
Citation: Che, H.; Chen, J.; Bai, G.;

Wang, J. A Modified Model-Free

Adaptive Control Method for

Large-Scale Morphing Unmanned

Vehicles. Drones 2023, 7, 495.

https://doi.org/10.3390/

drones7080495

Academic Editors: Kai Liu,

Yongji Wang, Jia Song and Lei Liu

Received: 3 July 2023

Revised: 22 July 2023

Accepted: 25 July 2023

Published: 27 July 2023

Copyright: © 2023 by the authors.

Licensee MDPI, Basel, Switzerland.

This article is an open access article

distributed under the terms and

conditions of the Creative Commons

Attribution (CC BY) license (https://

creativecommons.org/licenses/by/

4.0/).

drones

Article

A Modified Model-Free Adaptive Control Method for
Large-Scale Morphing Unmanned Vehicles
Haohui Che 1, Jun Chen 2, Guanghui Bai 3 and Jianying Wang 1,*

1 School of Aeronautics and Astronautics, Sun Yat-Sen University, Shenzhen 518107, China
2 China Academy of Launch Vehicle Technology, Beijing 100076, China; chenjun1969119@163.com
3 Science and Technology on Space Physics Laboratory, Beijing 100076, China; baigh2019@163.com
* Correspondence: wangjiany@mail.sysu.edu.cn

Abstract: This paper investigates the attitude control problem for large-scale morphing unmanned
vehicles. Considering the rapid time-varying and strong aerodynamic interference caused by large-
scale morphing, a modified model-free control method utilizing only the system input and output
is proposed. Firstly, a two-loop equivalent data model for the morphing unmanned vehicle is
developed, which can better reflect the practical dynamics of morphing unmanned vehicles compared
to the traditional compact form dynamic linearization data model. Based on the proposed data
model, a modified model-free adaptive control (MMFAC) scheme is proposed, consisting of an
external-loop and an inner-loop controller, so as to generate the required combined control torques.
Additionally, in light of the aerodynamic uncertainties of the large-scale morphing unmanned vehicle,
a rudder deflection actuator control scheme is designed by employing the model-free adaptive control
approach. Finally, the boundedness of the closed-loop system and the convergence of tracking errors
are guaranteed, based on the stability analysis. Additionally, numerical examples are presented to
demonstrate the effectiveness and robustness of the proposed control scheme in the case of the effect
of large-scale morphing.

Keywords: attitude control; morphing vehicle; model-free adaptive control

1. Introduction

Recent years have witnessed the vigorous development of morphing unmanned ve-
hicles due to the advances in smart technologies, including structures, materials, sensors,
and actuators [1–3]. Typically, the concept of a morphing unmanned vehicle refers to the
unmanned vehicle with large scale shape changes or transfigurations [4–6]. Compared
to fixed-wing vehicles, the morphing vehicle can change its configuration to achieve op-
timal performance under multiple flight conditions, making it possible to fly in a wider
space/velocity envelope with greater maneuverability [7]. However, the strong time-
varying, nonlinear dynamic characteristics, and aerodynamic interferences during mor-
phing cause the attitude stabilization and control for morphing vehicles to become key
problems and impose significant challenges. Many experts and scholars are committed to
related studies and have made important progress in these areas [8–10].

The fast time-varying and strong aerodynamic interference caused by large scale
morphing suggest the requirements for controller design, and the adaptive and robust
requirements are becoming higher [11]. With respect to the uncertainties and disturbances
of the morphing process, robust control theories are widely used to improve the vigorous
performance of the current control system. Dario et al. [12] investigated the flight control
problem for a folding-wing vehicle subject to large-scale shape changes and proposed a
multiloop controller based on the robust control reduction technique linear quadratic output
feedback inner-loop controller and the linear parameter-varying outer-loop controller. The
simulation results showed that the robust controller successfully maintained the stability
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during morphing. Bao et al. [13] considered the integration of the guidance, control, and
morphing problem for a morphing vehicle with variable span wing. An adaptive dynamic
surface back-steeping control method with stability analysis was proposed to establish
the integrated system and attenuate the uncertain dynamics resulting from morphing.
Liu et al. [14] considered the trajectory tracking problem for the morphing vehicle in the
presence of model uncertainties. A novel robust control framework, including an adaptive
feedback control law and an adaptive control allocation law, was proposed to attenuate
the uncertain dynamics resulting from the wing shape change. Yan et al. [15] established
an explicit mathematical model of a wing-sweeping vehicle and designed a sliding mode
controller based on the adaptive super-twisting theory. The simulation results verified the
robustness of the proposed controller in the presence of disturbances during the morphing
process. Seen from the aforementioned works, the nonlinear robust control algorithms
can effectively improve the global stability and robustness of the system. However, it is
noticed that most of the nonlinear control algorithms are presented based on the explicit
and accurate nonlinear modeling of the morphing vehicle, which makes it more complex
to design and calculate the nonlinear control system. Additionally, the upper bound of
the model uncertainties and external disturbances are required for the robust nonlinear
controller design [16,17]. However, in practical engineering applications, it becomes more
difficult to obtain the accurate value of such an upper bound, due to the fast time-varying
aerodynamic characteristics and the great differences between ground prediction and
actual flight.

In this sense, data-driven control methods, which are designed by utilizing the in-
put/output (I/O) data of the system instead of the precise information of the mathematical
model [18], posess the inherent advantage of solving the above problems. Several popular
data-driven methods, such as active disturbance rejection control (ADRC) [19,20], model-
free adaptive control (MFAC) [21], and the balanced mode decomposition algorithm [22],
have been applied to the morphing vehicles, showing satisfactory performance for the mor-
phing vehicles with great model changes and model uncertainties. Among these methods,
MFAC shows the advantage of effective control performance with a simple structure, and
it is regarded as a preferred option for the control problem of complex nonlinear systems.

