of our propose-
and-refine module is a combined feature map P that is generated by combining the template
and search patch features through a depth-wise cross-correlation layer [9]:

P = ϕ(x) ? ϕ(z), (1)

where ϕ(x) and ϕ(z) represent the template and search patch features, respectively. ?
denotes a convolution operation with ϕ(z) as the convolution kernel. Then, we apply two
non-shared sub-networks with three 3× 3 convolution layers on the combined feature
map P to obtain a classification and regression feature map. Furthermore, the regression
sub-network generates proposals (l′, t′, r′ and b′) on the regression feature map through a
3× 3 convolution layer and a 1× 1 convolution layer. After obtaining the proposals, we
use a 3× 3 alignment convolution layer and a 1× 1 convolution layer to classify and refine
them on the classification and regression feature map, respectively. Given the proposals
(l′, t′, r′ and b′), an alignment convolution is used to sample on the classification feature
map to predict the target–background scores. Meanwhile, another alignment convolution is
used to sample the regression feature map to predict the four scale factors (dl, dt, dr and db).
Finally, we can obtain the refined proposals, i.e., (l, t, r and b) = (dl ∗ l′, dt ∗ t′, dr ∗ r′ and
db ∗ b′). Please note that we apply exp(x) to map the regression output values to (0, +∞)
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since they are positive real numbers. Moreover, for each location on the classification or
regression feature map, we can easily map it to the search patch. For example, the location
(i, j) corresponds to (pi, pj) = [bwim

2 c+ (i− bw
2 c)× s, b him

2 c+ (j− b h
2 c)× s]. wim and him

represent the width and height of the search patch, respectively. s represents the total stride
of the network.

Based on our propose-and-refine module with an alignment convolution, the convolu-
tion sampling positions of the proposals can be efficiently and effectively re-localized, thus
improving the accuracy of extracted features. Therefore, the proposed PRTracker can make
the classification and regression of the proposals more accurate. Note that although the
proposed PRTracker uses two regressions, only one depth-wise cross-correlation layer is
required. In contrast, both SiamRPN++ [9] and SiamBAN [6] need six depth-wise cross-
correlation operations. As a result, the proposed PRTracker is more efficient than previous
anchor-based and -free trackers [6,8,9,23].

3.4. The Target Mask

To make full use of a ground truth bounding box from the initial frame, we design
a target mask. As shown in Figure 2, the bounding box in the template patch is given to
the template features through the target mask. Specifically, the target mask is generated
according to the bounding box of a target. The values of the target mask are set to 1 if the
corresponding positions are in the ground truth bounding box. Otherwise, they are set
as −1. The basic idea of our target mask is to effectively use the background information.
Thus, we set the values of the target mask to −1 instead of 0. Due to the ReLU activate
function, there are no negative values in the template feature map before fusing the target
template. Therefore, the template feature map is multiplied by the target mask to clearly
distinguish the target and background features. Please note that this simple yet effective
operation hardly adds computational overhead to the proposed PRTracker.

3.5. Ground Truth and Loss

Classification labels and regression targets. Inspired by SiamBAN [6], we utilize an
ellipse figure region to design the labels. It is used for effective division of positive or
negative samples. In detail, we first set an ellipse E1 and E2 according to a ground truth
bounding box. The width, height, top-left corner, centre point and bottom-right corner
of the ground truth bounding box are represented by gw, gh, (gx1 , gy1), (gxc , gyc) and
(gx2 , gy2), respectively. The centre and axes length of ellipse E1 are denoted by (gxc , gyc)
and gw

2 , gh
2 , respectively. Ellipse E1 is formulated by:

(pi − gxc)
2

( gw
2 )2

+
(pj − gyc)

2

( gh
2 )2

= 1, (2)

The centre and axes length of ellipse E2 are denoted by (gxc , gyc) and gw
4 , gh

4 , respec-
tively. Ellipse E2 is formulated by:

(pi − gxc)
2

( gw
4 )2

+
(pj − gyc)

2

( gh
4 )2

= 1, (3)

During the proposal generation process, each position of the feature map inside the
ground truth bounding box is utilized to train the regression network. After obtaining
the proposals, we calculate their intersection over union (IoU) with the ground truth
bounding box.

For classification labels, if the location (pi, pj) falls within ellipse E2 and its IoU more
than 0.6, it is assigned with a positive label. If it falls outside ellipse E1 and its IoU less than
0.3, it is assigned with a negative label. Others are ignored.

In the proposal refinement stage, if the location (pi, pj) falls within the ground truth
and its IoU more than 0.6, it needs to refine the proposals.

The proposal generation and refinement have the same targets, expressed as:



Drones 2023, 7, 343 10 of 22

dl = pi − gx1 ,

dt = pj − gy1 ,

dr = gx2 − pi,

db = gy2 − pj,

(4)

where dl , dt, dr and db are the offsets from the location to the four sides of a proposal.
Classification loss and regression loss. The multi-task loss function is formulated

as follows:

L = λ1Lcls + λ2Lgen + λ3Lre f , (5)

where Lcls is a cross-entropy loss used for proposals classification, and Lgen and Lre f
are IoU losses used for proposal generation and refinement, respectively. We simply set
λ1 = λ2 = λ3 = 1. The IoU loss is defined as:

LIoU = 1− IoU, (6)

where IoU represents the area ratio of IoU of the proposals and ground truth bounding box.

3.6. Training and Inference

Training. The training datasets include ImageNet VID [52], YouTube-BoundingBoxes [53],
COCO [54], ImageNet DET [52], GOT10k [55] and LaSOT [27]. We extract image pairs from
these videos or images, and crop the template and search patches from them. The sizes
of the template and search patch are set as 127× 127 and 255× 255 pixels, respectively.
For classification loss, we select 16 positive samples and 48 negative samples from each
pair of images for training. For regression loss, the positive samples in each pair of images
participate in training.

Inference. In the inference stage, we first crop a template patch from an initial frame.
Then, we extract features and construct a target mask. For each subsequent frame, we crop
a search patch based on the target position of the previous frame. Then, we extract the
features of the search patch. Furthermore, we obtain the predicted values (l, t, r and b)
through our propose-and-refine module. Therefore, the predicted bounding boxes can be
obtained by the following equation:

px1 = pi − l,

py1 = pj − t,

px2 = pi + r,

py2 = pj + b,

(7)

where (px1 , py1) and (px2 , py2) are the top-left corner and bottom-right corner of the
prediction boxes, respectively.

