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Abstract: In this paper, a distributed, autonomous, cooperative mission-planning (DACMP) approach
was proposed to focus on the problem of the real-time cooperative searching and surveillance of
multiple unmanned aerial vehicles (multi-UAVs) with threats in uncertain and highly dynamic
environments. To deal with this problem, a time-varying probabilistic grid graph was designed
to represent the perception of a target based on its a priori dynamics. A heuristic search strategy
based on pyramidal maps was also proposed. Using map information at different scales makes it
easier to integrate local and global information, thereby improving the search capability of UAVs,
which has not been previously considered. Moreover, we proposed an adaptive distributed task
assignment method for cooperative search and surveillance tasks by considering the UAV motion
environment as a potential field and modeling the effects of uncertain maps and targets on candidate
solutions through potential field values. The results highlight the advantages of search task execution
efficiency. In addition, simulations of different scenarios show that the proposed approach can
provide a feasible solution for multiple UAVs in different situations and is flexible and stable in
time-sensitive environments.

Keywords: UAV swarm; cooperative search surveillance; mission planning; image pyramid

1. Introduction

With the mission environment becoming increasingly complex and dynamic, multiple
unmanned aerial vehicles (UAVs) have been used to form a cooperative combat system
with complementary advantages and cooperation to enhance the overall combat capability
of UAVs [1]. UAV swarm systems are inspired by swarm intelligence derived from the
biological swarm behavior in nature such as the behavior of ants and bees, which is coor-
dinated and controlled according to the swarm intelligence principle, making full use of
local perception and interaction ability to complete relatively complex tasks. Meanwhile,
as the number of UAVs increases, their computational and communication complexity
will increase dramatically. Moreover, a UAV swarm has high requirements for system
robustness, communication reliability, and capacity. Distributed control architecture em-
ploys an autonomous and cooperative method, breaking down complex issues into smaller
sub-problems that can be addressed by individual nodes. This approach maximizes the
independent abilities of each UAV and significantly enhances the computational efficiency
and is widely used in search and rescue (SAR) [2], surveillance [3], civil security [4], search-
ing [5–7], task allocation [8], and mapping [9] applications.

In the above tasks, the problem of path planning is crucial to ensure the safe and
efficient completion of a particular task. In general, path planning issues associated with
UAV flight can be categorized into two types: target-oriented issues and area coverage
issues. In target-oriented problems, the objective is for the UAV to arrive at a designated
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target [10]. For instance, in a dynamic environment, UAVs may need to reach different
targets for various purposes while resolving conflicts. In contrast, area coverage problems
do not involve a specific destination, and the goal is typically to achieve full coverage of a
designated area in the least amount of time possible [11]. Considering that in collaborative
search and surveillance mission-planning problems, the UAV is not knowledgeable about
the mission environment or the a priori state of the target, we mainly considered the study
of the area coverage. In practical applications, monitoring missions that do not involve a
ground control station can be quite complex. The control logic of an individual UAV must
be meticulously designed to allow for smooth and autonomous switching between various
operating modes such as search mode and continuous target-surveillance mode.

Existing research on multi-UAV collaborative search problems has focused on geometry-
based methods, probability-based methods, and other related methods. The geometry-
based approach focuses on individual UAV planning, integrating area decomposition, and
task assignment algorithms to accomplish a multi-UAV coverage search of the area. Xu
et al. [12] put forward an optimal terrain coverage algorithm for UAV mission areas. This
offline method segments the open space into several cells and calculates the full-coverage
motion path that connects these regions, generating coverage of the deployed sensor by
solving a linear programming formulation. The authors of [13] divided the task area into
several equal sub-regions, each corresponding to a specific robot, to ensure complete cov-
erage while minimizing the coverage path. Mansouri et al. [14] addressed the problem
of infrastructure inspection tasks by developing a theoretical framework that slices the
infrastructure through the XOY plane to facilitate the identification of branches and provide
each UAV with a path to achieve full infrastructure coverage. Choi et al. [15] used this
method to consider the energy required by a UAV in different phases of flight, and for the
problem of covering multiple regions with regular shapes, it was reduced to a traveling
sales problem (TSP) with the goal of completely covering all regions with the shortest path.
Although the geometry-based approach to planning offers benefits such as no omissions, a
low repetition rate, and high reconnaissance efficiency, its centralized and offline nature
represents a limitation of this approach in dynamic environments. If a UAV fails or the
detection environment shifts, the entire team must execute a replanning process, resulting
in significant computational cost.

