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Abstract: An approach to the implementation of a neural network for real-time cryptographic data
protection with symmetric keys oriented on embedded systems is presented. This approach is
valuable, especially for onboard communication systems in unmanned aerial vehicles (UAV), because
of its suitability for hardware implementation. In this study, we evaluate the possibility of building
such a system in hardware implementation at FPGA. Onboard implementation-oriented information
technology of real-time neuro-like cryptographic data protection with symmetric keys (masking
codes, neural network architecture, and matrix of weighting coefficients) has been developed. Due
to the pre-calculation of matrices of weighting coefficients and tables of macro-partial products
and the use of tabular-algorithmic implementation of neuro-like elements and dynamic change of
keys, it provides increased cryptographic stability and hardware–software implementation on FPGA.
The table-algorithmic method of calculating the scalar product has been improved. By bringing
the weighting coefficients to the greatest common order, pre-computing the tables of macro-partial
products, and using operations of memory read, fixed-point addition, and shift operations instead of
floating-point multiplication and addition operations, it provides a reduction in hardware costs for its
implementation and calculation time as well. Using a processor core supplemented with specialized
hardware modules for calculating the scalar product, a system of neural network cryptographic data
protection in real-time has been developed, which, due to the combination of universal and specialized
approaches, software, and hardware, ensures the effective implementation of neuro-like algorithms
for cryptographic encryption and decryption of data in real-time. The specialized hardware for neural
network cryptographic data encryption was developed using VHDL for equipment programming in
the Quartus II development environment ver. 13.1 and the appropriate libraries and implemented
on the basis of the FPGA EP3C16F484C6 Cyclone III family, and it requires 3053 logic elements and
745 registers. The execution time of exclusively software realization of NN cryptographic data
encryption procedure using a NanoPi Duo microcomputer based on the Allwinner Cortex-A7 H2+
SoC was about 20 ms. The hardware–software implementation of the encryption, taking into account
the pre-calculations and settings, requires about 1 msec, including hardware encryption on the FPGA
of four 2-bit inputs, which is performed in 160 nanoseconds.

Keywords: neural network (NN); cryptographic protection; UAV; UAS; onboard system; encryption;
decryption; tabular-algorithmic method; scalar product; real time

1. Introduction

Cryptographic protection of data transmission between the UAV and the remote-
control centre is important to ensure the confidentiality and integrity of the information
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transmitted. However, there are certain practical problems and influencing factors that
must be taken into account when developing a cryptographic protection system for data
transmission, specifically for UAVs. The main ones are limited computing resources;
ensuring requirements for energy consumption, dimensions, and weight of equipment;
provision of data transmission between the UAV and the remote control centre in real time;
ensuring the requirements for the cost of the system of cryptographic protection of data
transmission; algorithmic problems of cryptographic algorithms, which are associated with
security vulnerabilities and malicious attacks; limitation of physical access to means of
cryptographic protection; organization of an effective key management system; damage or
loss of data in the wireless transmission channel; and change in altitude and environmental
conditions that affect the quality of communication and data transmission.

The key problem is to guarantee the cryptographic security of data transmission
in the management of UAVs [1,2], intelligent robots [3], microsatellites [4], and various
mobile transport systems [5]. Due to the security vulnerabilities of UAVs and illegal
and malicious attacks against UAVs, especially against communication data and UAV
control, solutions to prevent such attacks are needed, and one of them is to encrypt UAV’s
communication data [6–8]. Unmanned aerial vehicles (UAVs) must be energy-efficient,
especially in data processing, because of limited battery capacity [9]. Solving this problem
requires the development of neural network (NN) technology [10–12] for cryptographic
data protection, which is focused on use in UAV onboard communication systems. When
developing onboard cryptographic data protection systems, it is necessary to provide a
real-time mode, increase cryptographic resistance and noise immunity, and reduce power
consumption, weight, size and cost [13–23]. The usage of an auto-associative NN of
direct propagation, which is trained on the basis of the principal components analysis,
helps to conform to such requirements. A specific feature of such neural networks is
the ability of weight pre-calculation and to apply the tabular-algorithmic method for the
implementation of neuro-like elements using the basis of elementary arithmetic operations.
For NN cryptographic encryption and decryption of data, it is proposed to use symmetric
keys, which include masking codes, NN architecture and a matrix of weights [24,25].

