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Abstract: The trajectory tracking control problem of a quadrotor unmanned aerial vehicle (QUAV)
subject to external disturbances, inertia uncertainties, actuator faults, and input saturation is ad-
dressed in this paper. In contrast with previous works, input saturation herein refers to rotor speed
saturation rather than thrust and torque saturation. First, the control system is decoupled into trans-
lational and rotational subsystems. Then, for both subsystems, two novel fixed-time unknown input
observers (UIO) based on disturbance filtering are developed to estimate the lumped disturbance
rapidly and precisely without awareness of the boundary of disturbances. Furthermore, fixed-time
tracking controllers for translational and rotational subsystems are proposed based on the estimation
values provided by UIO to stabilize tracking errors into a small region in fixed time regardless of the
initial values. The theoretical analysis based on the Lyapunov method is presented to demonstrate
the stability. Finally, the simulation results show that the proposed control method is effective.
The comparison simulation is carried out to validate superiority of the proposed observer and its
advantage can be summed up as: (1) the upper bound of the disturbance or its derivative is not
needed; (2) the estimation results are smoother and the observation precision is higher due to the
absence of sign function; (3) the mutant disturbance can be also estimated quickly and precisely.

Keywords: QUAV; unknown input observer; fixed-time control; actuator faults; input saturation

1. Introduction

In recent years, research on quadrotor unmanned aerial vehicles (QUAVs) has been
widely conducted. The interest is sparked by the broad range of tasks for which it can
be applied, including aerial photography, inspection monitoring, and agricultural plant
protection, all while enjoying the benefits of small size, compact structure, and flexible
maneuverability [1–3]. However, the QUAV is a multivariable, strongly coupled, nonlinear
under-actuated system with four inputs but six degrees of freedom, which makes the
control design and stability analysis more complicated [4,5]. As a result, trajectory tracking
control of QUAV has become a complicated matter that has been extensively studied.

Traditional linear control strategies, such as PID [6] and LQR [7], are only applicable to
linearization models, and control performance for nonlinear systems is hard to guarantee.
As a result, numerous nonlinear control schemes, including but not limited to feedback lin-
earization control [8], backstepping control [9,10], and sliding mode control (SMC) [11–13],
have been developed for the QUAV in order to mitigate the influence of nonlinear charac-
teristics. Moreover, the speed of convergence is regarded as an important parameter for
the QUAV’s control systems. Therefore, control systems based on finite-time control have
gained significant attention [2,14–17]. For example, in [14], the authors proposed a fast ter-
minal sliding mode controller (FTSMC) to achieve trajectory tracking control of the QUAV,
and the tracking error for desired altitude and attitude was guaranteed to converge to zero
in finite time. A finite-time nonlinear disturbance observer (NDO) was also presented to
estimate external disturbance acting on altitude and attitude channels of the QUAV. An
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adaptive command-filtered backstepping sliding mode control scheme was proposed to
achieve finite-time tracking control of the QUAV system under modeling uncertainties
and external disturbances in [16]. However, the convergence time of finite-time control
depends on the initial values of the system. Consequently, fixed-time control is proposed
by researchers, and the error can converge to zero in fixed time independent of initial
values. Xia and Son [18] addressed the fixed-time control problem of autonomous ship
landing operations of vertical take-off and landing UAVs subject to external disturbances.
An anti-saturation adaptive fault-tolerant control scheme with fixed-time prescribed per-
formance for the longitudinal model of fixed wing UAV under actuator faults, control
input saturation, angle of attack asymmetric constraint, and uncertainties was presented
in [19]. Ref. [20] proposed a fixed-time adaptive fast super-twisting disturbance observer to
estimate the unknown external disturbance, and a fixed-time controller was designed using
a universal barrier Lyapunov function to satisfy asymmetric tracking error constraints.

The external disturbances, inertia uncertainties, and actuator faults often need to be
considered in the trajectory tracking control for QUAV [4,11,12,16]. The most efficient
strategy for dealing with external disturbances, inertia uncertainties, and actuator faults
is to compensate for their negative impacts on the system via exact estimation. As a
result, numerous disturbance observer-based control approaches, such as those based
on the extended state observer (ESO) [21,22], the super-twisting disturbance observer
(STDO) [20,23,24], and the sliding mode disturbance observer (SMDO) [25,26], have been
developed. Nonetheless, the observers mentioned above all require that disturbance is
continuously differentiable and its derivative is bounded or known beforehand. When the
disturbance changes suddenly, its derivative is infinite, hence the observation performance
cannot be guaranteed in this case. Moreover, the sign function is adopted in ESO and
SMDO, so the estimation of disturbance may be not smooth. To overcome this constraint, by
introducing a reference auxiliary system, a nonlinear observer was developed to accomplish
a high-accuracy estimation for the lumped disturbance in fixed time without being aware
of the boundary of disturbances in [27]. However, the design process of this observer is
complicated. The control problem of nonlinear robotic systems suffering from actuator
failure was investigated in [28]. Based on the state transformation, a finite-time unknown
input observer (UIO) was designed to estimate the lumped unknown input. Nevertheless,
the observer in [28] can only estimate the lumped unknown input in finite time.

Furthermore, the output capability of the actuator is often limited; hence, input
saturation should be frequently considered in trajectory tracking control. In [29], the
finite-time trajectory tracking problem for a novel 12-rotor UAV with input saturation was
investigated. The authors of [30] addressed the finite-time tracking control problem of the
QUAV subject to external disturbances, parametric uncertainties, actuator faults, and input
saturation. Cao and Lynch [31] studied the position control of a QUAV with state and input
constraints using an inner-outer loop control structure. However, all the works of literature
cited above simply supply the saturation values of the control force and torque, which is
inexhaustive. The control input signals of the QUAV are determined by the rotor speed of
the four motors, and the rotor speed of each motor is different and has an upper limit. In
fact, as long as one motor’s rotor speed is saturated, the control input signals related to that
motor’s rotor speed are constrained. Therefore, rotor speed saturation is considered in this
paper.

Motivated by the preceding discussions, this work focuses on developing a fixed-
time control method for the QUAV trajectory tracking control when external disturbances,
inertia uncertainties, actuator faults, and input saturation are considered. In comparison to
the current investigation results, the major contributions of this work can be summarized
as follows:

1. The fixed-time UIOs are designed to estimate the lumped disturbance for translational
and rotational subsystems, with the estimation error able to converge to zero in fixed
time. The proposed observer has three advantages and can overcome the limitations
described in [20–26]. Firstly, it does not require prior knowledge of the upper bound
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of disturbance or its derivative. Additionally, the sign function is absent in UIO, which
implies that the observation of disturbance is smoother and the estimation precision
is higher. Furthermore, it can estimate the mutant disturbance accurately and rapidly.

2. Based on the estimation values provided by fixed-time UIO, fixed-time tracking
controllers are proposed for both subsystems to stabilize the tracking error into
a small region in fixed time. In contrast with the existing controllers with finite-
time stability [2,14–17], the proposed fixed-time controllers’ convergence time is
independent of initial values.

3. External disturbances, inertia uncertainties, actuator faults, and input saturation are
all considered in this paper. In [4,11,12,16,28], input saturation is not considered.
Although input saturation is considered in [29–31], they simply give the saturation
values of control input signals. In this paper, input saturation is constraining the rotor
speed rather than the control input signals, which is more reasonable.

The rest of this paper can be summarized as follows. In Section 2, the model of the
QUAV, the control objectives, and some useful lemmas are given. The control schemes
for translational and rotational subsystems are proposed in Section 3. The simulation
results show the effectiveness of the proposed control methods in Section 4. Finally, the
conclusions are drawn in Section 5.