The probability-based approach can assist UAVs in developing cooperative search
strategies. With a probabilistic model characterizing the uncertainty of the unknown
environment, UAVs can continuously sense the environment and update the probability
map, thereby effectively using real-time detection information for online decision making,
which is applicable to dynamic search processes. Takahiro et al. [16] investigated time-
constrained multi-intelligent search and action problems. They used probability density
maps and a time–cost-based reward prediction function to evaluate actions. Multiple agents
can make near-optimal decisions, leading to maximum gains using probabilistic reasoning.
Zhen Ziyang [17] introduced a collaborative mission-planning scheme for multiple UAVs
using a hybrid artificial potential field and ant colony optimization (HAPF-ACO) method
for UAVs to search for and attack moving targets in uncertain environments. Zheng
et al. [18] proposed a biogeographically based optimization (BBO) method to minimize
the expected time for aid workers to reach a target in response to the problem of human–
UAV cooperative search planning and conducted experiments showing that the proposed
algorithm was superior to many popular algorithms. Duan [19] proposed a dynamic
discrete pigeon-inspired optimization (D2PIO) algorithm to handle cooperative search-
attack mission planning for UAVs and achieved promising experimental results. However,
probability-based path optimization methods are still subject to problems such as missing
search targets and long search times. For example, the greedy strategy is short-sighted
and only focuses on the largest value of the objective function in the current candidate
raster (i.e., it only considers the information of a single raster or a single point) without
considering the information of the whole region. Therefore, the frequently adopted greedy
strategy generates duplicate paths and missing regions, and the whole search process
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may easily fall into local optimality, leading to decreased search efficiency as the task
progresses. Furthermore, reinforcement learning (RL) has garnered increasing interest from
researchers for search problems. By planning each UAV’s navigation trajectory, the problem
of autonomous UAV navigation in extensive, complex environments has been tackled,
treating it as a Markov decision process, and the problem of autonomous UAV navigation
in large-scale complex environments has been solved by planning the navigation trajectory
of each UAV, which is described as a Markov decision process [20,21]. However, these
methods require a priori determination of the degree of impact of previous policies in
different training phases and often require a large number of calculations, which may not
be suitable for real-time systems.

In addition, different strategies have been adopted in target reconnaissance missions
according to specific tactical needs. Three typical applications of tactical intent in recon-
naissance missions can be specified: (1) UAVs converge to the vicinity of the target in a
short period of time for follow-on fire operations [17]; (2) UAV swarms chase and round up
the target in a hunting manner [22]; (3) UAVs converge quickly to the vicinity of the target
and maintain surveillance continuously until the target is no longer functional [3]. For the
third tactical requirement, in this paper, we propose a distributed autonomous cooperative
mission-planning (DACMP) method in the mission scenario of the search and reconnais-
sance of targets by a heterogeneous UAV swarm, which enables the UAV swarm to achieve
the reconnaissance of targets while still maintaining the optimal search capability.

Therefore, the main contributions of this paper can be summarized as follows:
(1) A DACMP method is initially presented for the search and surveillance of time-

sensitive moving targets in an uncertain dynamic environment by considering the con-
straints of maneuverability, collision avoidance, and threat avoidance. To the best of our
knowledge, this DACMP method has not been explored in the literature to date.

(2) This distributed method allows heterogeneous UAVs to adaptively switch between
area coverage and target surveillance missions, ensuring that each target is continuously
monitored by a suitable UAV while still maintaining the optimal search capability of the
entire UAV swarm for other potential targets or to handle special situations.

(3) Inspired by the successful use of image pyramids in computer vision, we developed
a grid map pyramid to represent the environment. This grid graph pyramid-based heuristic
enables a multiscale view of the environment, which can prevent the search process from
getting stuck in local optima, thus enhancing the search efficiency of the UAV swarm.

2. Cooperative Search and Surveillance Problem Description

In this section, the cooperative search and surveillance mission is modeled, and the
mission environment is established. The search and surveillance mission-planning problem
is defined, and the constraints of the model are provided.

2.1. Hybrid Mission-Planning Architecture and Assumption

Multi-UAV cooperative search and surveillance mission planning is a complex opti-
mization problem with the aim of discovering and monitoring as many targets as possible
under various constraints. As previously stated, our research focused on a group of hetero-
geneous fixed-wing UAVs performing search and surveillance missions in an unknown
region. Assume that:

1. UAVs are equipped with optical sensors that have a fixed detection range and are
projected in a circle;

2. The UAVs do not have any a priori knowledge of the threat and target location;
3. Two different types of heterogeneous UAVs with different maximum speeds are

employed. We believe that higher-speed UAVs have better search capabilities and are
better-suited for search missions, whereas lower-speed UAVs are more suitable for
continuous surveillance missions after the target has been detected;

4. Each target only needs to be monitored by one UAV, and other UAVs are encouraged
to conduct more exploratory movements to find other potential targets;
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5. The maximum speed of the target is lower than the speed of the UAV to ensure
surveillance efficiency.