After generating the predicted bounding boxes, we use a cosine window and scale
change penalty schema to smooth the movements and scale changes of the target [20].
Finally, we select the predicted bounding box with the highest score, and update the
bounding box in the previous frame through linear interpolation. Algorithm 1 summarizes
the tracking process of the proposed PRTracker.
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Algorithm 1: Accurate and robust tracking with PRTracker

Input: Frames
{

XT
t=1
}

and initial bounding box b1 of X1.
Output: Tracking results

{
bT

t=2
}

.
1 Extract a target template z in X1 using b1;
2 Extract features {ϕ(z)}5

l=3 for z from our model;

3 Obtain features
{
[ϕl(z)]cls

}5

l=3
and

{
[ϕl(z)]reg

}5

l=3
of z from

{
ϕl(z)

}5

l=3
and add

a target mask;
4 for t = 2 to T do
5 Crop a search region x in Xt using bt−1;

6 Extract features
{

ϕl(x)
}5

l=3
for x from our model;

7 Get features
{
[ϕl(x)]cls

}5

l=3
of x from

{
ϕl(x)

}5

l=3
;

8 Get features
{
[ϕl(x)]reg

}5

l=3
of x from

{
ϕl(x)

}5

l=3
;

9 Get classification features
{

Pcls− f eat

}5

l=3
using Eq. (1);

10 Get regression features
{

Preg− f eat

}5

l=3
using Eq. (1);

11 Obtain classification map {Pcls}5
l=3 ←

{
Pcls− f eat

}5

l=3
;

12 Obtain regression map
{

Preg
}5

l=3 ←
{

Preg− f eat

}5

l=3
;

13 Regress (l, t, r, b) via the propose-and-refine module;
14 Calculate the final classification map Pcls−all ;
15 Calculate the final regression map Preg−all ;
16 Get predicted bounding boxes using Eq. (7);
17 Select the optimal bounding box as tracking results bt.
18 end

4. Experiments

In this section, we conduct extensive experiments on six benchmarks (i.e., VOT2018 [28],
VOT2019 [29], OTB100 [31], LaSOT [27], UAV123 [32], and NfS [30]) to validate the
performance of the proposed PRTracker. Section 4.1 first introduces the implementation
details of the proposed PRTracker. Then, we systematically compare it with state-of-the-art
trackers in Section 4.2. Finally, Section 4.3 discusses ablation studies on the propose-and-
refine module and target mask module.

4.1. Implementation Details

We initialized the backbone network with the parameters pre-trained on ImageNet [52]
and freeze the parameters of the first two layers. We trained the proposed network with
stochastic gradient descent (SGD) with a minibatch of 28 pairs. We train a total of 20 epochs,
using a warmup learning rate of 0.001 to 0.005 in the first 5 epochs and a learning rate
exponentially decayed from 0.005 to 0.00005 in the last 15 epochs. In the first 10 epochs,
we only trained the propose-and-refine module. In the last 10 epochs, we fine-tuned the
backbone network at one-tenth of the current learning rate. Weight decay and momentum
were set as 0.0001 and 0.9, respectively. Our PRTracker was implemented under the PyTorch
framework. The training was carried out on a workstation with Intel(R) Xeon(R) Silver
4114 2.20 GHz CPU, Nvidia GTX 1080Ti. Our PRTracker runs at 75 FPS.

4.2. Comparison with State-of-the-Art Trackers

VOT2018 [28]. The Visual Object Tracking Challenge 2018 (VOT2018) dataset com-
prises 60 video sequences with an average length of 356 frames. It evaluates trackers in
terms of accuracy (average overlap during successful tracking periods), robustness (failure
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rate), and EAO (expected average overlap). The EAO is used to rank the trackers based
on a combination of the accuracy and robustness metrics. The evaluation on VOT2018
was performed by an official toolkit. Table 3 and Figure 4 show the detailed comparison
with nine top-performing trackers, including SiamRPN [20], LADCF [56], ATOM [43], Siam
R-CNN [7], SiamRPN++ [9], SiamFC++ [23], DiMP [57], SiamBAN [6], and Ocean [8], on
VOT2018. It can be seen that the proposed PRTracker achieved the best EAO, accuracy
and robustness. In terms of EAO, the proposed PRTracker was 5.7% higher than the sec-
ond ranked Ocean [8]. Among the compared trackers, Siam R-CNN [7] achieved pretty
high accuracy. However, our PRTracker outperformed it with 1%. It is worth noting that
PRTracker achieved the same robustness as DiMP [57] without online updates.

Table 3. Detailed comparisons on VOT2018. The best two results are highlighted in red and blue
fonts. DiMP is the ResNet-50 version (DiMP-50), Ocean is the offline Ocean, the same below.

SiamRPN
[20]

LADCF
[56]

ATOM
[43]

Siam
R-CNN [7]

SiamRPN++
[9]

SiamFC++
[23]

DiMP
[57]

SiamBAN
[6]

Ocean
[8]

PRTracker

EAO (↑) 0.384 0.389 0.401 0.408 0.417 0.430 0.441 0.452 0.470 0.497
Accuracy (↑) 0.588 0.503 0.590 0.617 0.604 0.590 0.597 0.597 0.603 0.627
Robustness (↓) 0.276 0.159 0.201 0.220 0.234 0.173 0.150 0.178 0.164 0.150

12345678910
0.36

0.38

0.4

0.42

0.44

0.46

0.48 PRTracker [0.473]
Ocean [0.470]
DiMP [0.441]
SiamFCpp [0.430]
SiamRPNpp [0.417]
SiamRCNN [0.408]
ATOM [0.401]
LADCF [0.389]
SiamRPN [0.384]

Φ̂

Figure 4. Expected averaged overlap performance on VOT2018. SiamRPNpp is SiamRPN++,
SiamFCpp is SiamFC++, SiamRCNN is Siam R-CNN, the same below.