Through the extensive use of a modern component base and the development of
new VLSI methods, algorithms, and structures, high technical and operational rates of
onboard cryptographic data protection systems are achieved. Onboard systems for NN
cryptographic protection of data must have variable hardware for rapid changes in NN
architecture. The use of modern element base (microcontrollers, programmable logic in-
tegrated circuits FPGA) in the development of onboard and embedded systems makes it
possible to reduce their weight, size, and power consumption [26,27] and, in the develop-
ment of onboard systems of NN cryptographic, data protection provides a quick change of
encryption and decryption keys.

NN cryptographic encryption and decryption of data in real-time is achieved through
the application of parallel encryption and decryption of data, hardware implementation of
neuro-like elements based on a multi-operand approach and macro-partial products tables.

Therefore, the urgent problem is to propose an approach to the implementation of
NN for cryptographic data protection, focused on implementing onboard systems with
high technical and operational characteristics. The objective of the work is to study how to
implement the onboard NN for real-time cryptographic data protection. In order to achieve
this goal, the following tasks have to be solved:

• Development of the approach to NN cryptographic data protection;
• Development of the structure of the system of NN cryptographic protection and

real-time data transmission;
• Development of components of onboard systems of NN cryptographic encryption–

decryption of data;
• Implementation of the specialized hardware components of NN cryptographic data

encryption on FPGA.
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This article is structured as follows. In the Introduction, we have considered the
problem relevancy and the main objectives of this research. Section 2 contains a brief
review of the related works (the research context). The structure of NN technology for
cryptographic data protection is described in Section 3, and the main stages of NN data
encryption/decryption are considered here as well. Section 4 presents the structure of
the system for NN cryptographic data protection and transmission (stationery and UAV
onboard parts) developed using an integrated approach. The components of the onboard
system for NN cryptographic data encryption and decryption are proposed in Section 5,
and the diagrams for the specialized hardware are given.

2. Related Works

The study of the main trends in the area of UAV onboard systems development for
real-time cryptographic data protection shows that NN methods are increasingly used for
performing data encryption and decryption in such systems [28–32]. These publications
show that the implementation of NN methods of cryptographic data protection is generally
performed by software. The critical drawback of software implementation of NN crypto-
graphic data protection is the difficulty of providing a real-time mode and the constraints
imposed on onboard systems in terms of weight, size, power consumption, and cost.

The possibilities of adapting the auto-associative NN with non-iterative learning for
data protection tasks are considered in [28–32]. The peculiarity of the functioning of such
an NN is the preliminary calculation of weights as a result of its training based on the
principal component analysis (PCA). In this case, a system of eigenvectors is used that
corresponds to the eigenvalues of the covariance matrix of input data [33]. To encrypt and
decrypt data, the auto-associative NN with pre-calculated weights is applied. In [34], it was
shown that for the masking codes, the architecture of the NN and the matrix of weights are
the basis for cryptographic encryption and decryption of data in neural networks.

Publications [35–37] are devoted to the hardware implementation of neural networks,
showing that they are based on neural elements. The feature of such neural elements is that
the number of inputs and their bit length are determined by the NN architecture, which
is one of the characteristics of the data encryption key. The main operation of the neuro
element is the calculation of the scalar product using pre-calculated weights.