At the beginning of the mission, the UAVs are deployed in the mission area, and
each UAV performs a coverage search of the area following a real-time online planned
path, as shown in Figure 1. The aim is to discover as many targets as possible. Each
UAV maintains a probabilistic grid map in the form of locally stored data. The UAVs then
heuristically evaluate candidate solutions and make the next state-shifting decision within
the performance constraints. Once the target is detected, UAVs within the target’s sphere
of influence are flexible in adaptive mission allocation, with low-speed UAVs maintaining
continuous detection of the target, whereas high-speed UAVs are better-suited to continue
searching for other potential targets. By planning the next waypoint of the UAVs, the search
and surveillance efficiency of the UAV swarm is maximized during the mission, resulting
in improved execution performance.
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Figure 1. Illustration of a search and surveillance mission performed by the UAV swarm.

2.2. Cooperative Search and Surveillance Model of the UAV Swarm

The status of the UAV swarm is defined as:

χ = {x1, x2, . . . , xi, . . . , xN} (1)

xi = [x y v θ]T (2)

where xi is the state of UAV i, and N is the number of UAVs. The purpose of cooperative
search and surveillance of the UAV swarm is to cover the mission area and detect and
monitor multiple targets while adhering to the given constraints. The objective function of
this problem is defined as follows:

V∗ = argmax
V

(J(χ))

s.t. C ≤ 0
J(χ) = JS(χ) + JT(χ)

(3)

where V is the decision input, which represents the waypoints of the UAV swarm in the
next iteration; C represents a set of constraint items; JS(χ) represents the search benefit for
the whole area of the UAV swarm; JT(χ) represents the surveillance benefit of the UAV
swarm, which can be defined as follows:

T(χ) =
M

∑
m=1

valuem (4)

where valuem is the value of the target m, and M is the number of targets monitored by the
UAV swarm.
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For the distributed control structure, each sub-UAV is equipped with a processor to
build its own solution so that the centralized search-track mission planning indicator can
be transformed into a distributed form:

V∗i = argmax
Vi

(Ji(χ))

s.t. Ci ≤ 0
Ji(Xi) = ωi JSi(xi, x̂i) + (1−ωi)JTi(xi)

(5)

where x̂i represents the set of neighboring UAVs under the same communication topology,
and ωi is a Boolean variable, ωi = 1 means that UAV i is performing the search task;
otherwise, UAV i is performing a surveillance task. The global objective function J(χ) can
be achieved by summing the local objective functions generated by each UAV:

J(χ) =
N

∑
i=1

(ωi JSi(xi, x̂i) + (1−ωi)JTi(xi)) (6)

The specific form of JS(χ) relies on the way the environment is modeled.

2.3. Uncertainty Map Model of The Environment

Due to the time-varying nature of the mission area, the characteristics of the target
should be taken into consideration when modeling the environment. Considering that
the target may move to the previously detected area, the environment was modeled using
a time-varying uncertainty map [23] to ensure that the UAV swarm completes the tasks
of search and tracking of all targets. Each UAV maintains an uncertainty map, which is
divided into a two-dimensional probabilistic grid map {q11, q12, . . . , qHW}. According to
the prior information of the mission, the uncertainty of a grid is expressed as follows:

qhw = 1− e−τvt (7)

where t is the time elapsed since the last search. The uncertainty of a grid indicates the
probability that it contains a hiding target, which depends on how long it has been since it
was last detected and the prior mobility of the target. When t = 0, the grid is within the
current detection radius of the UAV, and the uncertainty of the grid is zero. The uncertainty
of the grid increases over time, and the rate of change is determined by the memory factor
(τv), which depends on the prior velocity (v) of the target. The uncertainty map for a single
UAV over time is shown in Figure 2. In the search process, the uncertainty of the area that
has not been detected is high, and the uncertainty within the UAV detection radius is 0. The
uncertainty of the searched area gradually increases with time to achieve effective return
visits to the searched area by the UAV in the long search process and timely follow-up of
the mission area situation. The aim of the UAV swarm searching the map is to increase the
certainty of the map. The more uncertain the map’s subtractions, the more aware the UAV
swarm is of its environment, and the fewer places the target can hide. The surveillance
coverage ratio indicates how certain the UAV swarm is about the mission area, which is
calculated as the sum of the uncertainty of all grids [24]:

JS(χ) = 1−
H

∑
h=1

W

∑
w=1

qhw
HW

(8)

where H,W indicates the size of the origin grid map.
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2.4. Constraints of the Cooperative Planning Problem

The main constraints of multi-UAV flight path planning include dynamic constraints,
collision avoidance constraints, threat avoidance constraints, and communication con-
straints, which are described as follows.

2.4.1. Dynamic Constraints

When carrying out a search mission, a fixed-wing UAV usually moves on a horizontal
plane. The motion model can be simplified to a particle’s motion on a two-dimensional
plane without considering the size of the UAV.[ .

x
.
y

]
= v

[
cos θ
sin θ

]
(9)

[ .
v
.
θ

]
=

[
a
ω

]
(10)

where [x y]T is the position of the fixed-wing UAV in flight profile, and θ is the heading
angle. For fixed-wing UAVs, the linear acceleration (a) is restricted by engine performance,
and its speed (v) is affected by air:

Ca : |a| − amax ≤ 0
Cv : vmin − v ≤ 0, v− vmax ≤ 0

(11)

The turning angular velocity is expressed by ω = v
r , where the turning radius (r)

should be larger than the minimum turning radius (rmin).