Furthermore, as shown in Figure 5, we provide the qualitative comparison results on
four typical sequences, i.e., girls, butterfly, fish2 and motocross1 sequences. The challenges
in the four sequences contain similar objects, non-rigid object deformation, background
clutters and fast motion, respectively. To be specific, the first row shows that an anchor-free-
based tracker (i.e., SiamBAN) and coarse-to-fine-based tracker (i.e., Siam R-CNN) are easily
affected by similar interferences. With the use of fixed sampling points of conventional
convolution, these trackers cannot accurately localize the objects due to insufficient feature
representation. Moreover, the butterfly sequence on the second row with serious object
deformation results in poor performance of the other four trackers (i.e., Ocean, DiMP,
SiamBAN and Siam R-CNN). In contrast, the proposed PRTracker has a powerful ability to
couple this case. We conclude that the propose-and-refine mechanism with an alignment
convolution can learn more robust features of deformed objects. As verified in the rest
rows, both DiMP with online update and Ocean fail to generate precise object localization
results. In conclusion, the above-detailed analyses verify that our PRTracker can learn
to propose and refine to effectively improve the convolution sampling position for more
accurate feature extraction.



Drones 2023, 7, 343 13 of 22

Figure 5. Representative experimental results from the proposed tracker and four state-of-the-art
trackers, DiMP [57], SiamBAN [6], SiamRCNN [7] and Ocean [8]. Estimating the target state accurately
is challenging due to the existence of similar objects (first row), non-rigid object deformation (second
row), background clutters (third row), and fast motion (fourth row). Different from the state-of-the-art
trackers, we present a propose-and-refine mechanism for accurate tracking. The proposed tracker
obtains an overall performance improvement by further refinement and relatively accurate features.

Comparison of attributes on VOT2018. To clearly show the effectiveness of the
proposed PRTracker on various scenes of VOT2018, we study and analyse each attribute
in VOT2018. Each frame of all video sequences in VOT2018 is marked with attributes
(e.g., camera motion, illumination change, occlusion, size change, or motion change) and
the rest are classified as unassigned. We compare the EAO of the major attributes on
VOT2018 in Figure 6. It can be clearly seen that our PRTracker achieved a competitive
performance in all attributes. It achieved the highest EAO on the attributes of occlusion
(e.g., basketball and tiger sequences), and camera motion (e.g., car1 and crossing sequences).
Meanwhile, it ranked second on the attributes of motion change (e.g., bag, birds1 and bmx
sequences), and size change (e.g., matrix sequence). The excellent performance shows that
the proposed PRTracker is able to mitigate inaccurate bounding box regression effects by
integrating an alignment convolution into the refinement stage, capturing representative
features of the proposals to deal with multiple challenges.
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overall
(0.379,0.473)

camera motion
(0.365,0.492)

illumination change
(0.352,0.501)

occlusion
(0.254,0.425)

size change
(0.399,0.586)

motion change
(0.376,0.539)

unassigned
(0.105,0.354)

UPDT SiamRPN LADCF ATOM SiamRCNN

SiamRPNpp SiamFCpp DiMP Ocean PRTracker

Figure 6. Comparison of EAO on VOT2018 for the following visual attributes: camera motion,
illumination change, occlusion, size change and motion change. Frames that do not correspond to
any of the five attributes are marked as unassigned. The values in parentheses indicate the EAO
range of each attribute and overall of the trackers.

VOT2019 [29]. The Visual Object Tracking challenge 2019 (VOT2019) dataset is ob-
tained by replacing 20% of VOT2018 with carefully selected sequences from the GOT10k [55].
The same metrics and tools from VOT2018 are used for performance evaluation. Table 4
and Figure 7 show the EAO, robustness and accuracy of the proposed PRTracker and the
nine top-performing trackers, respectively. Compared with these trackers, the proposed
PRTracker achieved the best overall performance with the highest accuracy and lowest
robustness. Furthermore, the proposed PRTracker outperformed the other coarse-to-fine-
based trackers (e.g., SPM [10] and SiamMask [35]). These comparison results clearly verify
the advantage of our designed propose-and-refine module. Moreover, the performance of
the proposed PRTracker exceeds DiMP [57] with online updates. These results show that
our PRTracker can effectively use an alignment convolution in the refine stage to obtain
more accurate and robust features for target localization.

Table 4. Detailed comparisons on VOT2019 experiments. DiMP is real-time version, as reported
in [29]. The best two results are highlighted in red and blue fonts. The uparrow signs mean that the
higher the score, the better. The downarrow signs mean that the lower the score, the better.

SPM
[10]

SiamRPN++
[9]

SiamMask
[35]

ARTCS
[29]

SiamDW_ST
[34]

DCFST
[29]

DiMP
[57]

SiamBAN
[6]

Ocean
[8] PRTracker

EAO (↑) 0.275 0.285 0.287 0.287 0.299 0.317 0.321 0.327 0.329 0.352
Accuracy (↑) 0.577 0.599 0.594 0.602 0.600 0.585 0.582 0.602 0.595 0.634
Robustness (↓) 0.507 0.482 0.461 0.482 0.467 0.376 0.371 0.396 0.376 0.341
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12345678910
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0.28

0.3

0.32

0.34
PRTracker [0.337]
Ocean [0.329]
DiMP [0.321]
DCFST [0.317]
SiamDW ST [0.299]
ARTCS [0.287]
SiamMask [0.287]
SiamRPNpp [0.285]
SPM [0.275]

Φ̂

Figure 7. Expected averaged overlap performance on VOT2019.