The essential idea behind MFAC is the establishment of a virtual equivalent data
model for the discrete nodes to express the relationship between the output data and input
data, updating the parameters of the data model using the online I/O data, and designing
the adaptive control law based on the derived data model [23–25]. Through the efforts
of many scholars, the MFAC method has been developed into a systematic and mature
control theory which is applied in many practical fields [26–28]. However, the original
MFAC algorithm, based on compact form dynamic linearization (CFDL) or partial form
dynamic linearization (PFDL) technology, cannot be directly applied to the flight control
problem of a vehicle, since the data models of CFDL and PFDL are not strictly applicable to
vehicles dynamics. In order to solve this inapplicability problem, Qi et al. [21] proposed a
novel controller cascading the PLDL-MFAC and a proportional-derivative (PD) controller
for a very flexible vehicle and achieved greater effective and robust performance in the
presence of uncertainties and disturbances. Che et al. [29] introduced the time series of
historical output data errors into control law to increase the damping effects, achieving
the convergence and stability analysis of the improved controller. From the above studies,
it can be concluded that increasing the damping of the controller is a viable approach to
solve the inapplicable problem. However, adding damping to the controller is a somewhat
indirect approach and may result in slowing down the convergence speed. Therefore, a
direct and more effective control approach is required to solve such a problem.

To this end, this paper develops a novel CFDL data model for the morphing un-
manned vehicle, including an inner loop and an external loop, which can better reflect
the dynamic characteristics of morphing vehicles. Then, a modified MFAC (MMFAC)
scheme based on the proposed data model is proposed to achieve a more efficient tracking
performance under fast time-varying and strong aerodynamic interference. Furthermore,
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considering the unknown aerodynamic data of the controlled vehicle, a rudder actuator
control scheme is designed using the CFDL-MFAC method. Finally, the stability analysis
of the resulting control system is provided. Moreover, the effectiveness and advantages
of the proposed control strategy are verified by numerical simulations for the large-scale
morphing unmanned vehicles.

The remainder of this paper is organized as follows. Section 2 reviews basic MFAC
control theories and formulates the data-driven attitude control problem for large-scale
morphing unmanned vehicles. Section 3 proposes the modified model-free adaptive control
method for large-scale morphing unmanned vehicles, including dynamic data modeling,
the inner/external loop attitude control, and the actuator control strategy design; the
boundedness of the closed-loop system and the convergence of tracking errors are also
guaranteed based on the stability analysis. The simulations and results of the proposed
controller are shown in Section 4, and conclusions are provided in Section 5.

2. Fundamental Knowledge and Problem Formulation
2.1. Definition of Coordinate System

In order to describe the position and attitude of the morphing vehicle, the reference
coordination systems, notation, and orientation are defined in Figure 1 and Table 1. In the
launching coordinate system, ϕ, ψ, and γ describe the Euler attitude angle, representing the
pitch angle, yaw angle, and roll angle, respectively. In the body-fixed coordinate system,
ωx1, ωz1, and ωy1 are the angular velocity of the roll, pitch, and yaw angle, respectively.
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Figure 1. Reference coordinate systems of the unmanned vehicle.

Table 1. Notation and orientation of the reference coordinate systems.

Coordinate Notation Orientation

Launching coordinate system
O− xyz

O Initial position of the vehicle

Ox Pointing to the terminal position, parallel to
the local geoid surface

Oy Pointing upwards along the vertical plane

Oz Forming a Cartesian right-hand system with
Ox and Oy
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Table 1. Cont.

Coordinate Notation Orientation

Body-fixed coordinate system
Ob − x1y1z1

Ob Center of gravity of the morphing vehicle

Ob
Pointing to the nose direction in the
symmetry plane of the vehicle

Obx1
Pointing upwards in the symmetry plane of
the vehicle, perpendicular to the Obxb

Oby1
Forming a Cartesian right-hand system with
Obx1 and Oby1

2.2. CFDL-MFAC Framework Formulation

The nonlinear single-input and single-output (SISO) system is described as follows:

y(k + 1) = f
(
y(k), . . . , y

(
k− ny

)
, u(k), . . . , u(k− nu)

)
(1)

where y(k) and u(k) are the output and input of the system, respectively, nu and ny are the
unknown orders, and f is an unknown nonlinear function.

Assumption 1. The partial derivatives of f with respect to the control input u(k)is continuous.

Assumption 2. The change of the system output is bounded and satisfies |∆y(k + 1)| ≤ φ|∆u(k)|
with φ being a positive constant.

Assumption 3. The sign of φ(k) remains unchanged at all times; k , namely, φc(k) > ε >
0 or φc(k) < −ε, where ε is a small positive constant.

Remark 1. In practice, the above assumptions are deemed reasonable and acceptable. Assumption 1
is commonly employed in control system design for general nonlinear systems. It provides a practical
and useful framework for modeling and analyzing complex nonlinear dynamic systems. Assumption
2 introduces an upper bound limitation on the change rate of the system output associated with
a change in the control input. From the ’energy’ standpoint, Assumption 2 can be interpreted to
mean that the change rate of the system’s energy is finite if the change in the control input energy is
constrained within a finite altitude [23]. In Assumption 3, the sign of φ(k) plays a crucial role in
determining the expected system output, which is similar to the concept of ‘control direction’ in the
model-based control theory [29].

Satisfying Assumptions 1~3, the nonlinear system can be equivalently expressed as
the following CFDL data model [30]:

∆y(k + 1) = φc(k)∆u(k), (2)

where φc(k) is a time-varying parameter called the pseudo-partial derivative (PPD).
Considering the control goal of tracking the desired signal with smooth control input,

the control performance index is defined as

Ju(k) = |y∗(k + 1)− y(k + 1)|2 + λ|u(k)− u(k− 1)|2, (3)

where y∗(k + 1) is the desired output state, and λ > 0 is a weighting constant.
To estimate the time-varying PPD φc(k), the performance function for the unknown

PPD estimation is given by

Jφc(k) =
∣∣∆y(k)− φ̂c(k)∆u(k− 1)

∣∣2 + µ
∣∣φ̂c(k)− φ̂c(k− 1)

∣∣2. (4)
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By minimizing the cost functions (3) and (4) with respect to u(k) and φc(k), respectively,
one can obtain the MFAC scheme as follows:

φ̂c(k) = φ̂c(k− 1) +
η∆u(k− 1)

µ + ∆u(k− 1)2 (∆y(k)− φ̂c(k− 1)∆u(k− 1)), (5)

φ̂c(k) = φ̂c(1), i f |φc(k)| ≤ ε or sign(φ̂c(k)
)
6= sign(φ̂c(1)

)
, (6)

u(k) = u(k− 1) +
ρφ̂c(k)(y∗(k + 1)− y(k))

λ +
∣∣φ̂c(k)

∣∣2 , (7)

where η and ρ are step factors with η ∈ (0, 1) and ρ ∈ (0, 1), and µ and λ are penalty factors
with µ > 0 and λ > 0. Equation (6) is the reset rule of PPD estimation, which is used to
facilitate the update of PPD.