Cr : rmin − r ≤ 0 (12)

2.4.2. Collision Avoidance Constraints

Considering flight safety, the distance (duav) between UAVs should be longer than the
minimum distance (dmin) to avoid colliding:

Cduav : dmin − duav ≤ 0 (13)

2.4.3. Threat Constraints

In general, the mission area contains numerous threats, which have a negative impact
on the mission execution of UAVs. Therefore, UAVs must avoid threats while carrying out
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missions. The distance (dthreat) between a UAV and the threat should be longer than the
threat radius (RT), which can be expressed as:

Cc : RT − dthreat ≤ 0 (14)

3. Design of DACMP
3.1. Model Solving

Inspired by the foraging behavior of birds, PSO is a technique with many key advan-
tages that has been widely used in path planning for multiagent navigation [25–27]. Two
important characteristics of PSO are related to swarm intelligence, namely, cognition and
social coherence, which allow each particle of the population to search for solutions by
following individual and group experiences rather than using traditional evolutionary
operators such as mutation and crossover [25]. Therefore, compared with other algorithms,
the PSO algorithm has advantages in terms of computational efficiency and stable solution
convergence [28]. Moreover, PSO is not considerably affected by changes in the initial con-
ditions and the objective function, and can adapt to various environmental constructions
with a small number of parameters [29].

Suppose that N UAVs are performing a cooperative search and surveillance mission,
and each UAV corresponds to a particle population composed of M particles, which
represent a possible solution. Each particle can be regarded as a searching individual with
a certain flight speed and direction in n-dimensional search space, and the current position
of the particle is a candidate solution to the corresponding optimization problem. Particles
are randomly initialized within the blue circle outside the detection radius (Rs), as shown
in Figure 3. The particle moving to the optimal position changes its state by referring to its
previous optimal experience and the experience of other individuals in the swarm.
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To avoid early convergence to a local optimum and further improve the performance
of the PSO, the algorithm is improved. First, the initial values of the control variables obey
a normal distribution, traversing the allowed range. Second, according to the literature [30],
inertia weight (ω) and cognitive and social coefficients (c1, c2) are introduced, which
decrease linearly with each iteration. Finally, a random value (Q) is added to the position
update formula, expressed by:

zt+1
kd = zt

kd + ∆zt
kdQ (15)

where zt
kd and ∆zt

kd are the position and position increment vectors of particle k in the d-th
dimension, respectively.
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3.2. State Transfer

The state transfer of a UAV is used to evaluate the quality and feasibility of each
particle, and the objective value (J(χ)) is maximized by a reasonable design of the state
transfer function. We abstract the motion environment of the UAV swarm as a potential
field, and the potential field value ( f (k)) is used to measure particle k. In the search process,
the higher the uncertainty in the region, the greater the search gain of the UAV and the
more the UAV tends to move to that region, so the effect of the uncertainty map on particle
k is modeled by the attraction potential value ( fs(k)). When the target appears within
the detection range of the UAV, the target generates an attractive potential field for the
particles corresponding to the UAV within its influence range, thereby converging the
UAV’s waypoints toward the target. In order to ensure that a target is monitored by only
one UAV, the competing repellent potential values between UAVs are also considered so
that the potential value received by particle k of a UAV within the target influence range is
represented as ft(k). The total potential value ( f (k)) of a particle can be described as:

f (k) = fs(k) + ft(k) (16)

3.2.1. Construction of Pyramid Map

When a UAV performs a search mission, the goal is to reduce the uncertainty in the
mission area to maximize the probability of the detection of the target. Therefore, UAVs
tend to fly to locations with high uncertainty. However, a single level of an uncertainty
map is not enough to represent the whole information of the mission area. Information at
different scales also contributes to the understanding of the environment. With the aim of
obtaining a larger global view, the image pyramids initially used in computer vision were a
series of images arranged in a pyramid shape with gradually decreasing resolution from
the same original image.