OTB100 [31]. The two standard evaluation metrics on OTB100 are success rate and
precision. For each frame of a video sequence, we computed the IoU between the predicted
bounding boxes and the ground truth, and the distance of their central locations. A success
plot can be generated by evaluating the success rate under different IoU thresholds. By
convention, we report the area under the curve (AUC) of the success plot. The precision
plots can be obtained via a similar way, usually reporting the accuracy at a 20 pixel
threshold. The proposed tracker was compared with state-of-the-art trackers including
Siam R-CNN [7], SiamRPN++ [9], SiamBAN [6], SiamRN [58], DiMP [57], SiamFC++ [23],
Ocean [8], C-COT [38], and TransT [59]. Figure 8a,b illustrates the success and precision
plots. Our tracker obtained an AUC score of 0.710 and a precision score of 0.921, higher than
the previous best results from SiamRN. Meanwhile, compared to the transformer-based
tracker (i.e., TransT [59]), the proposed PRTracker improves by 3.3 and 5.5% in the success
and precision metrics, respectively. In addition, we further compared each attribute on
the OTB100 in Figure 8c–h. Overall, the proposed PRTracker achieved good results in
various attributes, especially in the challenges of deformation and scale variations. In these
cases, the bounding boxes of the compared trackers were less accurate than the PRTracker.
This is because the significantly scale and aspect ratio variations require the trackers to
have a robust and precise feature extraction ability. Notably, this is consistent with our key
motivation that precise and robust feature extraction plays a vital role in accurate tracking.
The design of the proposed PRTracker can generate accurate features through adjusting the
sampling points using the alignment convolution with the supervision information. Thus,
our PRTacker achieved a promising performance.
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(c) Success plot in deformation

Figure 8. Cont.
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(d) Precision plot in deformation
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Figure 8. The success and precision plots on OTB100.

NfS [30]. The Need for Speed (NfS) dataset consists of 100 videos (380K frames)
captured from real-world scenes with higher frame rate cameras. All frames are annotated
with axis-aligned bounding boxes, and all sequences are manually labelled with nine visual
attributes such as occlusion, fast motion, background clutter, etc. We report results on the
30 FPS version of the dataset. As shown in Table 5, our PRTracker achieved competitive
tracking performance and ranked second. DiMP outperformed our PRTracker by 1.7%. We
surmise that one of the underlying reasons is that the target appearances in higher frame
rate videos significantly change. The trackers (e.g., DiMP) using online updating strategies
can effectively handle significant target appearance variations. Without using an online
updating strategy, the proposed PRTracker still obtained a promising performance.

Table 5. Comparison with state-of-the-art trackers on the NfS dataset in terms of AUC. The best
two results are highlighted in red and blue fonts. The uparrow signs mean that the higher the score,
the better.

MDNet [60] ECO [33] C-COT [38] UPDT [61] ATOM [43] SiamBAN [6] DiMP [57] PRTracker

AUC (↑) 0.422 0.466 0.488 0.537 0.584 0.594 0.620 0.603

UAV123 [32]. Different from other tracking datasets, such as OTB100, VOT2018,
VOT2019 and NfS, UAV123 is collected from low-altitude UAVs and contains a total of
123 video sequences. The length of the videos in UAV123 is more than 110K frames. We
compared the proposed PRTracker with nine state-of-art trackers, including DiMP [57],
HiFT [62], SiamRPN++ [9], SiamBAN [6], DaSiamRPN [21], SiamRPN [20], ECO [33],
SRDCF [63], SiamRN[58]. Figure 9 shows the comparison results. Although a slightly
lower precision score was achieved, the proposed PRTracker obtained a better success
score against DiMP, which is equipped with a updating strategy. Meanwhile, compared
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to the transformer-based tracker (i.e., HiFT [62]), the proposed PRTracker improved by
6.9 and 6.6% in the success and precision metrics, respectively. The above observations
demonstrate the effectiveness of the proposed PRTracker on UAV123. This is because our
PRTracker can effectively extract accurate and robust features via the propose-and-refine
module driven by an alignment convolution.
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Figure 9. The success and precision plots on UAV123.

LaSOT [27]. Compared with short-term tracking datasets (e.g., OTB100 [31], VOT2018 [28],
VOT2019 [29], NfS [30] and UAV123 [32]), LaSOT has longer sequences with an average
sequence length of more than 2500 frames. We compared our PRTracker on the testing set
consisting of 280 videos with trackers including DiMP [57], SiamFC++ [23], SiamRN [58],
ATOM [43], SiamBAN [6], SiamRPN++ [9], C-RPN [64], MDNet [60] and VITAL [65]. The
success and precision plots are shown in Figure 10. Compared with SiamFC++ based on
a Siamese network, the proposed PRTracker outperformed it by 2.6 and 4% in the AUC
and precision, respectively. Moreover, compared with DiMP that uses an effective model
prediction and updating strategy, we observed improvements of +2.3% in the precision.
Meanwhile, compared to the SiamRN [58], the proposed PRTracker improved by 4.2 and
5.6% in the success and precision metrics, respectively. The above experimental results
further verify the importance of accurate and robust feature extraction for the tracking
performance. Overall, our propose-and-refine module can obtain more powerful features
via an alignment convolution. As a result, the proposed PRTracker is applicable to more
challenges in longer sequences.
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Figure 10. The success and precision plots on LaSOT.
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4.3. Ablation Study

To validate the effectiveness of each component in the proposed PRTracker, we ex-
plored the roles of the propose-and-refine module, alignment convolution and target mask.
Table 6 shows our ablation analysis on OTB100 [31] and LaSOT [27].

Discussion on our propose-and-refine module and alignment convolution. Firstly, we
verified the proposed propose-and-refine module to effectively extract accurate and robust
features for object tracking and localization. Then, we show how the three convolution
methods (i.e., the conventional, deformable and alignment convolution) affect our PRTracer
on the OTB100 [31] and LaSOT [27] datasets.

As shown in Table 6, we evaluated four degraded trackers of our PRTracker by
removing each component and validating the performance on OTB100 and LaSOT. The
four degraded trackers are denoted as T1, T2, T3, and T4, respectively. As shown in the first
row of Table 6, a baseline tracker (denoted as T1) consists of a backbone, regression and
classification sub-network. Both regression and classification sub-networks firstly use three
3× 3 convolution layers to generate corresponding feature maps. Then, the regression
and classification feature maps use a 3× 3 convolution layer and a 1 × 1 convolution
layer to predict the bounding boxes and classification scores, respectively. The AUCs
of T1 on OTB100 and LaSOT were 0.683 and 0.512, respectively. In the second row of
Table 6, we constructed a tracker (denoted as T2) by adding a 3× 3 convolution layer
and a 1 × 1 convolution layer after the regression sub-network to fine-tune the initial
bounding boxes. We observed improvements of +0.7 and +1.1% on OTB100 and LaSOT,
respectively. These results validate the importance of the refinement strategy. In the third
row of Table 6, we constructed a tracker (denoted as T3) by using a 3× 3 deformable
convolution substituting for the 3× 3 conventional convolution of T2. T3 obtained 0.4
and 0.7% improvements on OTB100 and LaSOT, respectively, than T2. The reason for
this is that the deformable convolution can augment the spatial sampling locations in the
modules with additional offsets and learn the offsets from the target tasks. In contrast,
the conventional convolutions are limited to model geometric transformations due to the
fixed geometric structures. However, one of the limitations of the deformable convolutions
is that they obtain sampling positions without direct supervision. To address this issue,
the alignment convolutions obtain sampling positions based on a bounding box, and thus
can capture more geometric and context information of the bounding box (detailed in
Section 3.3). As shown in the fourth row of Table 6, we constructed a tracker (denoted as
T4) using a 3× 3 alignment convolution layer and a 1× 1 convolution layer to classify and
refine the bounding boxes, respectively. T4 exhibited improvements of +1.2 and +3.3% on
OTB100 and LaSOT, respectively.