2.3. PD-MFAC Algorithm Formulation

Under Assumption 3 of the original CFDL-MFAC theory, the sign of PPD φc(k) is
assumed to be unchanged. However, Assumption 3 is not feasible for the attitude control
problem of vehicles. For instance, for vehicles, when the time derivative of the y(k) is
negative, the value of y(k) would decrease, whether ∆u(k) is positive or negative, where
y(k) represents the attitude Euler angles, and u(k) represents the control torques. In this
regard, to ensure that the dynamic linear data model holds, the sign of the PPD parameter
must be opposite to the sign of the control input, while the time derivative of y(k) is less
than zero, which is contrary to Assumption 3 that the sign of PPD remains unchanged.
Similarly, Assumption 3 is not satisfying while the time derivative of y(k) is positive.
Therefore, the original CFDL data model cannot be directly employed to design the vehicle
controller for the attitude control problem.

Without modifying Assumption 3, introducing an extra damping effect into the data
model is a preferred approach to accommodate the MFAC method in the control problem of
vehicles. For instance, in Ref. [21], a proportional-derivative term including the derivative
of the system output is incorporated into the data model to obtain an appropriate dynamic
response as follows.

∆y(k + 1) = ξ(k)∆u(k) + |ξ(k)|(Ky∆y(k) + Kdy
∆y(k)− ∆y(k− 1)

T
) (8)

where Ky > 0, Kdy > 0, and T is the sample time.
Similar to the design process of the CFDL-MFAC controller, by minimizing the cost

function (3) and introducing the step parameters, the PD-MFAC method proposed in
Ref. [21] is obtained:

ξ̂(k) = ξ̂(k− 1) +
η1∆u(k− 1)

(
∆y(k)− ξ̂(k− 1)∆u(k− 1)

)
µ1 + |∆u(k− 1)|2

(9)

∆u(k) =
ρξ̂(k)(yr(k + 1)− y(k))

λ1 +
∣∣ξ̂(k)∣∣2 − sign(ξ̂(k))(Ky∆y(k) + Kdy

∆y(k)− ∆y(k− 1)
T

) (10)

It is noted that the PD-MFAC algorithm would be defined as a baseline controller for
comparison in the simulation to verify the effectiveness of the proposed control scheme.

2.4. Problem Formulation

A data-driven attitude control scheme for the large-scale morphing unmanned vehicle
is considered in this study. When the vehicle is subjected to large deformations in flight,
unmodeled dynamics and unpredictable model uncertainties are inevitable, which would
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limit the performance of model-based control methods. In order to solve this problem, this
paper aims to design attitude control laws for morphing unmanned vehicles using model-
free adaptive control theories, such that the morphing vehicles is able to track the reference
attitude angles and maintain stability in the absence of establishing mathematical models.

3. Modified Model-Free Adaptive Control Scheme Design
3.1. The Framework of the Control System

The control system is divided into the attitude control and actuator control, as shown
in Figure 2. In the attitude control design, a novel data model of the attitude dynamics of
morphing vehicles is presented, and a two-loop controller scheme is proposed to achieve
attitude tracking. For the external loop, the controller’s purpose is to track the reference
attitude and generate an attitude angular velocity command for the inner loop. For the
inner loop, the controller not only tracks the attitude angular velocity command from the
external loop, but also tracks the reference attitude angular velocity. To facilitate the whole
control process, the actuator control strategy using the MFAC algorithm is proposed to
track the control torque command from the attitude controller.
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3.1.1. MMFAC Attitude Controller Design

Under the assumption of small angles, the attitude dynamic equation of the vehicle
in the pitch channel can be presented as Equation (11), where the attitude coupling and
external disturbances are not considered [31]. It is worth pointing out that the following
model is only used to clearly realize the essential dynamics of the vehicles, but not to
describe the accurate dynamics model.{ .

ϕ = ωz1.
ωz1 = 1

IZ
MZ

(11)

where IZ is the rotational inertia of the Obz1 axis, and MZ is the control torque of Obz1 axis.
From Equation (11), it can be found that the second derivative of attitude angle is

linearly related to the control torque. By introducing the PPD parameter φ(t), the vehicle
data model can be modified as follows:{ .

x1 = x2.
x2 = φ(t)u

(12)
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where x1 represents the attitude angle, x2 represents the attitude angle velocity, and u is
control torque.

By discretizing Equation (12), one can obtain the following modified data model:{
x1(k + 1) = x1(k) + Tx2(k)
x2(k + 1) = x2(k) + φ(k)u(k)

(13)

where T is the sampling time and φ(k) = Tφ(t).
Comparing Equation (11) with Equation (13), the value of φ(k) is equal to T/IZ, where

the rotational inertia IZ of the morphing vehicle is positive and bounded. Thus, it can be
concluded that the PPD φ(k) is a constant positive and bounded parameter, namely,

0 < φ(k) ≤ b. (14)

Employing the data models Equation (13), the attitude dynamics can be divided into
two loops: the external loop and the inner loop. In the external loop, the system output is
the attitude angle, such as the pitch, yaw, and roll angles for each channel, and the attitude
angular velocity is taken as the control input. In the inner loop, the attitude angular velocity
and control torque are regarded as the system output and control input, respectively.

For the external loop, in order to track the desired attitude angle, the objective function
is given by

J1(x2(k)) = |x∗1(k + 1)− x1(k + 1)|2, (15)

where x∗1(k + 1) is the desired attitude angle at k + 1.
Differentiating the objective function with respect to x2(k) and letting it be equal to

zero, one may obtain

x2d(k) =
x∗1(k + 1)− x1(k)

T
, (16)

where x2d(k) is the desired signal of x2 generated by the external loop.
For the inner loop controller design, the following objective function is considered:

J2(u(k)) =
∣∣∣∣ x2d(k + 1) + x∗2(k + 1)

2
− x2(k + 1)

∣∣∣∣2 + λ|u(k)|2, (17)

where x∗2(k + 1) is the reference attitude angular velocity and λ > 0.
By minimizing the objective function (17) with respect to u(k) and introducing the

step-size parameters, one can obtain the following modified adaptive control law

u(k) =
ρ1φ(k)(x2d(k + 1)− x2(k)) + ρ2φ(k)(x∗2(k + 1)− x2(k))