Inspired by its successful use in computer vision, a map pyramid was constructed for a
better understanding of the mission area. The map pyramid is a multiscale representation of
maps, which is an effective structure with simple concepts to interpret maps with multiple
resolutions for a better understanding of the task area. The best-known hierarchical
structures are Gaussian [31] and Laplacian pyramids [24]. The pyramid model is one of
the most intuitive multiscale descriptions of the signal and generally consists of two steps:
first, the map is smoothed by a Gaussian filter; then, the smoothed map is sampled or
interpolated to obtain a sequence of scaled-down or scaled-up maps, as shown in Figure 4.
Each level of the map in the sequence is the result of the sampling of every other row and
column after Gaussian filtering of the previous level of the map. That is,

Gl(α, β) =
2

∑
m=−2

2

∑
n=−2

w(m, n)Gl−1(2α + m, 2β + n) (17)

where Gl(α, β) is the map of the l-layer Gaussian pyramid; G0 is the original map as the
lower layer of the Gaussian pyramid; w(m, n) = h(m) · h(n) is an m× n window function
with low-pass property; h(m) is the Gaussian density distribution function that satisfies
the following constraints: normalization, symmetry, parity term, and other contribution
terms. Then, a typical 5 × 5 window function w(5, 5) can be expressed as follows:

w(5, 5) =
1

256


1 4 6 4 1
4 16 24 16 4
6 24 36 24 6
4 16 24 16 4
1 4 6 4 1

 (18)
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Thus,G0, G1, ..., GL form the Gaussian pyramid of the uncertainty map.
To prevent the waypoints from falling into local optima during the search process, we

used information from each layer of the map to construct an attractive potential function,
which can be expressed as:

fS,l(k) =

L
∑

l=1
λl P(Xk

i (t), l)

1 +
(

D(xi(t),Xk
i (t))−Rsearch

i
Rsearch

i

)2 (19)

where P(Xk
i (t), l) is the uncertainty that the potential target exists in the same region as

particle k in the l-th level of the map pyramid at moment t. Regions with high uncertainty
should have a higher search priority. λl is a weight used to balance the uncertainty of each
layer, and Rsearch

i is the detection radius of UAV i. A Dubins path (D(xi(t), Xk
i (t))) is used

to measure the distance from particle k to UAV i.
fS,l(k) describes the local potential field of the UAV; therefore, knowledge of the

environment is still short-sighted. In order to further improve the global search capability
of the UAV, an area with high uncertainty and that could be reached by the current UAVs
in the next phase in the whole area was detected in the upper layer of the pyramid. Taking
the seven-layer pyramid as an example, the seventh layer of the pyramid divided the map
into 4 x 4 sub-areas. The center point of the area with the highest uncertainty among the
eight areas adjacent to the current UAV was selected. The attractive field function of the
global guidance point of particle k is expressed by:

fs,g(k) =
1

1 + e
θ(P(x,y),xi(t),x

k
i (t))

π

(20)

Figure 5 shows a larger view of the global guideline (P(x, y)) represented by the
center of the nearby area. θ(P(x, y), xi(t), xk

i (t)) is the angle among the position of the
global guideline (P), UAV i, and particle k, which causes the optimized waypoint to be
more inclined to the direction of the global guideline and guides the UAV to search in the
direction of the high-uncertainty region, thereby improving the search efficiency.

fS(k) = η fS,l(k) + (1− η) fS,g(k) (21)

where η is the balancing factor and is usually set to 0.5 to maintain a balance between the
local and global information.
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3.2.2. Distributed Adaptive Target Allocation Approach

When the UAVs detect one or more targets, the targets have an attractive effect on
the particles within their sphere of influence, guiding the UAVs toward the targets and
maintaining surveillance on them. The attraction potential value of the target to particle k
is expressed as follows:

ft,att(k) =


M
∑

m=1

ωt,i
d(Xk

i (t),gm(t))vmax
i vmax

i
i f (d(Xk

i (t), gm(t)) < Di)

0 else
(22)

where ωt,i is the weight of an attractive potential item; gm(t) is the state of target m at time t;
d(Xk

i (t), gm) denotes the distance between the particle k and target m; vmax
i is the maximum

velocity of UAV i. Di is the maximum radius of influence of the target on UAV i. As shown
in Figure 6, both the high-speed UAV1 and the low-speed UAV2 were within the range of
influence of the target. Because the high-speed UAV is more suitable for area exploration
and the low-speed UAV is more suitable for maintaining continuous surveillance of the
target, the low-speed UAV had a larger range of influence and was more vulnerable to the
target than the high-speed UAV.
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When more than one UAV is within the scope of the target, the exclusion behavior
between UAVs is introduced. The UAV swarm is encouraged to perform more exploration
actions while ensuring that one target is scouted by one UAV, preventing UAVs from
clustering in a small group, therefore searching for all targets faster. The corresponding
repulsive field value of particle k is expressed as:

ft,rep(k) =

 −
N
∑

j=1,j 6=i

ωr,i
d(Xk

i (t),xj(t+1))vmax
i vmax

j
i f both in the scope o f target

0 else
(23)

where ωr,i is the weight of the repulsive potential item, and d(Xk
i (t), xj(t + 1)) denotes the

distance between particle k of UAV i and the waypoint of UAV j at the next moment (t + 1).
Therefore, the potential energy function combining the target and other UAV effects is:

ft(k) = ft,att(k) + ft,rep(k) (24)