2. Mathematical Model and Problem Formulation

In this section, the mathematical model of QUAV is established first. Then, for
the convenience of controller design, the model is simplified. Some useful lemmas are
also provided.

2.1. Mathematical Model of QUAV

The QUAV framework with a symmetrical structure is investigated as illustrated in
Figure 1. The flight motions can be subdivided into translational motion and rotational
motion. To describe the kinematics and dynamics of QUAV, the earth-fixed frame E0 :
oexeyeze and the body-fixed frame B0 : obxbybzb are defined as shown in Figure 1. For
the translational motion, p= [x, y, z]T with respect to E0 and v= [u, v, w]T with respect to
B0 stand for the position and the velocity of the QUAV, respectively. For the rotational
motion, Θ= [φ, θ, ψ]T in E0 and ω= [p, q, r]T in B0 represent the Euler angle and the
angular velocity of the QUAV, respectively, where the three channels represent roll, pitch,
and yaw channels in sequence.
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Figure 1. The framework of QUAV.

Based on the previous descriptions and the Newton–Euler equation, the mathematical
model of translational and rotational motion can be expressed as{ .

p = v
.
v = −gez +

T
m Rez + ∆1

(1)



Drones 2023, 7, 344 4 of 22

{ .
Θ = Wω
J

.
ω = −ω×Jω+ τ+ ∆2

(2)

where g is the gravitational acceleration and ez = [0, 0, 1]T, m is the total mass, ∆1 and ∆2
are external disturbances, T and τ are the total thrust and attitude control torque vector,
respectively. J = J0 + ∆J denotes the inertia matrix, J0 is the nominal part of the inertia
matrix and ∆J is the uncertainty part. From [32], the inverse of the inertia matrix J can be
expressed as

J−1 = (J0 + ∆J)−1 = (J0)
−1 − (J0 + J0∆J−1J0)

−1

= J−1
0 + ∆J̃

(3)

R is the rotation matrix from body-fixed frame to earth-fixed frame

R =

CθCψ CψSθSφ − SψCφ CψSθCφ + SψSφ

CθSψ SψSθSφ + CψCφ SψSθCφ − CψSφ

−Sθ CθSφ CθCφ

 (4)

where S represents sin(·) and C denotes cos(·). The skew-symmetric matrixω× and matrix
W are

ω× =

 0 −r q
r 0 −p
−q p 0

 (5)

W =

1 tan θ sin φ tan θ cos φ
0 cos φ − sin φ
0 sin φ/ cos θ cos φ/ cos θ

 (6)

2.2. Problem Formulation

The mathematical model of translational and rotational subsystems with external
disturbances is presented in Equations (1) and (2). Moreover, inertia uncertainties, actuator
faults, and input saturation are also considered in this paper.

Considering uncertainties of inertia matrix, M denotes the derivative of the Euler
angle, then the mathematical model of rotational subsystem can be arranged as{ .

Θ = M
.

M = WJ−1
0 τ+ f

(7)

where f =
.

Wω+ WJ−1(−ω×Jω+ ∆2) + W∆J̃τ.
The total thrust and attitude control torque are determined by the combination of

four rotors’ speed. The relationship between the total thrust T and attitude control torque
τ = [τx τy τz]

T with the rotor speed can be obtained as

T = c1νv =
[
cT cT cT cT

][
v2

1 v2
2 v2

3 v2
4
]T (8)

τ = c2νv =

 0 −dcT 0 dcT
−dcT 0 dcT 0
−cM cM −cM cM




v2
1

v2
2

v2
3

v2
4

 (9)

where cT and cM are constants, d denotes the distance from rotor endpoint to QUAV center
of gravity, and vi is the rotor speed, i = 1, 2, 3, 4.
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The actuators of QUAV are four motors, and the multiplicative fault for actuators is
considered here. The actuator faults can be described as

vdi = ρivci i = 1, 2, 3, 4 (10)

where ρi ∈ [0, 1], vci represents the commanded rotor speed by controller and vdi is the
desired rotor speed. Then, the total thrust and attitude control torque can be rewritten as

Td = c1νvd = c1ρνvc (11)

τd = c2νvd = c2ρνvc (12)

where ρ = diag(ρ2
1, ρ2

2, ρ2
3, ρ2

4) stands for the health condition of actuators, νvd =

[v2
d1, v2

d2, v2
d3, v2

d4]
T, νvc = [v2

c1, v2
c2, v2

c3, v2
c4]

T, Td, and τd are the desired total thrust
and attitude control torque, respectively.

However, the actual total thrust and attitude control torque may not reach the desired
value due to the upper limit of rotor speed. Therefore, input saturation is considered in this
paper. Let vmaxi denote the saturation limit of vi. The vi is limited in the following form

vi =

{
vdi , vdi ≤ vmaxi
vmaxi , vdi > vmaxi

i = 1, 2, 3, 4 (13)

where vmaxi is a constant normally. However, when actuator faults occur, the saturation
limit of rotor speed will also be influenced. Therefore, the saturation limit is different based
on whether it occurs with actuator faults or without actuator faults in this paper.

Combining Equations (10) and (13), the relationship between the actual rotor speed vi
and the commanded rotor speed by controller vci can be obtained as

vi =

{
ρivci , ρivci ≤ vmaxi
vmaxi , ρivci > vmaxi

i = 1, 2, 3, 4 (14)

For the translational subsystem, we define the virtual control vector as u = [ux, uy, uz]
T

= −gez +
T
m Rez. According to Equation (8), the virtual control vector can be expressed as

u = −gez +
T
m Rez = −gez +

1
m c1νvRez

= −gez +
1
m c1νvcRez +

1
m c1(νv − νvc)Rez

= −gez +
Tc
m Rez +

1
m c1(νv − νvc)Rez

= uc +
1
m c1(νv − νvc)Rez

(15)

where Tc = c1νvc denotes the commanded total thrust by controller. Then, we can obtain a
simplified mathematical model { .

p = v
.
v = uc + d

(16)

where uc = [ucx, ucy, ucz]
T is the controller to be designed for the translational subsystem,

and d = [dx, dy, dz]
T is the lumped disturbance containing external disturbances, actuator

faults, and input saturation and can be expressed as

d =
1
m

c1(νv − νvc)Rez + ∆1 (17)

According to Equation (9), we can obtain

τ = c2νv = c2νvc + c2(νv − νvc)
= τc + c2(νv − νvc)

(18)
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where τc = [τcx, τcy, τcz]
T = c2νvc represents the attitude control torque to be designed.

Substituting Equation (18) into Equation (7), the mathematical model of the rotational
subsystem can be rewritten as { .

Θ = M
.

M = WJ−1
0 τc + D

(19)

where D = [Dx, Dy, Dz]
T is the lumped disturbance of the rotational subsystem containing

external disturbances, inertia uncertainties, actuator faults, and input saturation and can be
expressed as

D = WJ−1
0 c2(νv − νvc) + f (20)

The control objective of this work is to design fixed-time UIOs to estimate the lumped
disturbance d and D quickly and accurately without awareness of the boundary of distur-
bances or the derivatives. Then, the fixed-time tracking controllers uc and τc are designed
to stabilize tracking error to zero in fixed time regardless of initial values.

2.3. Notation and Preliminaries

Consider the nonlinear dynamical system

.
x = f (x) , x(0) = x0 (21)

where x = [x1, x2, · · · , xn]
T ∈ Rn is the state vector and f (x) is the nonlinear function.