λ + |φ(k)|2
, (18)

where ρ1 ∈ (0, 1), ρ2 ∈ (0, 1).
Considering the limited capacity of the actuator, the input of the controlled system is

constrained by
|u(k)| ≤ κ, (19)

where κ is the maximum value of the control input and κ > 0.
Note that the exact value of PPD parameter φ(k) in control law (18) is unknown

and difficult to obtain. Thus, to estimate the value of φ(k), the following cost function is
employed:

J
(
φ̂(k)

)
=
∣∣x2(k)− x2(k− 1)− φ̂(k)u(k− 1)

∣∣2 + µ
∣∣φ̂(k)− φ̂(k− 1)

∣∣2, (20)

where φ̂(k) is the estimated variable of φ(k) and µ > 0.
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By minimizing Equation (20) with respect to φ̂(k), the following PPD estimation
algorithm is obtained:

φ̂(k) = φ̂(k− 1) +
ηu(k− 1)

(
x2(k)− x2(k− 1)− φ̂(k− 1)u(k− 1)

)
µ + |u(k− 1)|2

, (21)

where η ∈ (0, 1] is a step-size factor.
Combining the above algorithm, the modified model-free adaptive control (MMFAC)

scheme can be described as follows

φ̂(k) = φ̂(k− 1) +
ηu(k− 1)

(
x2(k)− x2(k− 1)− φ̂(k− 1)u(k− 1)

)
µ + |u(k− 1)|2

, (22)

φ̂(k) = φ̂(1), if φ̂(k) ≤ ε, (23)

u(k) =


ρ1φ̂(k)(x2d(k+1)−x2(k))+ρ2φ̂(k)(x∗2 (k+1)−x2(k))

λ+|φ̂(k)|2
, f or|u(k)| ≤ κ,

κsign(u(k)), f or|u(k)| ≥ κ,
(24)

where ε is a very small positive constant, and φ̂(1) is the initial value of φ̂(k). The reset
algorithm (23) is proposed to limit the amount of control input and ensure that the PPD
parameter is bounded.

Remark 2. The objective function (17) consists of two purposes, namely, to minimize the tracking
error of x2(k + 1) and the control input consumption of u(k). It is noted that for the calculation of
the tracking error of x2(k + 1), the reference signal is defined as the mean value of x2d(k + 1) and
x∗2(k + 1). The aim of designing such objective function is to track the reference signals x2d(k + 1)
and x∗2(k + 1) accordingly, with the consideration of minimizing the attitude angle and attitude
velocity tracking errors. The proof for this problem is presented in Section 3.2.

Remark 3. In order to improve the effectiveness and robustness of the MFAC controller, some
researchers have introduced a damping effect into the controller, as seen in the PD-MFAC con-
troller [21] and the improved MFAC method [29]. However, adding damping to the controller is
an indirect approach, to some extent, and may result in slowing down the speed of convergence. In
contrast, the proposed MMFAC method takes a more direct approach. By reestablishing a two-loop
data model that specifically accounts for the vehicles attitude angle and attitude angular velocity
and designing the preferable performance index and cost function, the MMFAC method can more
accurately capture the dynamic characteristics of the morphing vehicles. As a result, the proposed
MMFAC controller would exhibit more efficient attitude tracking performance and robustness.

3.1.2. Actuator Control Strategy Design

Note that the control input u(k) of the MMFAC scheme represents the control torque,
and the signal of the control torque needs to be transformed into a signal of the rudder
deflection angle by interpolating the pneumatic database in practice. However, the aerody-
namic data of the controlled vehicle is unknown, as the aerodynamic model has not been
established during the design of the data-driven controller. To overcome this difficulty, the
original CFDL-MFAC algorithm is employed to establish the dynamic data model of the
rudder actuator and the design a controller to track the reference signal of control torque
generated by the attitude controller.

Since the change in the control torque ∆M (system output) with regard to the change
in the rudder deflection angle ∆δ (control input) is approximately monotonic, satisfying
the conditions of MFAC theory, one can obtain the following data model for the control
torque and rudder deflection angle:

∆eM(k + 1) = φc∆δ(k) (25)
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where ∆eM(k + 1) is the change in the tracking error of the control torque eM(k + 1) =
Md(k + 1) − M(k + 1) where Md(k + 1) is the desired control torque generated by the
control law (24), and ∆δ(k) = δ(k)− δ(k− 1) represents the change of the actual rudder
deflection angle δ(k) and |φc(k)| < b.

According to the error model (25) and the CFDL-MFAC algorithm, the following
control scheme can be obtained:

φ̂c(k) = φ̂c(k− 1) +
η2∆δ(k− 1)

µ2 + |∆δ(k− 1)|2
(
∆eM(k)− φ̂c(k− 1)∆δ(k− 1)

)
, (26)

φ̂c(k) = φ̂c(1), i f
∣∣φ̂c(k)

∣∣ ≤ ε or sign
(
φ̂c(k)

)
6= sign

(
φ̂c(1)

)
, (27)

δ(k) = δ(k− 1) +
ρ3φ̂c(k)

λ2 +
∣∣φ̂c(k)

∣∣2 (0− eM(k)), (28)

where µ2 > 0, 0 < η2 < 1, ε > 0, 0 < ρ3 < 1 and λ2 > 0.

Remark 4. With the assumption that positive rudder surface deflection produces negative control
torque, it is implied that the tracking error eM with regard to the change of the rudder deflection
angle ∆δ is a negative correlation. Thus, as seen from the control law (28), the sign of φ̂c(k) must
be positive for each moment.

3.2. Stability Analysis

The stability analysis comprises three steps. First, we aim to demonstrate the bound-
edness of the estimated error of PPD, ensuring its convergence within acceptable limits.
In the second step, the proof of the boundedness of the attitude error under the control
of the proposed MMFAC method is presented. This analysis is performed to validate
the control method’s effectiveness in maintaining attitude stability and accurate attitude
tracking. Finally, the third step aims to verify the convergence of the control torque tracking
error when the rudder deflection actuator is regulated by the proposed actuator controller.
This proof assures the controller’s ability to achieve precise control torque tracking, further
ensuring overall system stability.

Theorem 1. Under Assumption 3, based on the estimation law of Equation (22), the estimation
error of the PPD parameter is uniformly ultimately bounded (UUB).