Table 6. Quantitative comparison results of the proposed PRTracker with different convolution
operations and target masks on OTB100 and LaSOT. CC, DC, AC represent conventional, deformable
and alignment convolution, respectively. The four degraded trackers of our PRTracker are denoted as
T1, T2, T3, and T4, respectively.

CC DC AC Target
Mask

OTB100
AUC

LaSOT
AUC

T1 0.683 0.512
T2 X 0.690 0.523
T3 X 0.694 0.530
T4 X 0.702 0.556

PRTracker X X 0.710 0.569

Discussion of the proposed target mask. In the fifth row of Table 6, we constructed the
proposed PRTracker by introducing a target mask (detailed in Section 3.4) into T4. The goal
of our target mask was to make full use of the template information to improve the features’
discriminative power between a target object and its nearby background. As a benefit, the
final AUCs of our PRTracker on OTB100 and LaSOT were 0.710 and 0.569, respectively. The
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results are consistent with our idea that the target mask enables our PRTracker to pay more
attention to a target and distinguish between the target and background.

Based on the ablation studies, our propose-and-refine module driven by an alignment
convolution significantly improves the performance of the proposed PRTracker. The
designed alignment convolution with the supervision information is able to extract more
reliable features for accurate and robust object localization. Moreover, the target mask,
introduced into our PRTracker without additional computational burden, can further
improve the tracking performance.

5. Conclusions

In this paper, we proposed a PRTracker that utilizes a propose-and-refine mech-
anism driven by an alignment convolution to classify and refine proposals. The pro-
posed PRTracker combines anchor-free style proposals at the coarse level, and alignment
convolution-driven refinement at the fine level. As a benefit, the proposed PRTracker can
effectively address how to choose appropriate convolutional sampling points for accurate
and robust feature extraction. Moreover, we designed a simple yet robust target mask
to naturally use the initial state of a target to enhance the tracking performance. The
encouraging results on six tracking benchmarks demonstrate the accuracy and robustness
of our PRTracker with 75 FPS.

In the future work, we aim to explore state-of-the-art detection strategies to further
improve the tracking results, e.g., such as YOLO versions and transformers.
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DCF Discriminative correlation filter
DW-Corr Depth-wise cross-correlation operation
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PRTracker Propose-and-refine tracker
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RPN Region proposal network
SGD Stochastic gradient descent
FPS Frame per second
RoI Region of interest
VOT2018 Visual Object Tracking Challenge 2018
VOT2019 Visual Object Tracking challenge 2019

References
1. Chen, Z.; Zhong, B.; Li, G.; Zhang, S.; Ji, R.; Tang, Z.; Li, X. SiamBAN: Target-aware tracking with siamese box adaptive network.

IEEE Trans. Pattern Anal. Mach. Intell. 2023, 45, 5158–5173. [CrossRef] [PubMed]
2. Molchanov, P.; Yang, X.; Gupta, S.; Kim, K.; Tyree, S.; Kautz, J. Online Detection and Classification of Dynamic Hand Gestures

With Recurrent 3D Convolutional Neural Network. In Proceedings of the CVPR 2016, Las Vegas, NV, USA, 26 June–1 July 2016.
3. Lee, K.H.; Hwang, J.N. On-Road Pedestrian Tracking Across Multiple Driving Recorders. IEEE Trans. Multimed. 2015, 17, 1.

[CrossRef]
4. Tang, S.; Andriluka, M.; Andres, B.; Schiele, B. Multiple People Tracking by Lifted Multicut and Person Re-identification. In

Proceedings of the CVPR 2017, Honolulu, HI, USA, 22–25 July 2017.
5. Bertinetto, L.; Valmadre, J.; Henriques, J.F.; Vedaldi, A.; Torr, P.H. Fully-convolutional siamese networks for object tracking. In

Proceedings of the European Conference on Computer Vision Workshops, Amsterdam, The Netherlands, 11–14 October 2016;
pp. 850–865.

6. Chen, Z.; Zhong, B.; Li, G.; Zhang, S.; Ji, R. Siamese Box Adaptive Network for Visual Tracking. In Proceedings of the IEEE
Conference on Computer Vision and Pattern Recognition, virtual, 14–19 June 2020; pp. 6668–6677.

7. Voigtlaender, P.; Luiten, J.; Torr, P.H.; Leibe, B. Siam r-cnn: Visual tracking by re-detection. In Proceedings of the IEEE Conference
on Computer Vision and Pattern Recognition, virtual, 14–19 June 2020; pp. 6578–6588.

8. Zhang, Z.; Peng, H.; Fu, J.; Li, B.; Hu, W. Ocean: Object-aware Anchor-free Tracking. In Proceedings of the European Conference
on Computer Vision, Glasgow, UK, 23–28 August 2020.

9. Li, B.; Wu, W.; Wang, Q.; Zhang, F.; Xing, J.; Yan, J. SiamRPN++: Evolution of siamese visual tracking with very deep networks.
In Proceedings of the IEEE Conference on Computer Vision and Pattern Recognition, Long Beach, CA, USA, 16–20 June 2019;
pp. 4282–4291.

10. Wang, G.; Luo, C.; Xiong, Z.; Zeng, W. SPM-Tracker: Series-parallel matching for real-time visual object tracking. In Proceedings
of the IEEE Conference on Computer Vision and Pattern Recognition, Long Beach, CA, USA, 16–20 June 2019; pp. 3643–3652.