According to the different motion characteristics of the UAVs, we can adjust the values
of ft,att and ft,rep to meet the task assignment requirements. Figure 7 depicts a case of
two heterogeneous UAVs competing for a target. Assuming that a high-speed UAV with
greater search capability detects the target first, if there is no low-speed UAV within the
target range, the high-speed UAV maintains surveillance of the target, and if a low-speed
UAV appears within the target range, the integrated potential energy field of the nearby
low-speed UAV changes at this time. To make the high-speed UAV with higher search
capability continue to explore the potential target and the lower-speed UAV maintain
surveillance of the target, the attractive potential value of the target to the particle of the
low-speed UAV should be greater than the repulsive potential value of the high-speed
UAV to the particle of the low-speed UAV. Then, the integrated potential field guides the
low-speed UAV toward the target; this inequality can be achieved by adjusting ωt and ωr
as follows:

ωt,low

vlow
max

>
ωr,low

vhigh
max

(25)
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Figure 7. Analysis of the motion and force situation of a low-speed UAV and a high-speed UAV
during mission exchange: (a) UAV 1 detects the target and maintains surveillance; (b) the particle
swarm of UAV 2 converges to the position of the target; (c) after UAV 2 moves to the vicinity of the
target and UAV 1, the repulsive value on the particles of UAV 1 is greater than the attractive value,
and its particle swarm no longer converges to the position of the target, thereby relieving surveillance
of the target; (d) after a period, UAV 1 maintains surveillance of the target, and UAV 2 leaves the
target area and continues area exploration.
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When the low-speed UAV moves near the target, the attractive potential value of the
target to the particle of the high-speed UAV should be lower than the repulsive potential
value of the low-speed UAV to the particle of the high-speed UAV:

ωt, high
vlow

max
<

ωr, high

vhigh
max

(26)

Then, the integrated force field leads the particle swarm of the high-speed UAV away
from the target and back to the search state. The result is the same when the low-speed
UAV finds the target first.

Assuming that two UAVs are isomorphic, to prevent multiple UAVs from tracking a
target at the same time, the repulsive potential value between the particles of the isomorphic
UAVs should be greater than the attractive potential value of the target to them:

ωt,i < ωr,i (27)

3.2.3. Local Planning Module Based on APF

Appropriate control sequences should be provided to the UAV to ensure that it can
reach the next optimal track point quickly and safely. In a dynamic and uncertain en-
vironment, the main challenge associated with this problem is to plan and execute an
inflation-free path. In recent years, the method based on APF has shown considerable po-
tential in path planning in highly dynamic environments due to its rapidity and simplicity.

The next optimized waypoint generates a gravitational field (Uatt) with the APF
method, which causes the UAV to approach the next waypoint by applying a gravitational
force (Fatt) to the UAV. Based on the real-time waypoints ( fi(X)) of UAV i, the attraction
field is expressed as:

Uatt,i = katt · fi(X) (28)

where katt > 0 represents the gravitational coefficient. The gravitational force is the gradient
of the gravitational potential field, which can be expressed as:

Fatt,i(X) = ∇Uatt,i(X) (29)

The UAV may encounter no-fly zones that need to be avoided to ensure safety. Assum-
ing that the threat is a circle, based on the APF method, the threat area creates a repulsive
force field, keeping the UAV away from the threat area. The repulsive force of threats can
be obtained by:

FT
rep,i =

 krep · ∑
e∈S

( 1
‖xie‖2 − 1

(dt
max,e−d0)

2 ) · x̂ie, ‖xie‖2 ≤ dt
max,e

0, ‖xie‖2 > dt
max,e

(30)

where krep is the repulsion coefficient, and S is the threat set. xie is the position vector of the
detected e-th threat pointing to the i-th UAV, x̂ie = xie/‖xie‖. dt

max,e represents the influence
radius of the e-th threat’s repulsion field. d0 is the minimum safe distance between the UAV
and the threat center.

As the number of UAVs in the same airspace increases, the trajectories between UAVs
may appear to be close or even overlap in time and space during mission execution. To
ensure the safety of UAVs, we introduced repulsive fields between the UAVs [17]:

UV
rep,i =


N
∑

j=1,j 6=i

b

e
‖xij‖

c −e
‖xij‖min

c

, i f duav ∈ [dmin, dv
max]

0 else
(31)

where b and c are adjustable parameters that govern the magnitude and rate of change
of the repulsive field, respectively;

∥∥xij
∥∥ is the distance from UAV i to the UAV j; dmax
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represents the maximum operating distance of the repulsion field between the UAVs. The
repulsion force between the UAVs is:

FV
rep,i = −∇Urep,i =

N

∑
j=1,j 6=i

b
c
· 1

(e
‖xij‖

c − e
‖xij‖min

c )
2 e
‖xij‖

c ·x̂ij (32)

where x̂ij = xij/
∥∥xij

∥∥ is the unit vector pointing from UAV j to UAV i.