Proof. Define the estimation error as φ̃(k) = φ̂(k)− φ(k). Subtracting φ(k) from both sides
of Equation (22) leads to

φ̃(k) = φ̂(k− 1)− φ(k) +
ηu(k−1)(x2(k)−x2(k−1)−φ̂(k−1)u(k−1))

µ+|u(k−1)|2

= φ̂(k− 1)− φ(k− 1) +
η|u(k−1)|2(φ(k−1)−φ̂(k−1))

µ+|u(k−1)|2
+ φ(k− 1)− φ(k)

=

(
1− η|u(k−1)|2

µ+|u(k−1)|2

)
φ̃(k− 1) + φ(k− 1)− φ(k)

. (29)

Taking the absolute value on the both sides of Equation (29), one obtains

∣∣φ̃(k)∣∣ ≤ ∣∣∣∣∣1− η|u(k− 1)|2

µ + |u(k− 1)|2

∣∣∣∣∣∣∣φ̃(k− 1)
∣∣+ |φ(k− 1)|+ |φ(k)|. (30)

Since the function η|u(k− 1)|2/
(

µ + |u(k− 1)|2
)

is monotonically increasing with

respect to |u(k− 1)|2, its minimum value is equal to ητ2/
(
µ + τ2) when |u(k− 1)| ≥ τ,
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with τ being a positive constant. With η ∈ (0, 1] and µ > 0, the following inequality can be
obtained: ∣∣∣∣∣1− η|u(k− 1)|2

µ + |u(k− 1)|2

∣∣∣∣∣ ≤ 1− ητ2

µ + τ2 , d1 < 1. (31)

According to 0 < φ(k) ≤ b and the above analysis, one can obtain the following
inequality from Equation (30):∣∣φ̃(k)∣∣ ≤ d1

∣∣φ̃(k− 1)
∣∣+ 2b

≤ d1
2
∣∣φ̃(k− 2)

∣∣+ 2d1b
...

≤ d1
k−1
∣∣φ̃(1)∣∣+ 2b(1−d1

k−1)
1−d1

. (32)

Seen from Equations (30)–(32), when |u(k− 1)| ≥ τ, φ̃(k) is uniformly bounded.
Additionally, the estimation of PPD φ̂(k) is bounded due to the fact that φ(k) is bounded.
When u(k) = 0, one can obtain φ̂(k + 1) = φ̂(k) from the estimation algorithm, which
implies that φ̂(k + 1) is bounded as well. �

Theorem 2. By using the MMFAC law (24), the attitude angle tracking error e1(k) = x∗1(k)−
x1(k) and the attitude angular velocity tracking error e2(k) = x∗2(k) − x2(k) are UUB for all
time momentk. When the reference signals are time-varying, the tracking errors are limited with
the ultimate bound lim

k→∞
|e1(k)| ≤ Td2ς/(1− d2) and lim

k→∞
|e2(k)| ≤ d2ς/(1− d2), respectively.

When the reference signals are invariant constants, the tracking errors converge to zero, namely,
lim
k→∞
|e1(k)| = lim

k→∞
|e2(k)| = 0.

Proof. The control law (24) can be equivalently written as

u(k) = s(k)
ρ1φ(k)(x2d(k + 1)− x2(k)) + ρ2φ(k)(x2r(k + 1)− x2(k))

λ + |φ(k)|2
(33)

where

s(k) =

{
1, for |u(k)| ≤ κ

κ
|u(k)| , for |u(k)| > κ

,

which implies that 0 < s(k) ≤ 1.
Define the tracking error as follows:

e3(k + 1) = x2d(k + 1)− x2(k + 1), (34)

According to the data model (13) and control law (33), one can obtain the following
equality:

e3(k + 1) + e2(k + 1)
= x2d(k + 1)− x2(k) + x2r(k + 1)− x2(k)
−2ρ1ξ(k)(x2d(k + 1)− x2(k))− 2ρ2ξ(k)(x2r(k + 1)− x2(k))

= (1− 2ρ1ξ(k))(x2d(k + 1)− x2(k)) + (1− 2ρ2ξ(k))(x2r(k + 1)− x2(k))
= (1− 2ρ1ξ(k))(e3(k) + ∆x2d(k + 1)) + (1− 2ρ2ξ(k))(e2(k) + ∆x2r(k + 1))

, (35)

where ξ(k) =
(
s(k)φ(k)φ̂(k)

)
/
(

λ +
∣∣φ̂(k)∣∣2), ∆x2d(k + 1) = x2d(k + 1) − x2d(k), ∆x2r

(k + 1) = x2r(k + 1)− x2r(k).
Since ρ1 ∈ (0, 1), s(k) ∈ (0, 1], 0 < φ(k) ≤ b and λ ≥ b2, one has

0 < ρ1ξ(k) ≤ ρ1s(k)
bφ̂(k)

λ +
∣∣φ̂(k)∣∣2 ≤ ρ1s(k)

bφ̂(k)
2bφ̂(k)

<
1
2

. (36)
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Similar to the above process, one can obtain 0 < ρ2ξ(k) < 1/2, thus yielding 0 <
1− 2ρ1ξ(k) < 1 and 0 < 1− 2ρ2ξ(k) < 1. Taking the absolute value on the both sides of
Equation (35), the following inequality can be obtained:

|e3(k + 1)|+ |e2(k + 1)| ≤ d2(|e3(k)|+ |e2(k)|) + d2a1 (37)

where d2 = max{1− 2ρ1ξ(k), 1− 2ρ2ξ(k)}, a1(k + 1) = |∆x2d(k + 1)|+ |∆x2r(k + 1)|. It is
known that the desired trajectory is continuous and cannot change rapidly in practice, so
the change of the desired state is bounded. Thus, by assuming that a1(k) ≤ ς where ς > 0
is a constant, one can obtain

|e3(k + 1) + e2(k + 1)| ≤ d2|e3(k) + e2(k)|+ d2ς
≤ d2

2|e3(k− 1) + e2(k− 1)|+ d2
2ς + d2ς

...

≤ dk
2|e3(1) + e2(1)|+

d2ς(1−dk
2)

1−d2

(38)

which implies that the sum of the tracking errors is uniformly ultimately bounded UUB for
all k with ultimate bound lim

k→∞
(|e3(k)|+ |e2(k)|) ≤ d2ς/(1− d2). Hence, one can easily see

that lim
k→∞
|e2(k)| ≤ d2ς/(1− d2) and lim

k→∞
|e3(k)| ≤ d2ς/(1− d2).