In [37–39], the methods for calculating the scalar product using the basis of elementary
arithmetic operations, addition and shift, are considered. The peculiarity of these meth-
ods is the formation of macro-partial products, their shift, and addition to the previously
accumulated amount. Hardware implementation of such methods requires significant
equipment costs. The implementation of a tabular-algorithmic method for calculating
the scalar product, which is reduced to the operations of reading macro-partial products,
addition and shift, requires fewer equipment costs and less computation time. The dis-
advantage of this method is that it is limited to fixed-point data format (for input data
and weights).

Analyzing the works [31,40,41], it can be noted that NN tools for cryptographic
symmetric encryption and decryption of data [42] are implemented on the basis of micro-
processors supplemented by hardware that implements time-consuming computational
operations using FPGA [43]. The high speed of NN tools for cryptographic encryption
and decryption of data is achieved through parallelization, pipeline computing processes,
and hardware implementation of neural elements. The disadvantage of the existing NN
tools for cryptographic data protection is the difficulty of changing the encryption and
decryption key rapidly.

3. The Approach to NN Implementation for Cryptographic Data Protection
3.1. Structure of NN Technology of Cryptographic Data Protection

The implementation of NN for cryptographic protection of data transmission is fo-
cused on hardware and software implementation with high technical and operational
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characteristics. It is proposed that to carry out such implementation on the basis of an
integrated approach includes the following:

• Research and development of theoretical foundations of neuro-like cryptographic data
protection;

• Research and development of new algorithms and structures of neuro-like encryption
and decryption of data focused on modern element base;

• Modern element base with the ability to program the structure;
• The means for automated design of software and hardware.

Figure 1 shows the developed structure of NN technology for cryptographic data
protection, which is focused on hardware implementation and provides encryption with
symmetric keys. When implementing the symmetric cryptosystem, the encryption key
and the decryption key are the same, or the decryption key is easily calculated from the
encryption key.
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For hardware implementation, the proposed technology is based on the selection
of auto-associative neural networks, which are trained non-iteratively. This allows us to
calculate the matrix of weighting coefficients in advance and to store them in the lookup
tables since they will be fixed for the selected NN configuration. The calculation of the
output of the neuro-like element of this NN can be represented as the sum of the products
of the weighting coefficients and the input data to be encrypted. To implement a quick
calculation on the FPGA of the product of the fixed weighting coefficients and the input
data, a table-algorithmic method of their calculation is applied. The tabular-algorithmic
method makes it possible to implement high technical and operational characteristics of
data encryption–decryption tools. A combination of these approaches ensures the effective
implementation of FPGAs. The details of the above-mentioned steps are described further
in the article.

A specific feature of the proposed technology is the pre-calculation of matrices of
weighting coefficients for possible variants of neural networks and the use of the tabular-
algorithmic method for the implementation of neuro elements. Such pre-calculation of
matrices and tables provides the possibility of dynamically changing keys and, accordingly,
increasing cryptographic stability. The use of elementary arithmetic operations in fixed-
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point format for the hardware tabular-algorithmic implementation of the neuro element
provides a reduction in hardware costs when building specialized hardware modules.

Ensuring the real-time mode when encrypting (decrypting) data can be achieved by
selecting the necessary number of specialized hardware modules and reducing the time
of calculating the scalar product in such modules. It is possible to reduce the time of
calculating the scalar product by using an algorithm that provides for submitting g bit
slices to the address inputs of g tables of macro-partial products. Using such an algorithm
reduces the time of calculating the scalar product by g times.

3.2. Main Stages of NN Encryption

The encryption uses a key consisting of N neurons in the NN, a weight matrix, and
masking operations. The main stages of message encryption are considered below.

Choice of NN architecture. The number of neuro elements N, the number of inputs k,
and the bit inputs m determine the architecture of the NN. The number of neural elements
is defined according to the following formula:

N =
n
m

, (1)

where n is the bit length of the message, and m is the bit length of the inputs.
The incoming messages, which are encrypted, can have different bit lengths (n) and

different inputs number (k), which is equal to the number of neuro elements N. The
architecture of the NN depends on the value of the bit length of the message n and the
number of inputs k. Such configuration of the NN architecture is available to encrypt the
n = 16 bit message: m = 2, k = 8, N = 8; m = 4, k = 4, N = 4; m = 8, k = 2, N = 2, in
case of n = 24 they are: m = 2, k = 12, N = 12; m = 3, k = 8, N = 8; m = 4, k = 6, N = 6,
m = 6, k = 4, N = 4; m = 8, k = 3, N = 3; m = 12, k = 2, N = 2.

