A Modified Model-Free Adaptive Control Method for Large-Scale Morphing Unmanned Vehicles
Abstract
:1. Introduction
2. Fundamental Knowledge and Problem Formulation
2.1. Definition of Coordinate System
2.2. CFDL-MFAC Framework Formulation
2.3. PD-MFAC Algorithm Formulation
2.4. Problem Formulation
3. Modified Model-Free Adaptive Control Scheme Design
3.1. The Framework of the Control System
3.1.1. MMFAC Attitude Controller Design
3.1.2. Actuator Control Strategy Design
3.2. Stability Analysis
4. Simulations and Results
5. Conclusions
Author Contributions
Funding
Data Availability Statement
Acknowledgments
Conflicts of Interest
Appendix A
References
- Siefert, E.; Reyssat, E.; Bico, J.; Roman, B. Bio-inspired pneumatic shape-morphing elastomers. Nat. Mater. 2019, 18, 24–28. [Google Scholar] [CrossRef] [PubMed]
- Dayyani, I.; Shaw, A.D.; Flores, E.I.S.; Friswell, M.I. The mechanics of composite corrugated structures: A review with applications in morphing aircraft. Compos. Struct. 2015, 133, 358–380. [Google Scholar] [CrossRef] [Green Version]
- Wang, C.; Khodaparast, H.H.; Friswell, M.I.; Shaw, A.D.; Xia, Y.; Walters, P. Development of a morphing wingtip based on compliant structures. J. Intell. Mater. Syst. Struct. 2018, 29, 3293–3304. [Google Scholar] [CrossRef] [Green Version]
- Barbarino, S.; Bilgen, O.; Ajaj, R.M.; Friswell, M.I.; Inman, D.J. A review of morphing aircraft. J. Intell. Mater. Syst. Struct. 2011, 22, 823–877. [Google Scholar] [CrossRef]
- Chu, L.; Li, Q.; Gu, F.; Du, X.; He, Y.; Deng, Y. Design, modeling, and control of morphing aircraft: A review. Chin. J. Aeronaut. 2021, 35, 220–246. [Google Scholar] [CrossRef]
- Xu, D.; Hui, Z.; Liu, Y.; Chen, G. Morphing control of a new bionic morphing UAV with deep reinforcement learning. Aerosp. Sci. Technol. 2019, 92, 232–243. [Google Scholar] [CrossRef]
- Andersen, G.; Cowan, D.; Piatak, D. Aeroelastic modeling, analysis and testing of a morphing wing structure. In Proceedings of the 48th AIAA/ASME/ASCE/AHS/ASC Structures, Structural Dynamics, and Materials Conference, Honolulu, HI, USA, 22–26 April 2007; pp. 1734–1748. [Google Scholar]
- Kan, Z.; Li, D.; Shen, T.; Xiang, J.; Zhang, L. Aerodynamic characteristics of morphing wing with flexible leading-edge. Chin. J. Aeronaut. 2020, 33, 2610–2619. [Google Scholar] [CrossRef]
- Rodriguez, A. Morphing aircraft technology survey. In Proceedings of the 45th AIAA Aerospace Sciences Meeting and Exhibit, Reno, NV, USA, 8–11 January 2007; pp. 1258–1273. [Google Scholar]
- Xu, W.; Li, Y.; Lv, M.; Pei, B. Modeling and switching adaptive control for nonlinear morphing aircraft considering actuator dynamics. Aerosp. Sci. Technol. 2022, 122, 107349. [Google Scholar] [CrossRef]
- Ataei-Esfahani, A.; Wang, Q. Robust failure compensation for a morphing aircraft model using a probabilistic approach. IEEE Trans. Control. Syst. Technol. 2007, 15, 324–331. [Google Scholar] [CrossRef]
- Baldelli, D.H.; Lee, D.H.; Pena, R.S.S.; Cannon, B. Modeling and control of an aeroelastic morphing vehicle. J. Guid. Control Dyn. 2008, 31, 1687–1699. [Google Scholar] [CrossRef]
- Bao, C.; Wang, P.; Tang, G. Integrated method of guidance, control and morphing for hypersonic morphing vehicle in glide phase. Chin. J. Aeronaut. 2021, 34, 535–553. [Google Scholar] [CrossRef]