Definition 1 [33]. The origin of system (21) is globally fixed time stable if it is globally uniformly
finite time stable and the settling time function T is globally bounded. There exists a finite constant
Tmax ⊂ R+ such that T ≤ Tmax and x(t) = 0 for t ≥ T and x0 ∈ Rn. Let r = [r1, · · · , rn]

T ∈ Rn,
ri > 0 be the weight vector. For any λ > 0, x ∈ Rn, and the dilation mapping can be defined as
Λr(x) = [λr1 x1, λr2 x2, · · · , λrn xn]

T ∈ Rn.

Definition 2 [34]. A vector field f(x) ∈ Rn is said to be homogeneous with degree k with respect to
weight vector r = [r1, · · · , rn]

T ∈ Rn if we have fi(Λr(x)) = λk+ri fi(x) for any λ > 0,x ∈ Rn.

Definition 3 [34]. A vector field f(x) ∈ Rn is said to be homogeneous in the 0-limit with triple
(r0, k0, f0(x)), where r0 ∈ Rn is the weight vector, k0 is the homogeneous degree, and f0(x) is the
approximating function for lim

λ→0
max

x∈Rn\0
‖λ−k0 Λ−1

r0
f(Λr0(x))− f0(x)‖ = 0.

Definition 4 [34]. A vector field f(x) ∈ Rn is said to be homogeneous in the ∞-limit with triple
(r∞, k∞, f∞(x)), where r∞ ∈ Rn is the weight vector, k∞ is the homogeneous degree, and f∞(x) is
the approximating function for lim

λ→∞
max

x∈Rn\0
‖λ−k∞ Λ−1

r∞ f(Λr∞(x))− f∞(x)‖ = 0.

Definition 5 [35]. A vector field f(x) ∈ Rn is said to be homogeneous in the bi-limit if it is
homogeneous in the 0-limit and ∞-limit simultaneously.

Lemma 1 [35]. For nonlinear system (21), we suppose the vector field f(x) ∈ Rn is homogeneous
in the 0-limit and ∞-limit simultaneously with triples (r0, k0, f0(x)) and (r∞, k∞, f∞(x)). If the
origin of system

.
x = f (x),

.
x = f0(x),

.
x = f∞(x) is globally asymptotically stable, then the origin

of (21) is fixed time stable when k∞ > 0 > k0 holds.

Lemma 2 [33]. Suppose Ψ = Rn and there exists a Lyapunov function V(x(t)) that sat-
isfies

.
V(x(t)) ≤ −

(
l1Vϑ1(x(t)) + l2Vϑ2(x(t))

)
. Parameters l1, l2 > 0, 0 < ϑ1 < 1 and

ϑ2 > 1 are positive constants, then the origin of system (21) is fixed time stable and T(x(0)) ≤
1/[l1(1− ϑ1)]+1/[l2(ϑ2 − 1)] for any given initial conditions x(0) ∈ Rn.
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Notation 1. ‖x‖ =
√

xTxdenotes the Euclidean norm, where x = [x1, x2, · · · , xn]
T ∈ Rn. 2)

For any x = [x1, x2, · · · , xn]
T ∈ Rn, sign(x) = x/‖x‖, sigp(x) = ‖x‖p•sign(x), sgn(x) =

[sign(x1), · · · , sign(xn)]
T, dxca =

[
|x1|asign(x1), · · · , |xn|asign(xn)

]T.

3. Control Scheme

The control block diagram of the proposed control method is presented in Figure 2.
The translational subsystem is used to achieve position control with the goal reference
pd = [xd, yd, zd]

T. The rotational subsystem is used to realize attitude control with the
command Θd = [φd, θd, ψd]

T, which is specifically generated via the attitude command
generator. The attitude command generator can be obtained as

φd = arcsin

(
ucx sin ψd−ucy cos ψd√

u2
cx+u2

cy+(ucz+g)2

)
θd = arctan

(
ucx cos ψd+ucy sin ψd

ucz+g

) (22)

Tc = m

 ucx(sin θ cos ψ cos φ + sin ψ sin φ)
+ucy(sin θ sin ψ cos φ− cos ψ sin φ)
+(ucz + g) cos θ cos φ

 (23)
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Remark 1. Unlike the previous articles, the desired command xd, yd, zd, ψd comes from a real
trajectory, which considers various constraints. The pseudospectral method is used to generate a
discrete trajectory, and then the time-continuous trajectory, which is the reference trajectory in this
paper, can be obtained by polynomial curve fitting.

3.1. Design of Translational Subsystem

In this subsection, the fixed-time UIO will be designed for translational subsystem to
estimate the lumped disturbance d with a unique feature that it does not require the upper
bound of disturbance or its derivative. Then, a fixed-time tracking controller uc will be
presented based on the simplified mathematical model in Equation (16) to stabilize tracking
error into a small region in fixed time.

We design the fixed-time UIO first. To begin with, a new state η = [η1, η2, η3]
T is

introduced as follows
η(t) = −L1

∫
(uc + L2η)dt + L1v (24)
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where both L1 = diag[l11, l12, l13], L2 = diag[l21, l22, l23] are positive definitions of the
diagonal matrix. Differentiating ηwith respect to time, combining Equation (16), we can
obtain the relationship between the new state η and the lumped disturbance d

.
η = −L1L2η+ L1d (25)

Theorem 1. Consider the translational subsystem with external disturbances, actuator faults, and
input saturation described by Equation (16), define d̂ = [d̂x, d̂y, d̂z]

T
as the estimation of the lumped

disturbance d, if the observer is designed as
.
η = −L1(uc + L2η) + L1

.
v

.
η̂ =

.
η+ H1sigm1(η− η̂) + H2sign1(η− η̂)

d̂ = L2η̂+ L−1
1

.
η

(26)

where η̂ = [η̂1, η̂2, η̂3]
Tdenotes the estimation of η, both H1 = diag[h11, h12, h13], H2 =

diag[h21, h22, h23]represent the positively defined matrix and0 < m1 < 1, n1 > 1are positive
constants. Then, the lumped disturbance d can be approximated in fixed time throughd̂.

Proof of Theorem 1. Define η̃ = η− η̂ = [η̃1, η̃2, η̃3]
T, choose the Lyapunov function as

V0 = 1
2 η̃

Tη̃. Differentiating V0 with respect to time, we can obtain

.
V0 = η̃T

.
η̃

= η̃T( .
η−

( .
η+ H1sigm1(η̃) + H2sign1(η̃)

))
= −‖η̃‖m1−1

η̃TH1η̃
T − ‖η̃‖n1−1

η̃TH2η̃
T

= −‖η̃‖m1−1 3
∑

i=1
h1iη̃

2
i − ‖η̃‖

n1−1 3
∑

i=1
h2iη̃

2
i

≤ −h1i,min‖η̃‖m1+1 − h2i,min‖η̃‖n1+1

≤ −2(m1+1)/2h1i,minV(m1+1)/2
0 − 2(n1+1)/2h2i,minV(n1+1)/2

0

(27)

where h1i,min = min{h1i}, h2i,min = min{h2i}, i = 1, 2, 3. From Lemma 2, it can be
concluded that η̃ will converge to zero in fixed time, and the convergence time can be
estimated by

T0 =
2(1−m1)/2

h1i,min(1−m1)
+

2(1−n1)/2

h2i,min(n1 − 1)
(28)

Define d̃ = d− d̂ = [d̃x, d̃y, d̃z]
T

as the estimation error between d and d̂. Combining
Equation (25), we can obtain

d̃ = d− d̂ = L2η+ L−1
1

.
η− (L2η̂+ L−1

1
.
η)

= L2η̃
(29)

According to Equation (28), we can conclude that the observation error d̃ of fixed-time
UIO will converge to origin within fixed time.