Calculation of the weight matrix. For data encryption–decryption, we will use an auto-
associative NN, which learns non-iteratively using the principal components analysis
(PCA), which performs a linear transformation following the formula

y = W · x (2)

According to Equation (2), the matrix W ∈ Rn×n is used to convert the input vector
x ∈ Rn into the output vector y ∈ Rn. The conversion is as follows. A system of linearly
independent vectors selects an orthonormal system of eigenvectors corresponding to the
eigenvalues of the covariance matrix of the input data.

The input data is a set of N vectors xj, j = 1, . . . N, with dimension n,
xj =

(
xj1, xj2, . . . , xjn

)
:

X = (x1, x2, . . . , xN)
t. (3)

For N vectors, the autocovariance matrix xj is

R = Xt · X, (4)

where each of the elements is expressed by

rjl =
N

∑
i=1

xjl xil =
N

∑
i=1

(
xji − µj

)
(xil − µl), (5)

where j, l = 1, 2, . . . , n, and µj; µl—mathematical expectations of vectors xj, xl .
The eigenvalues of R symmetric non-negative matrix are real and positive numbers.

They are arranged in descending order λ1 > λ2 > . . . > λn. Similarly, the eigenvectors cor-
responding to λi are placed. Therefore, a linear transformation (2) is defined by the matrix
W. Here, y = (y1, y2, . . . , yn) is a vector of the PCA principal components corresponding
to the input data vector x. The number of principal components vectors N conforms with
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the number of input data vectors x [29]. The matrix of weights used to encrypt the data is
as follows: ∣∣∣∣∣∣∣∣∣

W11 W12 · · · W1k
W21 W22 · · · W2k

...
... · · ·

...
WN1 WN2 · · · WNk

∣∣∣∣∣∣∣∣∣. (6)

The basic operation of the NN used to encrypt data is the operation of calculating
the scalar product. This operation should be implemented using the tabular-algorithmic
method because the matrix of weights Wjs, where j = 1, . . . , N, s = 1, . . . , k,
is pre-calculated.

Calculation of the table of macro-partial products for data encryption. The specificity of
the scalar product calculation operation used in data encryption is that the weights are
pre-calculated (constants) and set in floating point format, and the input data Xj is in
fixed point format with its fixing before the high digit of a number. The scalar product is
calculated by means of the tabular-algorithmic method according to the formula

Z =
N

∑
j=1

WjXj =
n

∑
i=1

2−i
N

∑
j=1

WjXji =
n

∑
i=1

2−i
N

∑
j=1

Pji =
n

∑
i=1

2−iPMi, (7)

where N is the number of products; Xj is the input data; Wj is the j-th weight coefficient; n
is the bit length of the input data; Pij is the partial product; and PMi is the macro-partial
product formed by adding N partial products Pij, as follows: PMi = ∑N

j=1 Pji.
Formation of the tables of macro-partial products for floating-point weights

Wj = wj2
mWj (where wj is the mantissa of Wj weight coefficient; mWj is the order of

Wj weight coefficient) foresees the following operations to be performed:

• Defining the largest common order of weights mWmaxc;
• Calculation of the order difference for each Wj weight coefficient: ∆mWj = mWmaxc −mWj ;
• Shift the mantissa wj to the right by a difference of orders ∆mWj ;
• Calculation of PMi macro-partial product for the case when x1i = x2i = x3i = . . . = xNi = 1;
• Determining the number of overflow bits q in the PMi macro-partial product for the

case when x1i = x2i = x3i = . . . = xNi = 1;
• Obtaining scalable mantissas wh

j by shifting them to the right by the number of
overflow bits;

• Adding to the largest common order of weight mWmaxc the number of overflow bits q,
as per the formula mj = mWmaxc + q.