- Liu, C.; Zhang, S. Novel robust control framework for morphing aircraft. J. Syst. Eng. Electron. 2013, 24, 281–287. [Google Scholar] [CrossRef]
- Yan, B.; Dai, P.; Liu, R.; Xing, M.; Liu, S. Adaptive super-twisting sliding mode control of variable sweep morphing aircraft. Aerosp. Sci. Technol. 2019, 92, 198–210. [Google Scholar] [CrossRef]
- SEmami, A.; Castaldi, P.; Banazadeh, A. Neural network-based flight control systems: Present and future. Annu. Rev. Control 2022, 53, 97–137. [Google Scholar]
- Xiao, Y.; de Ruiter, A.; Ye, D.; Sun, Z. Attitude coordination control for flexible spacecraft formation flying with guaranteed performance bounds. IEEE Trans. Aerosp. Electron. Syst. 2022, 59, 1534–1550. [Google Scholar] [CrossRef]
- Hou, Z.-S.; Wang, Z. From model-based control to data-driven control: Survey, classification and perspective. Inf. Sci. 2013, 235, 3–35. [Google Scholar] [CrossRef]
- Shi, R.; Peng, J. Design of active disturbance rejection control system for morphing flight dynamics. In Proceedings of the 26th Chinese Control and Decision Conference (2014 CCDC), Changsha, China, 31 May–2 June 2014; pp. 1443–1448. [Google Scholar]
- Dong, C.; Liu, C.; Wang, Q.; Gong, L. Switched adaptive active disturbance rejection control of variable structure near space vehicles based on adaptive dynamic programming. Chin. J. Aeronaut. 2019, 32, 1684–1694. [Google Scholar] [CrossRef]
- Qi, P.; Zhao, X. Flight control for very flexible aircraft using model-free adaptive control. J. Guid. Control Dyn. 2020, 43, 608–619. [Google Scholar] [CrossRef]
- Iannelli, A.; Fasel, U.; Smith, R.S. The balanced mode decomposition algorithm for data-driven LPV low-order models of aeroservoelastic systems. Aerosp. Sci. Technol. 2021, 115, 106821. [Google Scholar] [CrossRef]
- Hou, Z.; Jin, S. A novel data-driven control approach for a class of discrete-time nonlinear systems. IEEE Trans. Control Syst. Technol. 2011, 19, 1549–1558. [Google Scholar] [CrossRef]
- Hou, Z.; Xiong, S. On model-free adaptive control and its stability analysis. IEEE Trans. Autom. Control 2019, 64, 4555–4569. [Google Scholar] [CrossRef]
- Ma, Y.S.; Che, W.W.; Deng, C.; Wu, Z.G. Distributed model-free adaptive control for learning nonlinear MASs under DoS attacks. IEEE Trans. Neural Netw. Learn. Syst. 2021, 34, 1146–1155. [Google Scholar] [CrossRef]
- Lu, C.; Zhao, Y.; Men, K.; Tu, L.; Han, Y. Wide-area power system stabiliser based on model-free adaptive control. IET Control Theory Appl. 2015, 9, 1996–2007. [Google Scholar] [CrossRef]
- Hou, Z.; Chi, R.; Gao, H. An overview of dynamic-linearization-based data-driven control and applications. IEEE Trans. Ind. Electron. 2017, 64, 4076–4090. [Google Scholar] [CrossRef]
- Xu, D.; Jiang, B.; Shi, P. A novel model-free adaptive control design for multivariable industrial processes. IEEE Trans. Ind. Electron. 2014, 61, 6391–6398. [Google Scholar] [CrossRef]
- Che, H.; Chen, J.; Wang, Y.; Wang, J.; Luo, Y. Data-driven model-free adaptive attitude control for morphing vehicles. IET Control Theory Appl. 2022, 16, 1696–1707. [Google Scholar] [CrossRef]
- Hou, Z.; Jin, S. Model Free Adaptive Control: Theory and Applications; CRC Press: Boca Raton, FL, USA, 2019. [Google Scholar]