11. Mu, Z.A.; Hui, Z.; Jing, Z.; Li, Z. Multi-level prediction Siamese network for real-time UAV visual tracking. Image Vis. Comput.
2020, 103, 104002. .

12. Wu, Y.; Liu, Z.; Zhou, X.; Ye, L.; Wang, Y. ATCC: Accurate tracking by criss-cross location attention. Image Vis. Comput. 2021,
111, 104188. [CrossRef]

13. Zheng, Y.; Zhong, B.; Liang, Q.; Tang, Z.; Ji, R.; Li, X. Leveraging Local and Global Cues for Visual Tracking via Parallel Interaction
Network. IEEE Trans. Circuits Syst. Video Technol. 2023, 33, 1671–1683. [CrossRef]

14. Ma, J.; Lan, X.; Zhong, B.; Li, G.; Tang, Z.; Li, X.; Ji, R. Robust Tracking via Uncertainty-aware Semantic Consistency. IEEE Trans.
Circuits Syst. Video Technol. 2023, 33, 1740–1751. [CrossRef]

15. LeCun, Y.; Bottou, L.; Bengio, Y.; Haffner, P. Gradient-based learning applied to document recognition. Proc. IEEE 1998,
86, 2278–2324. [CrossRef]

16. Dai, J.; Qi, H.; Xiong, Y.; Li, Y.; Zhang, G.; Hu, H.; Wei, Y. Deformable Convolutional Networks. In Proceedings of the ICCV, IEEE
Computer Society, Venice, Italy, 22–29 October 2017; pp. 764–773.

17. Yu, Y.; Xiong, Y.; Huang, W.; Scott, M.R. Deformable Siamese Attention Networks for Visual Object Tracking. In Proceedings of
the 2020 IEEE/CVF Conference on Computer Vision and Pattern Recognition, CVPR 2020, Seattle, WA, USA, 13–19 June 2020;
pp. 6727–6736. [CrossRef]

18. Guo, Q.; Feng, W.; Zhou, C.; Huang, R.; Wan, L.; Wang, S. Learning dynamic siamese network for visual object tracking. In
Proceedings of the IEEE International Conference on Computer Vision, Venice, Italy, 22–29 October 2017; pp. 1763–1771.

19. Wang, Q.; Teng, Z.; Xing, J.; Gao, J.; Hu, W.; Maybank, S. Learning attentions: residual attentional siamese network for high
performance online visual tracking. In Proceedings of the IEEE Conference on Computer Vision and Pattern Recognition, Salt
Lake City, UT, USA, 19–21 June 2018; pp. 4854–4863.

20. Li, B.; Yan, J.; Wu, W.; Zhu, Z.; Hu, X. High performance visual tracking with siamese region proposal network. In Proceedings of
the IEEE Conference on Computer Vision and Pattern Recognition, Salt Lake City, UT, USA, 19–21 June 2018; pp. 8971–8980.

21. Zhu, Z.; Wang, Q.; Li, B.; Wu, W.; Yan, J.; Hu, W. Distractor-aware siamese networks for visual object tracking. In Proceedings of
the European Conference on Computer Vision, Munich, Germany, 8–14 September 2018; pp. 101–117.

22. Ren, S.; He, K.; Girshick, R.; Sun, J. Faster R-CNN: Towards real-time object detection with region proposal networks. In
Proceedings of the Advances in Neural Information Processing Systems, Montreal, QC, Canada, 10–17 October 2015; pp. 91–99.

23. Xu, Y.; Wang, Z.; Li, Z.; Yuan, Y.; Yu, G. SiamFC++: Towards Robust and Accurate Visual Tracking with Target Estimation
Guidelines. In Proceedings of the AAAI, New York, NY, USA, 7–12 February 2020; pp. 12549–12556.

http://doi.org/10.1109/TPAMI.2022.3195759
http://www.ncbi.nlm.nih.gov/pubmed/35917573
http://dx.doi.org/10.1109/TMM.2015.2455418
http://dx.doi.org/10.1016/j.imavis.2021.104188
http://dx.doi.org/10.1109/TCSVT.2022.3212987
http://dx.doi.org/10.1109/TCSVT.2022.3214222
http://dx.doi.org/10.1109/5.726791
http://dx.doi.org/10.1109/CVPR42600.2020.00676


Drones 2023, 7, 343 21 of 22

24. Guo, D.; Wang, J.; Cui, Y.; Wang, Z.; Chen, S. SiamCAR: Siamese fully convolutional classification and regression for visual
tracking. In Proceedings of the IEEE Conference on Computer Vision and Pattern Recognition, virtual, 14–19 June 2020;
pp. 6269–6277.

25. He, K.; Gkioxari, G.; Dollár, P.; Girshick, R. Mask r-cnn. In Proceedings of the IEEE International Conference on Computer Vision,
Honolulu, HI, USA, 22–25 July 2017; pp. 2961–2969.

26. Jiang, B.; Luo, R.; Mao, J.; Xiao, T.; Jiang, Y. Acquisition of localization confidence for accurate object detection. In Proceedings of
the European Conference on Computer Vision, Salt Lake City, UT, USA, 19–21 June 2018; pp. 784–799.

27. Fan, H.; Lin, L.; Yang, F.; Chu, P.; Deng, G.; Yu, S.; Bai, H.; Xu, Y.; Liao, C.; Ling, H. LaSOT: A high-quality benchmark for
large-scale single object tracking. In Proceedings of the IEEE Conference on Computer Vision and Pattern Recognition, Long
Beach, CA, USA, 16–20 June 2019; pp. 5374–5383.

28. Kristan, M.; Leonardis, A.; Matas, J.; Felsberg, M.; Pflugfelder, R.; Cehovin Zajc, L.; Vojir, T.; Bhat, G.; Lukezic, A.;
Eldesokey, A.; et al. The sixth visual object tracking VOT2018 challenge results. In Proceedings of the European Conference on
Computer Vision, Munich, Germany, 8–14 September 2018; pp. 3-53.