The table of macro-partial products is calculated by the formula

PMi =



0, i f x1i = x2i = x3i = . . . = xNi = 0
wh

1 , i f x1i = 1, x2i = x3i = . . . = xNi = 0
wh

2 , i f x1i = 0, x2i = 1, x3i = . . . = xNi = 0
wh

1 + wh
2 , i f x1i = 1, x2i = 1, x3i = . . . = xNi = 0

...
wh

2 + . . . + wh
N , i f x1i = 0, x2i = x3i = . . . = xNi = 1

wh
1 + wh

2 + . . . + wh
N , i f x1i = x2i = x3i = . . . = xNi = 1

, (8)

where x1i, x2i, x3i, . . . , xNi address inputs of the table, and wh
j is the mantissa of Wj weight

coefficient brought to the greatest common order.
The possible combinations number of PMi macro-partial products and the table size

are as follows:
Q = 2N . (9)
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By dividing all N products by parts N1 and N2, we can reduce the table size. For each
of these parts, separate tables of macro-partial products PN1Mi and PN2Mi are formed and
stored in separate memory blocks or a single memory block. When using two memory
blocks, parts of the macro-partial products PN1Mi and PN2Mi are read in one clock cycle and
in one memory block—in two clock cycles. The sum of two macro-partial products PN1Mi
and PN2Mi gives us the macro-partial product PMi.

NN tabular-algorithmic data encryption. During the training of the NN, the matrix of
weights W is determined. Figure 2 shows the structure of auto-associative NN used for
data encryption. Here, Mj is the mask for the j-th input, xj is the j-th input data, and XOR
is the masking operation using the exclusive OR elements.

Figure 2. The structure of the data encryption NN.

To perform the NN data encryption, we multiply the W matrix by the input data
vector x according to the formula

yj =

∣∣∣∣∣∣∣∣∣
W11 W12 · · · W1k
W21 W22 · · · W2k

...
... · · ·

...
WN1 WN2 · · · WNk

∣∣∣∣∣∣∣∣∣×
x1
x2
...

xk

. (10)

The multiplication of the matrix of weights W by the vector of input data x is reduced
to performing N scalar product calculations:

yj =
k

∑
s=1

Wjsxs (11)

where k—number of products, s = 1, 2, . . . , k; j = 1, 2, . . . , N.
The calculation of scalar products will be achieved using the tabular-algorithmic

method, where the weights Wjs are set in floating-point format, and the input data xs is in a
fixed-point format with fixation before the highest digit. Tabular-algorithmic calculation
of the mantissa of the scalar product is reduced to reading the macro-partial product PMi
from the j-th table (memory) at the address corresponding to the i-th bit slice of N input
data, and adding it to the before accumulated sums according to

yMji = 2−1yMj(i−1) + PMji, (12)

where yMj0 = 0, i = 1, . . . , m, and m is the bit length of the input data. The number of
tables of macro-partial products corresponds to N—the number of rows of the matrix (10).
The result of calculating the scalar product yj consists of the mantissa yMj and the order mj.
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The time required to compute the mantissa of the scalar product (SP) is determined by
the formula

tSP = m
(
ttable + treg + tadd

)
, (13)

where tSP is the time of calculation of the scalar product, ttable is the time of reading from
the table (memory), treg is the time of reading (writing) from the register, and tadd is the
time of adding.

Data encryption can be performed either sequentially or in parallel, depending on the
speed required. In the case of sequential encryption, the encryption time is the result of
the formula

tencrypt = Nm
(
ttable + treg + tadd

)
, (14)

where tencrypt is the time required for encryption. The encryption time can be reduced by
performing N operations of calculating the scalar product in parallel.