Notice that
e1(k + 1) = x∗1(k + 1)− x1(k + 1)

= T
(

x∗1 (k+1)−x1(k)
T − x2(k)

)
= Te3(k)

. (39)

Therefore, one obtains lim
k→∞
|e1(k)| ≤ T lim

k→∞
|e3(k)| ≤ Td2ς/(1− d2).

Furthermore, when the reference signals x∗1(k) and x∗2 are invariant constants, one
can acquire ς = 0. From the above results, lim

k→∞
|e1(k)| = 0 and lim

k→∞
|e2(k)| = 0 can be

obtained. �

Theorem 3. The actual control torques generated by the actuator can converge to the reference

value monotonically by using the CFDL-MFAC scheme (26)~(28) when λ2 > b
2

4 .

Proof. The error model (25) and control law (28) yield

|eM(k + 1)| = |eM(k) + φc(k)∆δ(k)| ≤
∣∣∣∣∣1− ρ3φc(k)φ̂c(k)

λ2 +
∣∣φ̂c(k)

∣∣2
∣∣∣∣∣|eM(k)|. (40)

Since 0 < ρ3 < 1, ε < φc(k) < b and λ2 > b
2

4 , one can obtain

0 <
ρ3φc(k)φ̂c(k)

λ2 +
∣∣φ̂c(k)

∣∣2 <
bφ̂c(k)

λ2 +
∣∣φ̂c(k)

∣∣2 < 1 (41)

Thus,

0 ≤
∣∣∣∣∣1− ρ3φc(k)φ̂c(k)

λ2 +
∣∣φ̂c(k)

∣∣2
∣∣∣∣∣ , d3 ≤ 1 (42)

Consequently, the control algorithm (26)~(28) can ensure the convergence of the
tracking error to zero, since lim

k→∞
|eM(k + 1)| ≤ lim

k→∞
d3

k|eM(1)| = 0. �

4. Simulations and Results

In this section, simulations for the large-scale morphing unmanned vehicle are pre-
sented to illustrate the performance of the proposed control scheme. In order to generate
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the I/O data, which is necessary for the data-driven controller, a time-varying six-degree-of-
freedom (6DOF) dynamics model of a morphing vehicle in [29] is used in the simulations,
which is presented in Appendix A.

The initial states of the morphing vehicle are set in Table 2.

Table 2. The initial states of the morphing vehicle.

States Values States Values

V0 3.32 km/s ϕ0 5 deg
x0 0 m ψ0 5 deg
y0 45 km γ0 5 deg
z0 0 m ωx0 0 deg/s
α0 2 deg ωy0 0 deg/s
β0 0 deg ωz0 0 deg/s

In this numerical simulation, the morphing vehicle is supposed to increase its wing
span by 50% in 3 s, that is, to rapidly morph from the original state (State I) to another state
(State II). With the morphing process, the whole flight of the morphing vehicle is divided
into five phases, planned as follows.

Phase A: the morphing vehicle tracks the desired attitude (ϕd = 10 deg, ψd = 0 deg,
γd = 0 deg) in 10 s while maintaining State I.

Phase B: maintain the stability of the attitude during morphing from State I to State II.
Phase C: track the desired attitude (ϕd = 15 deg, ψd = 2 deg, γd = 2 deg) within 10 s

in State II.
Phase D: track the desired attitude (ϕd = 10 deg, ψd = 0 deg, γd = 0 deg) while

morphing from State II to State I.
Phase E: continue tracking the desired attitude in State I.
The states and desired attitude angles of the morphing vehicle at different phases are

shown in Figures 3 and 4. Phase A is used to investigate the effectiveness of the proposed
controller in initial State I, establishing a baseline for further simulation. In Phase B, the
controller’s ability to maintain the attitude stabilization is rigorously tested under the
large deformations to which the vehicle is subjected, ensuring its robustness in challenging
scenarios. Phase C is used to demonstrate the controller’s ability to track different attitude
angles in different states, highlighting its adaptability to different tasks. Finally, in Phase D,
the controller is required to track the desired attitude angles as the vehicle is undergoing
large-scale morphing, evaluating the tracking performance of the proposed controller under
demanding scenarios.
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The parameters of control scheme Equations (22)–(24) are shown in Table 3. The
sampling time T is taken as 0.01 s.

Table 3. The value of the parameters of MMFAC.

Method Parameter
Value

Pitch Yaw Roll

MMFAC

η 0.01 0.05 0.05
µ 1 1 1
ρ1 0.01 0.01 0.008
ρ2 0.8 0.9 0.9
λ 8 × 10−11 2 × 10−11 1 × 10−8

φ̂(1) 1 × 10−5 2 × 10−5 2 × 10−4

The parameters of the rudder actuator control algorithm (26)–(28) are shown in Table 4.

Table 4. The value of the parameters of the rudder actuator.

Method Parameter
Value

Pitch Yaw Roll

CFDL-MFAC

η2 0.5 0.5 0.5
µ2 1 1 1
ρ3 0.75 0.5 0.5
λ2 1 1 1

φ̂c(1) 3.1 × 103 9.5 × 102 8 × 102

It is difficult to achieve the flight control of the vehicle using the original CFDL-MFAC
controller [21]. In order to verify the effectiveness of the proposed controller, the PD-
MFAC approach shown in Equation (10) is taken as a baseline controller for performance
comparison, and the parameters of PD-MFAC are shown in Table 5.
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Table 5. The value of the parameters of PD-MFAC.

Method Parameter
Value

Pitch Yaw Roll

PD-MFAC

η1 0.5 0.1 0.1
µ1 1 1 1
ρ 0.4 0.9 0.9

λ1 2 × 10−7 5 × 10−7 1 × 10−5

Ky 5 × 104 6.5 × 104 9 × 103

Kdy 6.5 × 103 8 × 103 8 × 102

ξ̂(1) 3.5 × 10−4 1.8 × 10−3 1.7 × 10−2

Considering the maximum control torque that can be provided by the practical actua-
tors, the maximum control input is set as 200 N·m .