The proof is completed. �

Remark 2. Compared with ESO in [21,22] and STDO in [25,26], the proposed fixed-time UIO in
Equation (26) does not include the sign function and the prior knowledge of the disturbance, so the
observer is simple to design and there is no chattering when estimating the disturbance.

Then, the fixed-time tracking controller is proposed based on the accurate estimation
of the lumped disturbance d. Firstly, the tracking error of translational subsystem can be
defined as {

ep = p− pd
ev = v− vd

(30)
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where pd = [xd, yd, zd]
T and vd= [ud, vd, wd]

T are desired commands of position and speed,
respectively, and satisfy

.
pd = vd.

Based on the definition of tracking error in Equation (30), the fixed-time tracking
controller for the translational subsystem is designed as

uc =
.
vd − kp

(
sigα1

(
ep
)
+ sigβ1

(
ep
))

−kv
(
sigα2(ev) + sigβ2(ev)

)
− d̂

(31)

where α1 = α/(2− α), α2 = α, α ∈ (0, 1), β1 = β2/(2− β2), β2 = (4− 3α)/(3− 2α), kp, kv
are positive constants.

Theorem 2. Consider the translational subsystem described in Equation (16). If the lumped
disturbancedcan be estimated accurately by fixed-time UIO presented in Equation (26), then the
tracking error could converge to zero in fixed-time with the proposed controller in Equation (31).

Proof of Theorem 2. According to the fixed-time UIO, the estimation error d̃ will con-
verge to zero for t ≥ T0. Then, we can obtain the error equation from Equation (16) and
Equation (30) 

.
ep = ev.
ev = −kp

(
sigα1

(
ep
)
+ sigβ1

(
ep
))

−kv
(
sigα2(ev) + sigβ2(ev)

) (32)

For the convenience of bi-limit homogeneity analysis, based on Equation (32), a vector
field is defined as

f(ep, ev) =

[
ev

−kp
(
sigα1

(
ep
)
+ sigβ1

(
ep
))
− kv

(
sigα2(ev) + sigβ2(ev)

)] (33)

Two auxiliary vector fields are designed as

f0 =

[
ev

−kpsigα1(ep)− kvsigα2(ev)

]
(34)

f∞ =

[
ev

−kpsigβ1(ep)− kvsigβ2(ev)

]
(35)

To achieve 0-limit homogeneity with triple (r0, k0, f0) of Equation (33), we set k0 = −1

and define the dilation mapping as Λr0(ep, ev) = [λ(2−α)/(1−α)ep, λ1/(1−α)ev]
T

.
The detailed 0-limit homogeneity approximation is presented as follows

λ−k0 Λ−1
r0

f
(
Λr0(ep, ev)

)
= λ1

 λ−
2−α
1−α · λ

1
1−α ev

−λ−
1

1−α

(
λ

2−α
1−α ·α1 kpsigα1

(
ep
)
+ λ

2−α
1−α ·β1 kpsigβ1

(
ep
)

+λ
1

1−α ·α2 kvsigα2(ev) + λ
1

1−α ·β2 kvsigβ2(ev)

) 
=

 ev

−kpsigα1
(
ep
)
− kvsigα2(ev)− λ−

α
1−α

(
λ

2−α
1−α ·β1 kpsigβ1

(
ep
)
+ λ

1
1−α ·β2 kvsigβ2(ev)

)


=

 ev

−kpsigα1
(
ep
)
− kvsigα2(ev)−

(
λ4kpsigβ1

(
ep
)
+ λ

4−2α
3−2α kvsigβ2(ev)

)


(36)
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Then, we can obtain

lim
λ→0

max
(ep ,ev)∈Rn\0

‖λ−k0 Λ−1
r0

f
(
Λr0(ep, ev)

)
− f0‖

= lim
λ→0

max
(ep ,ev)∈Rn\0

∥∥∥∥∥ 0
λ4kpsigβ1

(
ep
)
+ λ

4−2α
3−2α kvsigβ2(ev)

∥∥∥∥∥
= 0

(37)

According to Definition 3, the Equation (33) is homogeneous in 0-limit.
In a similar way, the homogeneity in ∞-limit with triple (r∞, k∞, f∞) of Equation (33)

is also analyzed. We set homogeneous degree k∞ = 1, and define the dilation mapping as

Λr∞(ep, ev) = [λ(2−β2)/(β2−1)ep, λ1/(β2−1)ev]
T

. Then, we have

λ−k∞ Λ−1
r∞ f
(
Λr∞ (ep, ev)

)
= λ−1


λ
− 2−β2

β2−1 · λ
1

β2−1 ev

−λ
− 1

β2−1 ·

 λ
2−β2
β2−1 ·α1 kpsigα1

(
ep
)
+ λ

2−β2
β2−1 ·β1 kpsigβ1

(
ep
)

+λ
1

β2−1 ·α2 kvsigα2 (ev) + λ
1

β2−1 ·β2 kvsigβ2 (ev)




=

 ev

−kpsigβ1
(
ep
)
− kvsigβ2 (ev)− λ

− β2
β2−1

(
λ

2−β2
β2−1 ·α1 kpsigα1

(
ep
)
+ λ

1
β2−1 ·α2 kvsigα2 (ev)

) 
=

[
ev

−kpsigβ1
(
ep
)
− kvsigβ2 (ev)−

(
λ−4kpsigα1

(
ep
)
+ λ−2(2−α)kvsigα2 (ev)

) ]
(38)

Then, we can obtain

lim
λ→∞

max
(ep ,ev)∈Rn\0

‖λ−k∞ Λ−1
r∞ f
(
Λr∞(ep, ev)

)
− f∞‖

= lim
λ→∞

max
(ep ,ev)∈Rn\0

∥∥∥∥ 0
λ−4kpsigα1

(
ep
)
+ λ−2(2−α)kvsigα2(ev)

∥∥∥∥
= 0

(39)

According to Definition 4, the Equation (33) is homogeneous in ∞-limit. Therefore,
the vector field described in Equation (33) is homogeneous in bi-limit.

Then, we prove that Equations (33)–(35) are globally asymptotically stable.
For Equation (33), we define the Lyapunov function as

V1 = 2kp(α1 + 1)‖ep‖β1+1 + 2kp(β1 + 1)‖ep‖α1+1

+(α1 + 1)(β1 + 1)eT
v ev

(40)

Differentiating V1 with respect to time, then we can obtain

.
V1 = 2kp(α1 + 1)(β1 + 1)‖ep‖β1−1eT

p
.
ep + 2kp(α1 + 1)(β1 + 1)‖ep‖α1−1eT

p
.
ep

+2(α1 + 1)(β1 + 1)eT
v

.
ev

= 2kp(α1 + 1)(β1 + 1)
(
‖ep‖α1−1 + ‖ep‖β1−1

)
eT

p
.
ep

+2(α1 + 1)(β1 + 1)eT
v
(
−kp

(
sigα1

(
ep
)
+ sigβ1

(
ep
))
− kv

(
sigα2(ev) + sigβ2(ev)

))
= 2kp(α1 + 1)(β1 + 1)

(
‖ep‖α1−1 + ‖ep‖β1−1

)
eT

pev

−2kp(α1 + 1)(β1 + 1)
(
‖ep‖α1−1 + ‖ep‖β1−1

)
eT

v ep

−2kv(α1 + 1)(β1 + 1)
(
‖ev‖α2+1 + ‖ev‖β2+1

)
= −2kv(α1 + 1)(β1 + 1)

(
‖ev‖α2+1 + ‖ev‖β2+1

)
≤ 0

(41)

Let
·

V = 0; thus, we can obtain ev = 0. Then, substituting it into Equation (33),
we have

.
ep = 0,

.
ev = −kp

(
sigα1

(
ep
)
+ sigβ1

(
ep
))

, which is the set of all points where
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.
V1 = 0. Supposing

{
ep 6= 0, ev = 0

}
, then there always exists

.
ev 6= 0, namely ev not always

equal to 0. Therefore,
{

ep 6= 0, ev = 0
}

is not an invariant set. When
{

ep = 0, ev = 0
}

,
there would always exist

.
ep = 0,

.
ev = 0, namely ep = 0, ev = 0 would always hold.