- Wei, C.; Ju, X.; He, F.; Lu, B. Research on non-stationary control of advanced hypersonic morphing vehicles. In Proceedings of the 21st AIAA International Space Planes and Hypersonics Technologies Conference, Xiamen, China, 6–9 March 2017. [Google Scholar]
- Liu, K.; Wang, R.; Wang, X.; Wang, X. Anti-saturation adaptive finite-time neural network based fault-tolerant tracking control for a quadrotor UAV with external disturbances. Aerosp. Sci. Technol. 2021, 115, 106790. [Google Scholar] [CrossRef]
- Liu, K.; Wang, R.; Zheng, S.; Dong, S.; Sun, G. Fixed-time disturbance observer-based robust fault-tolerant tracking control for uncertain quadrotor UAV subject to input delay. Nonlinear Dyn. 2022, 107, 2363–2390. [Google Scholar] [CrossRef]
Coordinate | Notation | Orientation |
---|---|---|
Launching coordinate system | Initial position of the vehicle | |
Pointing to the terminal position, parallel to the local geoid surface | ||
Pointing upwards along the vertical plane | ||
Forming a Cartesian right-hand system with and | ||
Body-fixed coordinate system | Center of gravity of the morphing vehicle | |
Pointing to the nose direction in the symmetry plane of the vehicle | ||
Pointing upwards in the symmetry plane of the vehicle, perpendicular to the | ||
Forming a Cartesian right-hand system with and |
States | Values | States | Values |
---|---|---|---|
3.32 km/s | 5 deg | ||
0 m | 5 deg | ||
45 km | 5 deg | ||
0 m | 0 deg/s | ||
2 deg | 0 deg/s | ||
0 deg | 0 deg/s |
Method | Parameter | Value | ||
---|---|---|---|---|
Pitch | Yaw | Roll | ||
MMFAC | 0.01 | 0.05 | 0.05 | |
1 | 1 | 1 | ||
0.01 | 0.01 | 0.008 | ||
0.8 | 0.9 | 0.9 | ||
8 × 10−11 | 2 × 10−11 | 1 × 10−8 | ||
1 × 10−5 | 2 × 10−5 | 2 × 10−4 |
Method | Parameter | Value | ||
---|---|---|---|---|
Pitch | Yaw | Roll | ||
CFDL-MFAC | 0.5 | 0.5 | 0.5 | |
1 | 1 | 1 | ||
0.75 | 0.5 | 0.5 | ||
1 | 1 | 1 | ||
3.1 × 103 | 9.5 × 102 | 8 × 102 |
Method | Parameter | Value | ||
---|---|---|---|---|
Pitch | Yaw | Roll | ||
PD-MFAC | 0.5 | 0.1 | 0.1 | |
1 | 1 | 1 | ||
0.4 | 0.9 | 0.9 | ||
2 × 10−7 | 5 × 10−7 | 1 × 10−5 | ||
5 × 104 | 6.5 × 104 | 9 × 103 | ||
6.5 × 103 | 8 × 103 | 8 × 102 | ||
3.5 × 10−4 | 1.8 × 10−3 | 1.7 × 10−2 |
Case | Controller | Value | ||
---|---|---|---|---|
Case 1 | PD-MFAC | 0.0012 | 25.3916 | 0.1740 |
MMFAC | 0.0010 | 19.1274 | 0.1709 | |
Case 2 | PD-MFAC | 0.0012 | 27.4523 | 0.1899 |
MMFAC | 0.0010 | 21.2048 | 0.1868 |
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2023 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Che, H.; Chen, J.; Bai, G.; Wang, J. A Modified Model-Free Adaptive Control Method for Large-Scale Morphing Unmanned Vehicles. Drones 2023, 7, 495. https://doi.org/10.3390/drones7080495
Che H, Chen J, Bai G, Wang J. A Modified Model-Free Adaptive Control Method for Large-Scale Morphing Unmanned Vehicles. Drones. 2023; 7(8):495. https://doi.org/10.3390/drones7080495
Chicago/Turabian StyleChe, Haohui, Jun Chen, Guanghui Bai, and Jianying Wang. 2023. "A Modified Model-Free Adaptive Control Method for Large-Scale Morphing Unmanned Vehicles" Drones 7, no. 8: 495. https://doi.org/10.3390/drones7080495
APA StyleChe, H., Chen, J., Bai, G., & Wang, J. (2023). A Modified Model-Free Adaptive Control Method for Large-Scale Morphing Unmanned Vehicles. Drones, 7(8), 495. https://doi.org/10.3390/drones7080495