4. Experimental Analysis

To provide a comprehensive analysis of the DACMP algorithm presented in this paper,
a series of simulation experiments was conducted. The simulation platform consisted of a
desktop computer equipped with a 64-bit Windows 10 operating system, an Inter(R) Core
(TM) i5-8265u 1.6 GHz CPU, and 8 G of RAM. The experiment was conducted using C++14
programming language, and MATLAB was employed for the analysis of the experimental
results. In accordance with the information provided in Section 3, the procedural flow of
the simulation is shown in Figure 8.
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4.1. Experimental Parameters

The mission area was 50 km × 50 km, inside which both the UAVs and targets moved.
A seven-layer map pyramid with a 100 m × 100 m bottom resolution was used to model
the mission area. To verify the performance of the algorithm for heterogeneous UAVs in
a multi-target search and tracking scenario, two different types of UAVs were adopted.
We used the same kinetic model of the UAV to simulate the movement of the target and a
Wiener random process of acceleration. The information on the UAVs and targets is shown
in Table 1.
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Table 1. Parameter setup of the UAVs and targets.

Parameter UAV Target

Type A B /

Speed 30~50 m/s 60–90 m/s 0–20 m/s

Linear acceleration ±0.4 m/s2 ±0.6 m/s2 ±0.4 m/s2

Maximum bank angle 30◦ 20◦ /

Detection radius 1.5 km 2 km /

ωt 5.0 2.0 /

ωr 5.1 2.1 /

D 10 km 4 km

4.2. Comparison with the Search Model

Given that our method is an online, real-time, and distributed approach, it is suitable
for comparison with other probability-based methods. For this purpose, we selected
the basic but effective greedy strategy as the benchmark for comparison. To analyze
the performance of the DACMP algorithm in the search process, we conducted a set of
experiments and compared our heuristic strategy with the greedy strategy. The advantages
of the two methods were analyzed by comparing two metrics: the coverage of the region
and the number of targets searched. We used average values to estimate the performance
of the two strategies after 30 executions.

Assuming that six type-B UAVs search for 14 targets in the mission area without
considering threats, the initial positions of the UAVs were (0, 20) km, (0, 22) km, (0, 24) km,
(0, 26) km, (0, 28) km, and (0, 30) km. We believed that the target information was captured
without further surveillance if the target appeared in the UAV’s field of view, and the UAV
then continues to search for the remaining targets.

The trajectories of the UAV swarm for a regional search task guided by two methods
are shown in Figure 9 under the same initial conditions. The colored curves and dots
represent the path and current position of each UAV, respectively. The black dashed line
indicates the path of the target. Figure 9a shows the coverage path of multi-UAVs using
the greedy strategy. The multiple UAVs can complete the target search of the region, but
only the uncertainty of the current position of the candidate solution is considered in the
optimization process, which can easily cause the whole search task to fall into the local
optimum and lead to the repeated search of UAVs in a small area. Figure 9b shows the
coverage path of multiple UAVs based on the DACMP heuristic strategy, which considers
not only the uncertainty of the current candidate raster but also the uncertainty of the
region near the raster as well as the directional guidance of the urgent region to be searched.
The pursuit of long-term optimality enables the UAV to choose a better path to search
the region, thereby improving the overall search coverage. The path of the UAV is evenly
distributed in any part of the region.

Figure 10 displays the mission area coverage rates and the numbers of searched targets
under the two methods. The proposed DACMP algorithm demonstrated better mission
execution efficiency compared to the greedy strategy. As shown in Figure 10a, the mission
area coverage rates of the greedy strategy and DACMP algorithm were roughly the same in
the early stage. With an increase in the number of iterations, the advantage of the DACMP
became increasingly apparent.
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gets searched.

To ensure reliability, we carried out 30 simulations of the two methods to better analyze
the performance. As shown in Figure 11, the simulation time of each method was 2000 s.
The results showed that the average coverage area under the greedy strategy was 0.712,
with 12.1 targets searched. The DACMP algorithm could search for 13.7 targets, and the
average area coverage was 0.763. Therefore, our method has a significant advantage in
terms of the number of searched targets and the coverage region.
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4.3. Mission Execution Analysis

Organizing UAVs for collaborative search and surveillance missions under various
constraints is a challenging task, particularly in complex environments with threats. To
assess the feasibility and effectiveness of the proposed method, three cases were established.
Case 1 and Case 2 were designed as non-threatening and threatening scenarios, respectively,
to verify the feasibility and reliability of the proposed method. Case 3 builds on Case 2 by
adding a new UAV in the middle of the mission to illustrate the scalability and adaptability
of the solution.