Consequently, the only invariant set is
{

ep = 0, ev = 0
}

. According to LaSalle invariant
theorem,

{
ep = 0, ev = 0

}
is the global equilibrium point and global asymptotical stability

can be guaranteed.
For Equation (34), the Lyapunov function can be designed as

V2 = 2kp‖ep‖α1+1 + (α1 + 1)eT
v ev (42)

The time derivative of V2 is

.
V2 = 2kp(α1 + 1)‖ep‖α1−1eT

pev

+2(α1 + 1)eT
v
(
−kpsigα1(ep)− kvsigα2(ev)

)
= −2kv(α1 + 1)‖ev‖α2+1

≤ 0

(43)

According to the LaSalle invariant theorem, Equation (34) is globally asymptotically
stable.

For Equation (35), the global asymptotical stability is also proved with the following
Lyapunov function

V3 = 2kp‖ep‖β1+1 + (β1 + 1)eT
v ev (44)

According to Lemma 1, the origin of Equation (32) is fixed-time stable.
The proof is completed. �

3.2. Design of Rotational Subsystem

In this subsection, the fixed-time UIO for rotational subsystem is presented to estimate
accurately the lumped disturbance D. Then, a fixed-time tracking controller τc is proposed
based on the simplified mathematical model of rotational subsystem in Equation (19).

Like the translational subsystem, firstly, a new state ς = [ς1, ς2, ς3]
T is designed as

ς(t) = −L3

∫ (
WJ−1

0 τc + L4ς
)

dt + L3M (45)

where both L3 = diag[l31, l32, l33], L4 = diag[l41, l42, l43] are positive define diagonal matri-
ces. Differentiating ς(t) with respect to time, combining Equation (19), then we can obtain

.
ς = −L3L4ς + L3D (46)

Theorem 3. Consider the rotational subsystem with external disturbances, inertia uncertainties,
actuator faults, and input saturation described by Equation (19), then define D̂ = [D̂x, D̂y, D̂z]

T,
ς̂ = [ς̂1, ς̂2, ς̂3]

Tas the estimation of D and ς respectively, if the observer is designed as
.
ς = −L3

(
WJ−1

0 τc + L4ς
)
+ L3

.
M

.
ς̂ =

.
ς + H3sigm2(ς− ς̂) + H4sign2(ς− ς̂)

D̂ = L4ς̂ + L−1
3

.
ς

(47)

where both H3 = diag[h31, h32, h33], H4 = diag[h41, h42, h43] are positive define matrices and
0 < m2 < 1, n2 > 1 are positive constants. Then, the lumped disturbance D can be approximated
in fixed time through D̂.
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Proof of Theorem 3. Define ς̃ = ς− ς̂ = [ς̃1, ς̃2, ς̃3]
T, then construct the Lyapunov function

as V4 = 1
2 ς̃Tς̃. Differentiating V4 with respect to time, we can obtain

.
V4 = ς̃T

.
ς̃

= ς̃T( .
ς−

( .
ς + H3sigm2(ς̃) + H4sign2(ς̃)

))
= −‖ς̃‖m2−1ς̃TH3ς̃− ‖ς̃‖n2−1ς̃TH4ς̃

= −‖ς̃‖m2−1 3
∑

i=1
h3i ς̃

2
i − ‖ς̃‖

n2−1 3
∑

i=1
h4i ς̃

2
i

≤ −h3i,min‖ς̃‖m2+1 − h4i,min‖ς̃‖n2+1

≤ −2(m2+1)/2h3i,minV(m2+1)/2
4 − 2(n2+1)/2h4i,minV(n2+1)/2

4

(48)

where h3i,min = min{h3i}, h4i,min = min{h4i}, i = 1, 2, 3. From Lemma 2, we can conclude
that ς̃ will converge to zero in fixed time, and the convergence time can be estimated by

T1 =
2(1−m2)/2

h3i,min(1−m2)
+

2(1−n2)/2

h4i,min(n2 − 1)
(49)

Define D̃ = D− D̂ = [D̃x, D̃y, D̃z]
T

as the estimation error between D and D̂. Com-
bining Equation (46), we can obtain

D̃ = D− D̂ = L4ς + L−1
3

.
ς−

(
L4ς̂ + L−1

3
.
ς
)

= L4ς̃
(50)

According to Equation (49), we can conclude that the observation error D̃ will converge
to origin within fixed time.

The proof is completed. �

Then, the controller of rotational subsystem is designed.
The tracking error can be defined as{

e1 = Θ−Θd
e2 = M−Md

(51)

where Θd = [φd, θd, ψd]
T and Md = [

.
φd,

.
θd,

.
ψd]

T
stand for the desired Euler angle and its

derivative, respectively, and satisfy
.

Θd = Md.
Based on the precise estimation of the lumped disturbance D, the fixed-time tracking

controller τc is designed as 
τc = J0W−1

( .
Md − µ− D̂

)
µ = k1

(
siga1(e1) + sigb1(e1)

)
+k2

(
siga2(e2) + sigb2(e2)

) (52)

where a1 = a/(2− a), a2 = a, a ∈ (0, 1), b1 = b2/(2− b2), b2 = (4− 3a)/(3− 2a), k1, k2
are positive constants.

Theorem 4. Consider the rotational subsystem described by Equation (19). If the lumped dis-
turbanceDcan be estimated precisely by the fixed-time UIO presented in Equation (47), then the
tracking error could converge to zero in fixed-time with the designed controller in Equation (52).
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Proof of Theorem 4. According to Equation (47), the estimation error D̃ will converge to
zero for t ≥ T1. Then, we can obtain

.
e1 = e2
.
e2 = −k1

(
siga1(e1) + sigb1(e1)

)
−k2

(
siga2(e2) + sigb2(e2)

) (53)

According to the proof process of Theorem 2, the origin of Equation (53) is fixed-time
stable.

The proof is completed. �

4. Simulation and Discussion

The simulation results of the proposed control scheme are presented in this section.
Then, comparative simulations are carried out to demonstrate the superiority of the fixed-
time UIO proposed in this paper.

4.1. Simulation Results

The parameters of the QUAV are given as m = 0.5 kg, g = 9.8 m/s2, cT = 2.98× 10−6,
cM = 1.14 × 10−7, d = 0.225 m, J = 10−3 × diag

[
4.9 4.9 8.8

]
kg ·m2, J0 = 10−3 ×

diag
[
4.5 4.5 8

]
kg ·m2. The health condition of actuators is represented as

ρ1 = ρ2 = ρ3 = ρ4 = 1 0 ≤ t < 10
ρ1 = ρ2 = ρ3 = ρ4 = 0.9 , 10 ≤ t ≤ 15
ρ1 = ρ2 = ρ3 = ρ4 = 1, t > 15

(54)

In fact, the saturation limit of rotor speed is influenced in the case of actuator faults, so
it can be set as

vmaxi =

{
δvmaxi, with actuator faults
vmaxi, without actuator faults

(55)

where δ is determined by the actual situation and is set to δ = 0.9, and vmaxi represents the
saturation limit without actuator faults, vmax1 = vmax2 = vmax3 = vmax4 = 900 rpm.