As a result of NN data encryption, we obtain N encrypted data in the form yj = yMj2
mj ,

where yMj is the mantissa at the j-th output, and mj is the order value at the j-th output. It
is advisable to bring all encrypted data to the highest common order for transmission, and
such reduction to the greatest common order is performed in three stages:

• Define the greatest order mencr;
• For each encrypted data yj, calculate the difference between the orders ∆mj = mencr −mj;
• By performing shift of the mantissa yMj to the right by the difference of orders ∆mj,

we obtain mantissa of the encrypted data yh
Mj reduced to the greatest common order.

The mantissa of the encrypted data yh
Mj reduced to the largest common order and the

largest common order mencr are sent for decryption.

3.3. The Main Stages of NN Cryptographic Data Decryption

Now the encrypted data presented by mantissa yh
Mj reduced to the largest common

order mencr need to be decrypted. The encrypted data will be decrypted according to the
following procedure.

Configuration of the NN architecture for the decryption of encrypted data. The architecture
of the NN for the decryption of encrypted data, in terms of the number of neural elements,
is the same as the architecture of the NN used for the encryption of data. In this NN, the
number of inputs and the number of neurons corresponds to the number of the encrypted
mantissa yh

Mj. The NN architecture used to decrypt encrypted data is presented in Figure 3.

Figure 3. The NN architecture for decryption of encrypted data.

The bit rate of the inputs during decryption corresponds to the bit rate of the encrypted
mantissa yh

Mj. Its value determines the decryption time, and to reduce it, the lower bits of
the mantissa may be discarded because they will not affect the original message recovery.
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Formation of the weight matrix. The matrix of weights for decrypting encrypted data is
formed from a matrix of weights for encrypting input data by transposing it:∣∣∣∣∣∣∣∣∣

W11 W12 · · · W1k
W21 W22 · · · W2k

...
... · · ·

...
WN1 WN2 · · · WNk

∣∣∣∣∣∣∣∣∣
T

=

∣∣∣∣∣∣∣∣∣
W11 W21 · · · WN1
W12 W22 · · · WN2

...
... · · ·

...
W1k W2k · · · WNk

∣∣∣∣∣∣∣∣∣. (15)

The basic operation for the encryption of input data and decryption of encrypted data
is the calculation of the scalar product, which is implemented using a tabular-algorithmic
method.

Calculation of the table of macro-partial products for decryption of encrypted data. A specific
feature of the scalar product calculation operation used to decrypt encrypted data is that the
weights are pre-calculated (constants) and set in floating-point format, while the encrypted
data yj are received in block-floating-point format. The calculation of the scalar product
using the tabular-algorithmic method is performed by Equation (7). Preparation and
calculation of possible variants of macro-partial products are performed as in the previous
case under Equation (8).

The amount of encrypted data determines the number of macro-partial products PMi
and the size of the table. The largest common order mPms is computed for each table.

NN tabular-algorithmic decryption of encrypted data. The NN decryption is specified by
multiplying the W matrix by the encrypted data vector y:

xs =

∣∣∣∣∣∣∣∣∣
W11 W21 · · · WN1
W12 W22 · · · WN2

...
... · · ·

...
W1k W2k · · · WNk

∣∣∣∣∣∣∣∣∣×
y1
y2
...

yN

. (16)

The multiplication of the weights matrix WT by the input data vector y is reduced to
performing N scalar product calculations:

xs =
N

∑
j=1

Wsjyj (17)

where N is the number of products, and s = 1, 2, . . . , k; j = 1, 2, . . . , N.
Tabular-algorithmic calculation of the mantissa of the scalar product is reduced to

reading the macro-partial product PMi from the table (memory) at the address correspond-
ing to the i-th bit-slice of k input data, and adding it to the previously accumulated sums,
according to the formula

xMsi = 2−1yMs(i−1) + PMsi, (18)

where xs0 = 0, i = 1, . . . , g, and g is the bit rate of the encrypted data. The time necessary
to calculate the scalar product mantissa is defined under the formula

tSP = g
(
ttable + treg + tadd

)
, (19)

where tSP is the time for scalar product calculation, ttable is the time for reading from a table
(memory), treg is the time of reading (writing) from the register, and tadd is the time for
adding. The result of the calculation of the xs scalar product consists of a mantissa xMs and
order, which is equal to mdecrs = mPMs + mencr.