29. Kristan, M.; Matas, J.; Leonardis, A.; Felsberg, M.; Pflugfelder, R.; Kamarainen, J.K.; Cehovin Zajc, L.; Drbohlav, O.; Lukezic, A.;
Berg, A.; et al. The seventh visual object tracking VOT2019 challenge results. In Proceedings of the IEEE International Conference
on Computer Vision Workshops, Seoul, Republic of Korea, 27 October–2 November 2019; pp. 1–36.

30. Kiani Galoogahi, H.; Fagg, A.; Huang, C.; Ramanan, D.; Lucey, S. Need for speed: A benchmark for higher frame rate
object tracking. In Proceedings of the IEEE International Conference on Computer Vision, Venice, Italy, 22–29 October 2017;
pp. 1125–1134.

31. Wu, Y.; Lim, J.; Yang, M.H. Object tracking benchmark. IEEE Trans. Pattern Anal. Mach. Intell. 2015, 37, 1834–1848. [CrossRef]
[PubMed]

32. Mueller, M.; Smith, N.; Ghanem, B. A benchmark and simulator for uav tracking. In Proceedings of the European Conference on
Computer Vision, Amsterdam, The Netherlands, 11–14 October 2016; Springer: Cham, Switzerland, 2016; pp. 445–461.

33. Danelljan, M.; Bhat, G.; Shahbaz Khan, F.; Felsberg, M. ECO: Efficient convolution operators for tracking. In Proceedings of the
IEEE Conference on Computer Vision and Pattern Recognition, Honolulu, HI, USA, 22–25 July 2017; pp. 6638–6646.

34. Zhang, Z.; Peng, H. Deeper and wider siamese networks for real-time visual tracking. In Proceedings of the IEEE Conference on
Computer Vision and Pattern Recognition, Long Beach, CA, USA, 16–20 June 2019; pp. 4591–4600.

35. Wang, Q.; Zhang, L.; Bertinetto, L.; Hu, W.; Torr, P.H. Fast online object tracking and segmentation: A unifying approach. In
Proceedings of the IEEE Conference on Computer Vision and Pattern Recognition, Long Beach, CA, USA, 16–20 June 2019;
pp. 1328–1338.

36. Zhang, K.; Liu, Q.; Wu, Y.; Yang, M.H. Robust Visual Tracking via Convolutional Networks Without Training. IEEE Trans. Image
Process. 2016, 25, 1779–1792. [CrossRef] [PubMed]

37. Zheng, Y.; Liu, X.; Cheng, X.; Zhang, K.; Wu, Y.; Chen, S. Multi-Task Deep Dual Correlation Filters for Visual Tracking. IEEE Trans.
Image Process. 2020, 29, 9614–9626. [CrossRef] [PubMed]

38. Danelljan, M.; Robinson, A.; Khan, F.S.; Felsberg, M. Beyond correlation filters: Learning continuous convolution operators for vi-
sual tracking. In Proceedings of the European Conference on Computer Vision, Amsterdam, The Netherlands, 11–14 October 2016;
Springer: Cham, Switzerland, 2016; pp. 472–488.

39. He, K.; Zhang, X.; Ren, S.; Sun, J. Deep residual learning for image recognition. In Proceedings of the IEEE Conference on
Computer Vision and Pattern Recognition, Las Vegas, NV, USA, 27–30 June 2016; pp. 770–778.

40. Xie, S.; Girshick, R.B.; Dollár, P.; Tu, Z.; He, K. Aggregated Residual Transformations for Deep Neural Networks. In Proceedings
of the 2017 IEEE Conference on Computer Vision and Pattern Recognition, CVPR 2017, Honolulu, HI, USA, 21–26 July 2017;
pp. 5987–5995. [CrossRef]

41. Howard, A.G.; Zhu, M.; Chen, B.; Kalenichenko, D.; Wang, W.; Weyand, T.; Andreetto, M.; Adam, H. MobileNets: Efficient
convolutional neural networks for mobile vision applications. arXiv 2017, arXiv:1704.04861.

42. Yan, B.; Zhang, X.; Wang, D.; Lu, H.; Yang, X. Alpha-Refine: Boosting Tracking Performance by Precise Bounding Box Estimation.
arXiv 2020, arXiv:2012.06815.

43. Danelljan, M.; Bhat, G.; Khan, F.S.; Felsberg, M. ATOM: Accurate tracking by overlap maximization. In Proceedings of the IEEE
Conference on Computer Vision and Pattern Recognition, Long Beach, CA, USA, 16–20 June 2019; pp. 4660–4669.

44. Gomaa, A.; Abdelwahab, M.M.; Abo-Zahhad, M. Efficient vehicle detection and tracking strategy in aerial videos by employing
morphological operations and feature points motion analysis. Multim. Tools Appl. 2020, 79, 26023–26043. [CrossRef]

45. Gomaa, A.; Minematsu, T.; Abdelwahab, M.M.; Abo-Zahhad, M.; Taniguchi, R. Faster CNN-based vehicle detection and counting
strategy for fixed camera scenes. Multim. Tools Appl. 2022, 81, 25443–25471. [CrossRef]

46. Chang, Y.; Tu, Z.; Xie, W.; Luo, B.; Zhang, S.; Sui, H.; Yuan, J. Video anomaly detection with spatio-temporal dissociation. Pattern
Recognit. 2022, 122, 108213. [CrossRef]

47. Girshick, R. Fast r-cnn. In Proceedings of the IEEE International Conference on Computer Vision, Santiago, Chile, 7–13 December
2015; pp. 1440–1448.

48. Lin, T.; Goyal, P.; Girshick, R.B.; He, K.; Dollár, P. Focal Loss for Dense Object Detection. In Proceedings of the IEEE International
Conference on Computer Vision, ICCV 2017, Venice, Italy, 22–29 October 2017; pp. 2999–3007. [CrossRef]

http://dx.doi.org/10.1109/TPAMI.2014.2388226
http://www.ncbi.nlm.nih.gov/pubmed/26353130
http://dx.doi.org/10.1109/TIP.2016.2531283
http://www.ncbi.nlm.nih.gov/pubmed/26890870
http://dx.doi.org/10.1109/TIP.2020.3029897
http://www.ncbi.nlm.nih.gov/pubmed/33055031
http://dx.doi.org/10.1109/CVPR.2017.634
http://dx.doi.org/10.1007/s11042-020-09242-5
http://dx.doi.org/10.1007/s11042-022-12370-9
http://dx.doi.org/10.1016/j.patcog.2021.108213
http://dx.doi.org/10.1109/ICCV.2017.324


Drones 2023, 7, 343 22 of 22

49. Law, H.; Deng, J. CornerNet: Detecting objects as paired keypoints. In Proceedings of the European Conference on Computer
Vision, Munich, Germany, 8–14 September 2018; pp. 734–750.