The external disturbances of the translational and rotational subsystem are supposed
to be

∆1 = 0.1×

 1 + sin(0.3t) + cos(0.8t)
−1 + sin(0.6t)− cos(0.4t)
1 + sin(0.5t) + cos(0.2t)

N/kg (56)

∆2 = 0.05×

 1 + sin(0.3t) + cos(0.8t)
−1 + sin(0.6t)− cos(0.4t)

1 + sin(0.5t + π/2) + cos(0.2t + π/2)

Nm (57)

The parameters of fixed-time tracking controller and fixed-time UIO for the transla-
tional subsystem are set as kp = 0.3, kv = 0.9, α = 0.8, m1 = 0.8, n1 = 1.2,
L1 = diag

[
50 50 50

]
, L2 = H1 = H2 = diag

[
1 1 1

]
.

The parameters of the fixed-time tracking controller and fixed-time UIO for rotational
subsystem are set as k1 = 80, k2 = 10, a = 0.8, m2 = 0.8, n2 = 1.2, L3 = diag

[
40 40 40

]
,

L4 = H3 = H4 = diag
[
1 1 1

]
.

The tracking results of position and speed are presented in Figure 3, where
V =

√
u2 + v2 + w2. Figure 4 shows the trajectory tracking results from 3D view and

X-Y view. Obviously, the proposed fixed-time tracking controller for the translational
subsystem can track the desired command accurately. Figure 5 presents the simulation
results of the Euler angle and its tracking error, and we can conclude that the tracking
performance of the designed fixed-time tracking controller for the rotational subsystem
is satisfactory, and the tracking error could rapidly converge to zero. The rotor speed
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commanded by the controller and the actual rotor speed are presented in Figure 6, and we
can see that the commanded rotor speed increases in order to track the desired command
in the event of actuator faults. The saturation limit of rotor speed decreases during actuator
faults. Furthermore, even though the controller orders a high rotor speed, the actual rotor
speed does not surpass the saturation limit we set. Figure 7 depicts the controller’s com-
manded thrust and torque as well as the actual thrust and torque. The thrust and torque
commanded, as well as the actual thrust and torque, are different due to the difference
between the commanded rotor speed and the actual rotor speed at the start and in the case
of actuator faults. The estimation results of lumped disturbances for both translational
and rotational subsystem are drawn in Figure 8, and the observation performance of the
proposed fixed-time UIO is acceptable. Though the lumped disturbances are very large at
first, which is caused by the fact that the actual rotor speed does not match the commanded
rotor speed in the starting stage, the proposed fixed-time UIO can estimate the lumped
disturbances quickly and precisely.
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4.2. Comparison

To verify the performance of the proposed fixed-time UIO (FUIO), simulations using
the fixed-time extend state observer (FESO) in [22] and the fixed-time integral sliding mode
disturbance observer (FISMDO) in [25] are carried out for comparison.

The FESO for rotational subsystem is designed as
.

Θ̂ = M̂ + p1sigm3(ξ1) + q1sign3(ξ1).
M̂ = WJ−1

0 τc + D̂ + p2sigm4(ξ1) + q2sign4(ξ1).
D̂ = p3sigm5(ξ1) + q3sign5(ξ1) + γ1sign(ξ1)

(58)

where ξ1 = Θ− Θ̂, Θ̂, M̂, D̂ are the estimations of Θ, M, D, respectively. The parameters
are set as m3 = 0.7, m4 = 2m3 − 1, m5 = 3m3 − 2, n3 = 1.2, n4 = 2n3 − 1, n5 = 3n3 − 2,
p1 = q1 = 10, p2 = q2 = 27, p3 = q3 = 74, γ1 = 3 > ‖

.
D‖.

The FESO for translational subsystem is designed as
.
p̂ = v̂ + p4sigm6(ξ2) + q4sign6(ξ2).
v̂ = uc + d̂ + p5sigm7(ξ2) + q5sign7(ξ2).
d̂ = p6sigm8(ξ2) + q6sign8(ξ2) + γ2sign(ξ2)

(59)

where ξ2 = p− p̂, p̂, v̂, d̂ are the estimations of p, v, d, respectively. The parameters are
given as m6 = 0.8, m7 = 2m6 − 1, m8 = 3m6 − 2, n6 = 1.2, n7 = 2n6 − 1, n8 = 3n6 − 2,
p4 = q4 = 10, p5 = q5 = 27, p6 = q6 = 15, γ2 = 1 > ‖

.
d‖.

The FISMDO for the rotational subsystem is designed as

.
s0 = D− D̂
s1 =

.
s0 +

∫ [
λ1ds0ca3 + λ2ds0cb3 + λ3

⌈ .
s0
⌋a4 + λ4

⌈ .
s0
⌋b4
]
ds

.
D̂ = λ1ds0ca3 + λ2ds0cb3 + λ3

⌈ .
s0
⌋a4 + λ4

⌈ .
s0
⌋b4

+λ5ds1ca5 + λ6ds1cb5 + γ3sgn(s1)

(60)

where λ1 = λ3 = 2, λ2 = λ4 = 4, λ5 = λ6 = 0.5, a3 = a4 = a5 = 0.8, b3 = b4 = b5 = 1.2,
γ3 = 3 > ‖

.
D‖.

The FISMDO for the translational subsystem is designed as

.
s2 = d− d̂
s3 =

.
s2 +

∫ [
κ1ds2ca6 + κ2ds2cb6 + κ3

⌈ .
s2
⌋a7 + κ4

⌈ .
s2
⌋b7
]
ds

.
d̂ = κ1ds2ca6 + κ2ds2cb6 + κ3

⌈ .
s2
⌋a7 + κ4

⌈ .
s2
⌋b7

+κ5ds3ca8 + κ6ds3cb8 + γ4sgn(s3)

(61)
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where κ1 = κ3 = 2, κ2 = κ4 = 4, κ5 = κ6 = 0.5, a6 = a7 = a8 = 0.8, b6 = b7 = b8 = 1.2,
γ4 = 1 > ‖

.
d‖.

Figure 9 depicts the estimation error of lumped disturbances, employing three ob-
servers for translational and rotational subsystems. Obviously, the estimation error of the
three observers could converge to zero. However, the estimation performance of the three
observers is also different. Compared with FESO, the estimation error converges faster
when using the FUIO and the FISMDO to estimate the lumped disturbances. Moreover,
according to Figure 9c, we can find that the FUIO converges fastest when the lumped dis-
turbance changes abruptly owing to actuator faults. Additionally, since the FUIO does not
include the sign function, its estimation error converges more smoothly and accurately than
the FESO and FISMDO. The tracking error of the position and the Euler angle when using
different disturbance observers are shown in Figure 10, and we find that the convergence
speed of tracking error is faster in the case of actuator faults and the tracking precision is
higher when using the FUIO because it has better estimation performance.
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Remark 3. When the rotor speed saturation is considered, the lumped disturbance is very large.
For ease of analysis, the rotor speed saturation is not considered in the comparison simulations.

Remark 4. As the estimation precision of the disturbance observer can affect the lumped disturbance,
the lumped disturbance is different when using different observers to estimate the lumped disturbance.
Hence, we compare the estimation performance of the three observers using the estimation error.

Remark 5. From Equations (58)–(61), we know that the FESO and FISMDO are designed based on
the boundary of the derivative of the lumped disturbance. Therefore, the estimation performance of the
FESO and FISMDO cannot be guaranteed in theory when the lumped disturbance changes sharply.

Remark 6. According to the estimation error of different observers presented in Figure 9, we
can conclude the advantages of the FUIO. First, the sign function is absent in FUIO, so there is
no chattering and the estimation precision is higher. Additionally, the design process of FUIO
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does not need prior knowledge of the boundary of the disturbance or its derivative. Therefore, the
design process becomes easier and the application is expanded. Moreover, the FUIO can observe the
lumped disturbance accurately and quickly when the lumped disturbance changes suddenly due to
actuator faults.