At the output of the NN (see Figure 3), we obtain k decrypted data in the following
form xs = xMs2mdecrs , where xMs is the mantissa at the s-th output, and mdecrs is the value
of the order at the s-th output. To obtain the input data, it is necessary to shift the s-th
mantissa xMs by the value of the order mdecrs.
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4. The Structure of the System for NN Cryptographic Data Protection and Transferring
in Real-Time Mode

The development of the structure of the system for NN cryptographic data protection
and transmission in real-time will be carried out using an integrated approach, which
contains the following:

• Research and development of theoretical foundations of NN cryptographic data
encryption and decryption;

• Development of new tabular-algorithmic algorithms and structures for NN crypto-
graphic data encryption and decryption;

• Modern element base, development environment and computer-aided design tools.

A system for NN cryptographic data protection in real-time was developed using the
following principles:

• Changeable composition of the equipment, which foresees the presence of the proces-
sor core and replaceable modules, with which the core adapts to the requirements of a
particular application;

• Modularity, which involves the development of system components in the form of
functionally complete devices;

• Pipeline and spatial parallelism in data encryption and decryption;
• The openness of the software, which provides opportunities for development and

improvement, maximising the use of standard drivers and software;
• Specialising and adapting hardware and software to the structure of tabular algorithms

for encrypting and decrypting data;
• The programmability of hardware module architecture through the use of programmable

logic integrated circuits.

In order to provide neural-like encryption and decryption of data arrays in real time, it
is necessary that encryption and decryption occur without accumulating delays. Encrypting
(decrypting) an array of h messages in real time imposes a time limit for their encryption
(decryption), which must meet the following:

htE/De ≤ ta, (20)

where tE/De is the time of encryption (decryption) of one message, and ta is the time of
arrival of h messages, which is determined as follows:

ta =
hn

Fdsnk
, (21)

where n is the bit rate of the message, s is the number of channels through which the
message is received, nk is the bit rate of the channels, and Fd is the frequency of message
arrival.

Knowing the time ta, it is possible to determine the encryption (decryption) time of
one message tE/De according to the following formula:
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In the case of the NN approach to encryption (decryption), it is proposed to supple-
ment the processor core with the specialized modules that implement neural elements in
hardware to ensure real time. The number of specialized modules and the time of calcula-
tion of the scalar product in such modules should ensure the fulfilment of the condition
tE/De ≤ ta/h. It is possible to choose the time of calculation of the scalar product by using
an algorithm that involves the use of q tables of macropartial products for calculation by
applying q bit slices to their address inputs. The use of such an algorithm reduces the time
of calculating the scalar product by q times.
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The system of NN cryptographic real-time data protection and transmission consists of
a stationary part, which is a remote-control centre, and a UAV onboard part. The structure
of the stationary part of the system of NN cryptographic data protection and transmission
is shown in Figure 4.
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Figure 4. Structure of the stationary part of the system of NN cryptographic data protection and
transmission.

The processor core of the remote-control center is implemented on the basis of a
personal computer. The transceiver is used to transmit encrypted data; it communicates
with the processor core through the interface based on a microcontroller.

The UAV onboard part of the system for NN cryptographic real-time data protection
and transmission is implemented on the processor core, which is supplemented by dedi-
cated hardware and software. The processor core of the UAV onboard part of the system
is designed on a microcomputer. The structure of the onboard part of the system of NN
cryptographic data protection and receiving is depicted in Figure 5.
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The effective implementation of NN encryption–decryption and encoding–decoding
algorithms in real time is achieved by combining universal and customized software and
hardware. The use of modern elements (microcomputer, microcontroller, FPGA) in the
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development of the UAV onboard part ensures the accomplishment of the requirements for
weight, dimensions and energy consumption.