50. Jang, H.D.; Woo, S.; Benz, P.; Park, J.; Kweon, I.S. Propose-and-attend single shot detector. In Proceedings of the The IEEE Winter
Conference on Applications of Computer Vision, Snowmass Village, CO, USA, 1–5 March 2020; pp. 815–824.

51. Zhang, H.; Chang, H.; Ma, B.; Shan, S.; Chen, X. Cascade retinanet: Maintaining consistency for single-stage object detection.
arXiv 2019, arXiv:1907.06881.

52. Russakovsky, O.; Deng, J.; Su, H.; Krause, J.; Satheesh, S.; Ma, S.; Huang, Z.; Karpathy, A.; Khosla, A.; Bernstein, M.; et al.
Imagenet large scale visual recognition challenge. Int. J. Comput. Vis. 2015, 115, 211–252. [CrossRef]

53. Real, E.; Shlens, J.; Mazzocchi, S.; Pan, X.; Vanhoucke, V. YouTube-BoundingBoxes: A large high-precision human-annotated data
set for object detection in video. In Proceedings of the IEEE Conference on Computer Vision and Pattern Recognition, Honolulu,
HI, USA, 22–25 July 2017; pp. 5296–5305.

54. Lin, T.Y.; Maire, M.; Belongie, S.; Hays, J.; Perona, P.; Ramanan, D.; Dollár, P.; Zitnick, C.L. Microsoft COCO: Common
objects in context. In Proceedings of the European Conference on Computer Vision, Zurich, Switzerland, 6–12 September 2014;
Springer: Cham, Switzerland, 2014; pp. 740–755.

55. Huang, L.; Zhao, X.; Huang, K. GOT-10k: A large high-diversity benchmark for Ggeneric object tracking in the wild. IEEE Trans.
Pattern Anal. Mach. Intell. 2018, 43, 1562–1577. [CrossRef] [PubMed]

56. Xu, T.; Feng, Z.H.; Wu, X.J.; Kittler, J. Learning adaptive discriminative correlation filters via temporal consistency preserving
spatial feature selection for robust visual object tracking. IEEE Trans. Image Process. 2019, 28, 5596–5609. [CrossRef] [PubMed]

57. Bhat, G.; Danelljan, M.; Gool, L.V.; Timofte, R. Learning discriminative model prediction for tracking. In Proceedings of the IEEE
International Conference on Computer Vision, Seoul, Republic of Korea, 27 October–2 November 2019; pp. 6182–6191.

58. Cheng, S.; Zhong, B.; Li, G.; Liu, X.; Tang, Z.; Li, X.; Wang, J. Learning To Filter: Siamese Relation Network for Robust Tracking.
In Proceedings of the CVPR. Computer Vision Foundation/IEEE, virtual, 19–25 June 2021; pp. 4421–4431.

59. Chen, X.; Yan, B.; Zhu, J.; Wang, D.; Yang, X.; Lu, H. Transformer Tracking. In Proceedings of the CVPR. Computer Vision
Foundation/IEEE, virtual, 19–25 June 2021; pp. 8126–8135.

60. Nam, H.; Han, B. Learning multi-domain convolutional neural networks for visual tracking. In Proceedings of the IEEE
Conference on Computer Vision and Pattern Recognition, Las Vegas, NV, USA, 26 June–1 July 2016; pp. 4293–4302.

61. Bhat, G.; Johnander, J.; Danelljan, M.; Shahbaz Khan, F.; Felsberg, M. Unveiling the power of deep tracking. In Proceedings of the
European Conference on Computer Vision, Munich, Germany, 8–14 September 2018; pp. 483–498.

62. Cao, Z.; Fu, C.; Ye, J.; Li, B.; Li, Y. HiFT: Hierarchical Feature Transformer for Aerial Tracking. In Proceedings of the ICCV. IEEE,
Montreal, QC, Canada, 10–17 October 2021; pp. 15437–15446.

63. Danelljan, M.; Hager, G.; Shahbaz Khan, F.; Felsberg, M. Learning spatially regularized correlation filters for visual tracking. In
Proceedings of the IEEE International Conference on Computer Vision, Santiago, Chile, 7–13 December 2015; pp. 4310–4318.

64. Fan, H.; Ling, H. Siamese cascaded region proposal networks for real-time visual tracking. In Proceedings of the IEEE Conference
on Computer Vision and Pattern Recognition, Long Beach, CA, USA, 16–20 June 2019; pp. 7952–7961.

65. Song, Y.; Ma, C.; Wu, X.; Gong, L.; Bao, L.; Zuo, W.; Shen, C.; Lau, R.W.; Yang, M.H. VITAL: Visual tracking via adversarial
learning. In Proceedings of the IEEE Conference on Computer Vision and Pattern Recognition, Salt Lake City, UT, USA,
19–21 June 2018; pp. 8990–8999.

Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual
author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to
people or property resulting from any ideas, methods, instructions or products referred to in the content.

http://dx.doi.org/10.1007/s11263-015-0816-y
http://dx.doi.org/10.1109/TPAMI.2019.2957464
http://www.ncbi.nlm.nih.gov/pubmed/31804928
http://dx.doi.org/10.1109/TIP.2019.2919201
http://www.ncbi.nlm.nih.gov/pubmed/31170074

	Introduction
	Related Work
	Coarse Target Localization in Object Tracking
	Coarse-to-Fine Localization in Object Tracking
	Feature Alignment in Object Detection

	The Proposed Tracker
	The Siamese Network Backbone
	Alignment Convolution
	The Propose-and-Refine Module
	The Target Mask
	Ground Truth and Loss
	Training and Inference

	Experiments
	Implementation Details
	Comparison with State-of-the-Art Trackers
	Ablation Study

	Conclusions
	References