4.3. Discussion
4.3.1. Differences between Rotor Speed Saturation and Thrust or Torque Saturation

In contrast with [29–31], the rotor speed saturation is considered in this paper instead
of thrust and torque saturation. According to Equation (8), we find that the total thrust is
related to the rotor speed of all four motors. Therefore, as soon as the rotor speed of any of
the motors reaches saturation, the total thrust will be affected. When only thrust saturation
is considered, the role of each rotor speed cannot be reflected. Hence, rotor speed saturation
is considered in this paper, which is more reasonable.

4.3.2. The Feature of Proposed Observer

In the process of observer design, a new state η is introduced in Equation (24), and
its time derivative in Equation (25) shows that the new state η is the first-order filtering
of lumped disturbance d. Using the new state, the observer is designed in Equation (26).
Instead of estimating the lumped disturbance directly, the observer first observes the new
state and then uses the filtering relationship between the disturbance and the new state to
estimate the disturbance. The advantage of this is that the upper bound of the derivative of
lumped disturbance is not required and the lumped disturbance can be estimated accurately
when it changes suddenly.

4.3.3. The Future Work

In this section, simulation results that consider the external disturbance, inertia un-
certainties, actuator faults, and input saturation are presented to validate the effectiveness
and superiority of the proposed control scheme. Although the simulation results are satis-
factory, the flight experiment verification is also indispensable, which we will explore in
future work.

5. Conclusions

This paper investigates the trajectory tracking control problem for a QUAV in the
presence of external disturbances, inertia uncertainties, actuator faults, and input saturation.
The simulation results show that the high-accuracy estimation of the lumped disturbance
can be obtained in fixed time, employing the proposed fixed-time UIO. Compared with
other observers, such as the observers in [20–26], the advantages of proposed fixed-time
UIO can be summarized as follows: (a) there is no chattering in the estimation of lumped
disturbance and the estimation precision is better; (b) prior knowledge of the boundary of
the disturbance or its derivative is not required; (c) the lumped disturbance can be observed
accurately and quickly when it changes suddenly due to actuator faults. The fixed-time
tracking controllers for translational and rotational subsystems could drive the tracking
error into a small region in fixed time regardless of the initial values with the help of the
proposed fixed-time UIO. Rigorous convergence analysis and numerical simulation results
have demonstrated the effectiveness and superiority of the proposed control scheme.

Author Contributions: Conceptualization, S.S. and Y.Z.; methodology, S.S. and Y.Z.; software, S.X.;
validation, S.X., S.S. and Y.Z.; formal analysis, X.W.; investigation, S.X. and S.S.; resources, S.X., S.S.
and Y.Z.; data curation, S.X.; writing—original draft preparation, S.X.; writing—review and editing,
S.S. and Y.Z.; visualization, S.X.; supervision, Y.Z.; project administration, Y.Z.; funding acquisition,
S.S. All authors have read and agreed to the published version of the manuscript.



Drones 2023, 7, 344 21 of 22

Funding: This research was funded by the National Natural Science Foundation of China (Grant
Number 61903122), the Natural Science Foundation of Hebei Province (Grant Number F2021208015),
the Science and Technology Project of Hebei Education Department (Grant Number BJ2021003), and
the National Natural Science Foundation of China (Grant Number U20A20198 and 62003129).

Data Availability Statement: No applicable.

Conflicts of Interest: The authors declare no conflict of interest.

References
1. Serrano, M.E.; Gandolfo, D.C.; Scaglia, G.J.E. Trajectory tracking controller for unmanned helicopter under environmental

disturbances. ISA Trans. 2020, 106, 171–180. [CrossRef] [PubMed]
2. Cao, C.Y.; Wei, C.S.; Liao, Y.X.; Zhang, Y.C.; Li, J. On novel trajectory tracking control of quadrotor UAV: A finite-time guaranteed

performance approach. J. Franklin Inst. 2022, 359, 8454–8483. [CrossRef]
3. Li, B.; Song, C.; Bai, S.X.; Huang, J.Y.; Ma, R.; Wan, K.F.; Neretin, E. Multi-UAV trajectory planning during cooperative tracking

based on a Fusion Algorithm integrating MPC and standoff. Drones 2023, 7, 196. [CrossRef]
4. Kidambi, K.B.; Fermuller, C.; Aloimonos, Y.; Xu, H. Robust nonlinear control-based trajectory tracking for quadrotors under

uncertainty. IEEE Control Syst. Lett. 2021, 5, 2042–2047. [CrossRef]
5. Blas, L.A.; Davila, J.; Salazar, S.; Bonilla, M. Robust trajectory tracking for an uncertain UAV based on active disturbance rejection.

IEEE Control Syst. Lett. 2022, 6, 1466–1471. [CrossRef]
6. Singhal, K.; Kumar, V. Robust trajectory tracking control of non-holonomic wheeled mobile robots using an adaptive fractional

order parallel fuzzy PID controller. J. Franklin Inst. 2022, 359, 4160–4215. [CrossRef]
7. Mathiyalagan, K.; Sangeetha, G. Finite-time stabilization of nonlinear time delay systems using LQR based sliding mode control.

J. Franklin Inst. 2019, 356, 3948–3964. [CrossRef]
8. Lee, D.; Kim, H.J.; Sastry, S. Feedback linearization vs. adaptive sliding mode control for a quadrotor helicopter. Int. J. Control

Autom. Syst. 2009, 7, 419–428. [CrossRef]
9. Koksal, N.; An, H.; Fidan, B. Backstepping-based adaptive control of a quadrotor UAV with guaranteed tracking performance.

ISA Trans. 2020, 105, 98–110. [CrossRef] [PubMed]
10. Liu, W.Q.; Cheng, X.H.; Zhang, J.J. Command filter-based adaptive fuzzy integral backstepping control for quadrotor UAV with

input saturation. J. Franklin Inst. 2023, 360, 484–507. [CrossRef]
11. Labbadi, M.; Boukal, Y.; Cherkaoui, M.; Djemai, M. Fractional-order global sliding mode controller for an uncertain quadrotor

UAVs subjected to external disturbances. J. Franklin Inst. 2021, 358, 4822–4847. [CrossRef]
12. Labbadi, M.; Cherkaoui, M. Adaptive fractional-order nonsingular fast terminal sliding mode based robust tracking control of

quadrotor UAV with Gaussian random disturbances and uncertainties. IEEE Trans. Aerosp. Electron. Syst. 2021, 57, 2265–2277.
[CrossRef]

13. Wang, Q.; Wang, W.; Suzuki, S.; Namiki, A.; Liu, H.X.; Li, Z.R. Design and implementation of UAV velocity controller based on
reference model sliding mode control. Drones 2023, 7, 130. [CrossRef]

14. Huang, D.Q.; Huang, T.P.; Qin, N.; Li, Y.A.; Yang, Y. Finite-time control for a UAV system based on finite-time disturbance
observer. Aerosp. Sci. Technol. 2022, 129, 107825. [CrossRef]

15. Cheng, W.L.; Jiang, B.; Zhang, K.; Ding, S.X. Robust finite-time cooperative formation control of UGV-UAV with model
uncertainties and actuator faults. J. Franklin Inst. 2021, 358, 8811–8837. [CrossRef]

16. Wang, J.H.; Alattas, K.A.; Bouteraa, Y.; Mofid, O.; Mobayen, S. Adaptive finite-time backstepping control tracker for quadrotor
UAV with model uncertainty and external disturbance. Aerosp. Sci. Technol. 2023, 133, 108088. [CrossRef]