Case 1: The disturbances are not considered in this case, i.e., dMx = dMy = dMz = 0 in
Equation (A2). Simulation results are shown in Figures 5–7. Figure 5 presents the attitude
tracking performance in the three channels of MMFAC and PD-MFAC. It can be seen
that both controllers can successfully track the desired attitude angles before, during, and
after morphing, corresponding to Phase A, D, and C, respectively. However, the MMFAC
achieves a faster tracking response than does the PD-MFAC. As shown in Figures 6 and 7,
the PD-MFAC controller leads to high-amplitude and oscillatory control torques and
rudder deflections due to the employment of the damping term in the controller, while
the MMFAC controller results in smooth control torques and rudder deflections due to
the use of the novel data model, as demonstrated in Remark 3 in Section 3. A. Further,
taking the pitch channel as an example, the controller (24) includes ϕ(k) and

.
ϕ(k), while

the PD-MFAC controller (10) includes ϕ(k), ∆ϕ(k) and ∆ϕ(k− 1), which implies that the
proposed controller achieves greater performance with less feedback information and
validates the superiority of the developed data model in Equation (13).
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Case 2: The disturbances dMx , dMy , and dMz in Equation (A2) are set as Equation
(43) and, in this subsection, are applied to the morphing unmanned vehicle to investigate
the robustness of the proposed controller and PD-MFAC. The responses of the attitudes
controlled by the MMFAC and PD-MFAC are shown in Figure 8. It is clear that both
controllers succeed in tracking and maintaining the desired attitude in the presence of
disturbances, whereas the MMFAC has the advantage of fast convergence. The control
torques and the corresponding rudder deflection angles for three channels are shown
in Figures 9 and 10. It can be observed that both controllers have the ability to reject
disturbances, while the curves of the control input generated by MMFAC are smoother.

dMx = 1.5(1 + sin(π
2 t))

dMy = 10(1 + sin(π
2 t))

dMz = 10(1 + sin(π
2 t))

(43)



Drones 2023, 7, 495 16 of 21

Drones 2023, 7, x FOR PEER REVIEW 17 of 23 
 

 
Figure 7. Time histories of rudder deflection in the absence of disturbances. 

Case 2: The disturbances xMd , yMd , and zMd  in Equation (A2) are set as Equation 
(43) and, in this subsection, are applied to the morphing unmanned vehicle to investigate 
the robustness of the proposed controller and PD-MFAC. The responses of the attitudes 
controlled by the MMFAC and PD-MFAC are shown in Figure 8. It is clear that both con-
trollers succeed in tracking and maintaining the desired attitude in the presence of dis-
turbances, whereas the MMFAC has the advantage of fast convergence. The control tor-
ques and the corresponding rudder deflection angles for three channels are shown in Fig-
ures 9 and 10. It can be observed that both controllers have the ability to reject disturb-
ances, while the curves of the control input generated by MMFAC are smoother. 

1.5(1 sin( ))
2

10(1 sin( ))
2

10(1 sin( ))
2

x

y

z

M

M

M

d t

d t

d t

π

π

π

 = +

 = +

 = +

 (43)

 
Figure 8. Tracking performance in the presence of disturbances. Figure 8. Tracking performance in the presence of disturbances.

Drones 2023, 7, x FOR PEER REVIEW 18 of 23 
 

 
Figure 9. Time histories of control torque in the presence of disturbances. 

 
Figure 10. Time histories of rudder deflection in the presence of disturbances. 

To quantitatively analyze the attitude tracking performance and robustness between 
the MMFAC and PD-MFAC, the following performance indices are employed [32,33]. 

(1) Average squared error (ASE): 

( ) ( ) ( )( )2 2 2

1

1 N

ASE e e e
i

i i i
N

μ ϕ ψ γ
=

= + + ,  (44)

where eϕ , eψ , and eγ  are the error of pitch angle, yaw angle, and roll angle, respec-
tively; N  is the total step of the simulation. A smaller value of the ASE index indicates 
that the convergent rate of the controller is faster. 

(2) Average time-weighted absolute error (ATAE): 

( ) ( ) ( )( )
1

1 N

ATAE e e e
i
i i i i i i

N
μ ϕ ψ γ

=

= + + .  (45)

Figure 9. Time histories of control torque in the presence of disturbances.

Drones 2023, 7, x FOR PEER REVIEW 18 of 23 
 

 
Figure 9. Time histories of control torque in the presence of disturbances. 

 
Figure 10. Time histories of rudder deflection in the presence of disturbances. 

To quantitatively analyze the attitude tracking performance and robustness between 
the MMFAC and PD-MFAC, the following performance indices are employed [32,33]. 

(1) Average squared error (ASE): 

( ) ( ) ( )( )2 2 2

1

1 N

ASE e e e
i

i i i
N

μ ϕ ψ γ
=

= + + ,  (44)

where eϕ , eψ , and eγ  are the error of pitch angle, yaw angle, and roll angle, respec-
tively; N  is the total step of the simulation. A smaller value of the ASE index indicates 
that the convergent rate of the controller is faster. 

(2) Average time-weighted absolute error (ATAE): 

( ) ( ) ( )( )
1

1 N

ATAE e e e
i
i i i i i i

N
μ ϕ ψ γ

=

= + + .  (45)

Figure 10. Time histories of rudder deflection in the presence of disturbances.



Drones 2023, 7, 495 17 of 21

To quantitatively analyze the attitude tracking performance and robustness between
the MMFAC and PD-MFAC, the following performance indices are employed [32,33].

(1) Average squared error (ASE):

µASE =
1
N

N

∑
i=1

(
ϕ2

e (i) + ψ2
e (i) + γ2

e (i)
)

, (44)

where ϕe, ψe, and γe are the error of pitch angle, yaw angle, and roll angle, respectively;
N is the total step of the simulation. A smaller value of the ASE index indicates that the
convergent rate of the controller is faster.

(2) Average time-weighted absolute error (ATAE):

µATAE =
1
N

N

∑
i=1

(i|ϕe(i)|+ i|ψe(i)|+ i|γe(i)|). (45)

ATAE introduces the time-weight into the performance index to focus on analyzing
the steady-state error. The smaller the value of ATAE, the better tracking performance of
the controller.