Case 1: Three UAVs were deployed into the mission area, which contained two targets
dispersed in a threat-free environment. UAV 1 and UAV 2 are high-speed UAVs with initial
positions of (20, 22) km and (36, 22) km, with a low-speed UAV (3) located at (10, 22) km.
Figure 12a–c represents multiple UAVs performing missions at different moments. As
shown in Figure 12a, UAV 1 detected target 1 first, at which time the particles gradually
converged to the position of target 1 under the effect of the attractive field, thereby guiding
UAV 1 to fly toward target 1. Figure 12b shows that the low-speed UAV (3) within the
sphere of influence of target 1 flew toward target 1 because its particles were more attracted
to the target than repelled by UAV 1. When UAV 3 reached the vicinity of target 1, the
particles of UAV 1 were subjected to a repulsive potential value greater than the attractive
potential value, and UAV 1 automatically left target 1 to undertake the search task. As
shown in Figure 12c, UAV 1 passed through the range of influence of target 2 while
searching, but because UAV 2 maintained surveillance of target 2, UAV 1 was not disturbed
by the attraction of the target and continued to search because the repulsive potential value
among the isomorphic UAVs to which the particles of UAV 1 were subjected was greater
than the attractive potential value of the target to the particles, so the nearest UAV could
prioritize its own surveillance relationship with the target and avoid the entanglement of
multiple isomorphic UAVs to one target, leading to a reduction in the search capability of
the UAV swarm. Figure 12d shows the distance calculation results of multiple UAVs and
target 1. This experiment shows that the proposed algorithm can make the UAVs adaptively
switch between search and surveillance tasks according to their own capabilities so that
the whole UAV swarm can reach the optimal search and surveillance state. In this case,
the proposed algorithm can accomplish the distributed target assignment task quickly and
efficiently without threats, which validates the basic feasibility of the proposed approach.
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Case 2: Ten UAVs were deployed into the mission area, with six targets scattered in
the environment and four threats. UAVs 1–5 are high-speed UAVs with initial positions of
(10, 1) km, (29, 1) km, (30, 49) km, (15, 49) km, and (39, 49) km, and UAVs 6–10 are low-speed
vehicles located at (20, 1) km, (35, 1) km, (5, 49) km, (23, 49) km, and (45, 49) km. Figure 13
represents multiple UAVs performing missions at different moments. Targets 4, 6, 1, 3, and
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2 were the first to be detected and were temporarily kept under surveillance by high-speed
UAVs 1, 5, 4, 3, and 2, respectively. Target 5 was detected and kept under continuous
surveillance by low-speed UAV 7. After the high-speed UAVs detected the targets, they
shared the target information with other UAVs through information interaction, and the
particles of the low-speed UAVs near the targets started to converge toward the targets
under the effect of the target attraction field. As shown in Figure 13b,c, UAV 9 flew toward
target 3, and the particles of UAV 3 were repelled by UAV 9, which canceled the surveillance
of the target and returned to search the area. The remaining high-speed UAVs (5, 4, and
1) also completed the mission transition with low-speed UAVs (10, 8, and 6, respectively).
In this process, the low-speed UAVs replaced the high-speed UAVs to monitor the target,
and the high-speed UAVs continued to search the area. The response result of the search
and surveillance task is shown in Figure 14. Figure 15 illustrates the task execution of
UAVs during the whole search and surveillance task-planning period. Figure 15 shows
the coverage rate during the execution of the task. In this case, the UAVs completed the
search and surveillance tasks while avoiding threats and adaptively completed the target
assignment, illustrating the practicality of the proposed method in complex environments.

Case 3: To further verify the scalability and adaptability of the DACMP algorithm to
the UAV swarm system, we added a new UAV in the process of mission execution in Case 2.
We assumed that a new type-B UAV (UAV11) was initially located at position (50, 25) km
and was added to the UAV swarm system at 300 s. The response result of the search and
surveillance task is shown in Figure 16, and the task allocation of the UAV swarm is shown
in Figure 17. As shown by the comparison of the coverage rate (Figure 18), the coverage
increased after the addition of the new UAV, and the new UAV quickly adapted to the UAV
swarm system and elevated the efficiency. Therefore, the multi-UAV system based on the
DACMP algorithm is flexible, stable, and expandable.
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5. Conclusions

In this paper, we proposed a novel distributed autonomous collaborative mission-
planning method for the multi-UAV search and surveillance mission-planning problem.
Satisfactory performance was achieved using grid pyramid time-varying uncertainty maps
to simulate environmental cognition and construct heuristic search strategies. By modeling
the effects of uncertain maps and targets on candidate solutions as potential field values,
an adaptive distributed mission assignment was enabled for multiple UAVs, maximizing
the area coverage capability of heterogeneous UAV swarms. Numerical simulation results
and analyses demonstrated that the proposed method could achieve fast area coverage and
dynamic task assignment under multiple constraints and is robust to the dynamic topology
of the UAV swarm.
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However, only two types of UAVs with area coverage search strategies were analyzed
in this paper. How to cope with more UAV types and more target types is a problem to
be considered in the future, and experiments will be conducted on the performance of the
algorithm in real scenarios.
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