17. Liu, B.J.; Li, A.J.; Guo, Y.; Wang, C.Q. Adaptive distributed finite-time formation control for multi-UAVs under input saturation
without collisions. Aerosp. Sci. Technol. 2022, 120, 107252. [CrossRef]

18. Xia, K.W.; Son, H.S. Adaptive fixed-time control of autonomous VTOL UAVs for ship landing operations. J. Franklin Inst. 2020,
357, 6175–6196. [CrossRef]

19. Tan, J.; Dong, Y.F.; Shao, P.Y.; Qu, G.M. Anti-saturation adaptive fault-tolerant control with fixed-time prescribed performance for
UAV under AOA asymmetric constraint. Aerosp. Sci. Technol. 2022, 120, 107264. [CrossRef]

20. Cui, L.; Hou, X.Y.; Zuo, Z.Q.; Yang, H.J. An adaptive fast super-twisting disturbance observer-based dual closed-loop attitude
control with fixed-time convergence for UAV. J. Franklin Inst. 2022, 359, 2514–2540. [CrossRef]

21. Chen, L.L.; Liu, Z.B.; Dang, Q.Q.; Zhao, W.; Wang, G.D. Robust trajectory tracking control for a quadrotor using recursive sliding
mode control and nonlinear extended state observer. Aerosp. Sci. Technol. 2022, 128, 107749. [CrossRef]

22. Shao, S.S.; Wang, S.; Zhao, Y.J. Fixed time output feedback control for quadrotor unmanned aerial vehicle under disturbances.
Proc. Inst. Mech. Eng. Part G J. Aerosp. Eng. 2022, 236, 3554–3566. [CrossRef]

23. Cui, L.; Zhang, R.Z.; Yang, H.J.; Zuo, Z.Q. Adaptive super-twisting trajectory tracking control for an unmanned aerial vehicle
under gust winds. Aerosp. Sci. Technol. 2021, 115, 106833. [CrossRef]

24. Gonzalez, J.A.C.; Pena, O.S.; Morales, J.D.L. Observer-based super twisting design: A comparative study on quadrotor altitude
control. ISA Trans. 2021, 109, 307–314. [CrossRef] [PubMed]

https://doi.org/10.1016/j.isatra.2020.06.026
https://www.ncbi.nlm.nih.gov/pubmed/32636034
https://doi.org/10.1016/j.jfranklin.2022.09.008
https://doi.org/10.3390/drones7030196
https://doi.org/10.1109/LCSYS.2020.3044833
https://doi.org/10.1109/LCSYS.2021.3111837
https://doi.org/10.1016/j.jfranklin.2022.03.043
https://doi.org/10.1016/j.jfranklin.2019.03.002
https://doi.org/10.1007/s12555-009-0311-8
https://doi.org/10.1016/j.isatra.2020.06.006
https://www.ncbi.nlm.nih.gov/pubmed/32591252
https://doi.org/10.1016/j.jfranklin.2022.10.042
https://doi.org/10.1016/j.jfranklin.2021.04.032
https://doi.org/10.1109/TAES.2021.3053109
https://doi.org/10.3390/drones7020130
https://doi.org/10.1016/j.ast.2022.107825
https://doi.org/10.1016/j.jfranklin.2021.08.038
https://doi.org/10.1016/j.ast.2022.108088
https://doi.org/10.1016/j.ast.2021.107252
https://doi.org/10.1016/j.jfranklin.2020.04.041
https://doi.org/10.1016/j.ast.2021.107264
https://doi.org/10.1016/j.jfranklin.2022.01.043
https://doi.org/10.1016/j.ast.2022.107749
https://doi.org/10.1177/09544100221089068
https://doi.org/10.1016/j.ast.2021.106833
https://doi.org/10.1016/j.isatra.2020.10.026
https://www.ncbi.nlm.nih.gov/pubmed/33046240


Drones 2023, 7, 344 22 of 22

25. Su, B.; Wang, H.B.; Wang, Y.L. Dynamic event-triggered formation control for AUVs with fixed-time integral sliding mode
disturbance observer. Ocean Eng. 2021, 240, 109893. [CrossRef]

26. Dong, Z.; Liu, L.; Wang, S.P. Sliding mode disturbance observer-based adaptive dynamic inversion fault-tolerant control for
Fixed-Wing UAV. Drones 2022, 6, 295. [CrossRef]

27. Xuan-Mung, N.; Golestani, M. Energy-efficient disturbance observer-based attitude tracking control with fixed-time convergence
for spacecraft. IEEE. Trans. Aero. Elec. Syst. 2022, 1–10. [CrossRef]

28. Xiong, C.G.; Yang, L.; Zhou, B.; Chen, Y. Finite-time fault-tolerant control of robotic systems with uncertain dynamics. Int. J.
Control Autom. Syst. 2022, 20, 2681–2690. [CrossRef]

29. Fu, C.Y.; Tian, Y.T.; Huang, H.Y.; Zhang, L.; Peng, C. Finite-time trajectory tracking control for a 12-rotor unmanned aerial vehicle
with input saturation. ISA Trans. 2018, 81, 52–62. [CrossRef]

30. Liu, K.; Wang, R.J.; Wang, X.D.; Wang, X.X. Anti-saturation adaptive finite-time neural network based fault-tolerant tracking
control for a quadrotor UAV with external disturbances. Aerosp. Sci. Technol. 2021, 115, 106790. [CrossRef]

31. Cao, N.; Lynch, A.F. Inner-outer loop control for quadrotor UAVs with input and state constraints. IEEE Trans. Contr. Syst. T 2015,
24, 1797–1804. [CrossRef]

32. Lee, D. Fault-tolerant finite-time controller for attitude tracking of rigid spacecraft using intermediate quaternion. IEEE Trans.
Aero Elec Sys. 2021, 57, 540–553. [CrossRef]

33. Polyakov, A. Nonlinear feedback design for fixed-time stabilization of linear control system. IEEE Trans. Automat Contr. 2012, 57,
2106–2110. [CrossRef]

34. Bernuau, E.; Efimov, D.; Perruquetti, W. On homogeneity and its application in sliding mode control. J. Franklin Inst. 2014, 351,
1866–1901. [CrossRef]

35. Andrieu, V.; Praly, L.; Astolfi, A. Homogeneous approximation, recursive observer design, and output feedback. SIAM J. Control
Optim. 2009, 47, 1814–1850. [CrossRef]

Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual
author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to
people or property resulting from any ideas, methods, instructions or products referred to in the content.

https://doi.org/10.1016/j.oceaneng.2021.109893
https://doi.org/10.3390/drones6100295
https://doi.org/10.1109/TAES.2022.3229290
https://doi.org/10.1007/s12555-021-0460-y
https://doi.org/10.1016/j.isatra.2018.08.005
https://doi.org/10.1016/j.ast.2021.106790
https://doi.org/10.1109/TCST.2015.2505642
https://doi.org/10.1109/TAES.2020.3024399
https://doi.org/10.1109/TAC.2011.2179869
https://doi.org/10.1016/j.jfranklin.2014.01.007
https://doi.org/10.1137/060675861

	Introduction 
	Mathematical Model and Problem Formulation 
	Mathematical Model of QUAV 
	Problem Formulation 
	Notation and Preliminaries 

	Control Scheme 
	Design of Translational Subsystem 
	Design of Rotational Subsystem 

	Simulation and Discussion 
	Simulation Results 
	Comparison 
	Discussion 
	Differences between Rotor Speed Saturation and Thrust or Torque Saturation 
	The Feature of Proposed Observer 
	The Future Work 


	Conclusions 
	References