(3) Total energy consumption (TEC):

µTEC =
1
N

N

∑
i=1

(
|δx(i)|+

∣∣δy(i)
∣∣+ |δz(i)|

)
. (46)

The small TEC value represents less energy loss.
The statistical results presented in Table 6 provide a comparison of the effectiveness

and robustness between the MMFAC and PD-MFAC method through three performance
indices. In Case 1, the values of all performance indices of MMFAC are smaller com-
pared to the those using the PD-MFAC method, which implies that the MMFAC method
can achieve a faster convergent rate while utilizing less energy. In Case 2, the presence
of disturbances leads to larger values of µATAE and µTEC compared to those in Case 1.
However, the MMFAC method still outperforms the PD-MFAC method by maintaining
smaller values for three performance indices. Notably, the smaller value of µATAE indicates
that the MMFAC method exhibits a smaller steady-state error when faced with external
disturbances. From the above results, we can draw a conclusion that the proposed MMFAC
method possesses superior control performance, particularly in terms of faster convergence
and stronger robustness.

Table 6. The performance of different controllers in two cases.

Case Controller Value

µASE µATAE µTEC

Case 1
PD-MFAC 0.0012 25.3916 0.1740
MMFAC 0.0010 19.1274 0.1709

Case 2
PD-MFAC 0.0012 27.4523 0.1899
MMFAC 0.0010 21.2048 0.1868

5. Conclusions

Considering the fast time-varying and strong aerodynamic interference caused by large
scale morphing, this paper proposed a MMFAC method for attitude control of morphing
unmanned vehicles. The main contributions of this paper are summarized as follows:

(1) By discretizing the dynamic equations of vehicles, which characterize the simplest
relationship between attitude angle, attitude angular velocity, and control torque, a novel
data model is proposed. Based on the proposed data model, the MMFAC algorithms for the
external/inner loop are presented, by designing the corresponding tracking performance
index and cost function of the double loop.



Drones 2023, 7, 495 18 of 21

(2) Considering the unknown aerodynamic data for the rudder actuators, a data model
of the aerodynamic torques is presented, and the corresponding control law of the rudder
deflection angle is proposed, which can save a significant amount of effort in establishing
the exact aerodynamic model of a morphing unmanned vehicle in contrast to the methods
proposed in the earlier work [10].

(3) The convergence of the proposed algorithm has been proved by rigorous mathe-
matical analysis, which shows that the proposed method can ensure the convergence of
the tracking error to zero when the reference attitude angle is invariant and guarantee
that the tracking errors are uniformly ultimately bounded when tracking a time-varying
reference signal.

(4) Compared with the previous controller PD-MFAC [21], simulation results show
that the proposed MMFAC controller requires less feedback information, but exhibits a
faster convergence rate and preferable robustness in the presence of external disturbances
and large morphing.

The data utilized by the controller in this work is accurate and real-time. In future
research, a challenge to be addressed is the attitude control in the present of noise and input
delay, which is of great significance for stable flight of the morphing unmanned vehicles in
complex missions. In addition, a semi-physical experimental platform will be constructed
to demonstrate the validity of the proposed method.
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Appendix A

The 6-DOF dynamic equations of the morphing unmanned vehicle used in the simula-
tion are presented as follows:

.
V = CZqS−mg sin ϕ sin ψ cos γ+mg cos ϕ sin γ

m sin β

+−CAqS−mg sin ϕ cos ψ
m cos α cos β

−CN qS−mg cos ϕ cos γ−mg sin ϕ sin ψ sin γ
m sin α cos β

.
α = ωz1 +

sin α sin β
cos β ωy1 − cos α sin β

cos β ωx1

− (CN qS−mg cos ϕ cos γ−mg sin ϕ sin ψ sin γ) cos α
mV cos β

− (−CAqS−mg sin ϕ cos ψ) sin α
mV cos β.

β = ωy1 cos α + ωx1 sin α− −CAqS−mg sin ϕ cos ψ
mV cos α sin β

+CN qS−mg cos ϕ cos γ−mg sin ϕ sin ψ sin γ
mV sin α sin β

+CZqS−mg sin ϕ sin ψ cos γ+mg cos ϕ sin γ
mV cos β

.
X = V cos θ cos σ
.

Y = V sin θ cos σ
.
Z = −V sin σ
.

ωx1 =
Mx−(Jz−Jy)ωz1ωy1

Jx
.

ωy1 =
My−(Jx−Jz)ωx1ωz1

Jy
.

ωz1 =
Mz−(Jy−Jx)ωx1ωy1

Jz.
γ = ωx1 + sin γ tan ψωy1 + cos γ tan ψωz1.
ψ = cos γωy1 − sin γωz1
.
ϕ = sin γ

cos ψ ωy1 +
cos γ
cos ψ ωz1

sin σ = cos α cos β sin ψ + sin α cos β cos ψ sin γ− sin β cos ψ cos γ

sin θ = cos α cos β sin ϕ cos ψ−sin α cos β(sin ϕ sin ψ sin γ+cos ϕ cos γ)
cos σ

+ sin β(sin ϕ sin ψ cos γ−cos ϕ sin γ)
cos σ

sin υ = − sin ψ sin α+cos α cos ψ sin γ
cos σ

(A1)

where α is the angle of attack, β is sideslip angle, ϕ is pitch angle, ψ is yaw angle, and γ
is roll angle; CA, CN , and CZ represent the axial fore coefficient, normal force coefficient,
and lateral force coefficient, respectively; q = ρV2/2 is the dynamic pressure, with ρ being
the atmospheric density; S is the aerodynamic reference area; m is the total mass of the
vehicle; g is the acceleration of gravity; and V is velocity; ωx1, ωy1, and ωz1 are the axis
apparent angular velocity in the ox1y1z1; Mx, My, and Mz are the control torques in the
three channels; X, Y, and Z are the components of the vehicle position in the launching
coordinate system; and θ is the flight path angle, σ is the heading angle, and υ is the
bank angle. 

Mx = ClqSL + dMx

My = CnqSL + dMy

Mz = CmqSL + dMz

(A2)

where Cl , Cn, and Cm represent the rolling moment coefficient, yawing moment coefficient,
and pitching moment coefficient, respectively; L is the reference length; and dMx , dMy , and
dMz represent the disturbing torque in the roll, yaw, and pitch channel, respectively.

Remark A1. The dynamical equation for the morphing vehicle in Equation (A1) is different from
that of the rigid vehicle due to the change in the shape caused by morphing. Furthermore, the change
in the shape would directly influence the aerodynamic coefficients, causing the 6-DOF dynamics
model to be time-varying. For instance, as the vehicle undergoes morphing, the moment coefficients
(Cl , Cn, and Cm) may vary, lending to dynamic changes in the flight behavior of the vehicle.
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