The effectiveness of the system for NN cryptographic real-time data protection and
transmission is directly associated with the choice of both hardware and software imple-
mentation.

5. Development of the Components of the Onboard System for NN Cryptographic
Data Encryption and Decryption

In general, the problem of developing onboard systems for NN cryptographic
encryption–decryption of data can be formulated as follows:

• To develop an algorithm for the onboard system of NN encryption–decryption of data
and present it in the form of a specified flow graph;

• To design the structure of the onboard system for NN data encryption–decryption
with the maximum efficiency of equipment use, taking into account all the limitations
and providing real-time data processing;

• To determine the main characteristics of neural elements and carry out their synthesis;
• To choose exchange methods, determine the necessary connections and develop algo-

rithms for exchange between system components;
• To determine the order of implementation in time of NN data encryption–decryption

processes and develop algorithms for their management.

Components of the onboard system of NN cryptographic data encryption and de-
cryption should provide the implementation of the selected NN, ability to change masks,
and calculate matrices of weights Wj and tables of macro-partial products PMi for possi-
ble NN options. To effectively implement the components of the onboard system of NN
cryptographic encryption–decryption of data, it is proposed to use hardware–software
implementation of the algorithms based on a microcontroller supplemented by specialized
hardware. The structure of the component of NN cryptographic data encryption, which
meets such requirements, is presented in Figure 6, where MC is the microcontroller, MN is
the mask node, MP is the macro-partial product, Rg is the register, and Add is the adder.
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The developed component of NN cryptographic data encryption has a variable com-
position of equipment, which is based on the core of the system and a set of modules for
calculating the scalar product. The system core is constant for all applications and consists
of microcontroller MC, mask node MN, keys memory, and module of the shaper of the NN
architecture and bit slices of input data. The scalar product calculation modules implement
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the basic operation of the tabular-algorithmic method of scalar product calculation under
the formula

Zi = 2−1Zi−1 + PMi, (23)

where Z0 = 0.
The number of modules for calculating the scalar product depending on the required

speed is determined by the following formula:

s =
N
2v , (24)

where N is the number of neuro-like elements, and v = 0, . . . , d, d = log2N. The system of
NN cryptographic data encryption reaches its highest speed when the number of computa-
tional modules of the scalar product corresponds to the number of neural elements N. To
ensure real-time data encryption, it is proposed to implement the scalar product calculation
modules, mask node module (MN), and module of the shaper of NN architecture and bit
slices of the input data in the form of specialized hardware.

The NN cryptographic data encryption component works as follows. Before encrypt-
ing the data, the MC configures the NN architecture (determines the number of neural
elements N, the number of inputs k and their bit-size m). For the selected NN architecture
matrix of weights Wj and tables of PMi macro-partial products are calculated by MC, and
then they are written in the memory of MP. In addition, the masks selected from the keys’
memory are stored in the MN node. The message X to be encrypted comes to input of MN
in fixed-point format; here, it is masked. The masked message X∗ from the output of MN
comes to input of the module of the shaper of NN architecture and bit slices, where it is
divided into N groups with m bit rate and bit slices are formed x1i, . . . , xNi. It should be
noted that forming of bit slices x1i, . . . , xNi begins with lower bits. The formed bit slices
x1i, . . . , xNi are the addresses for reading macro-partial products PMi from the MP memory.
The read macro-partial product PMi is written to the Rg1 register. The adder (Add) performs
a summation of macro-partial products PMi as per Equation (23). The number of cycles
required to calculate the scalar product is determined by the bit size of input m. Control
of the encryption process in the onboard system of NN cryptographic data encryption is
performed by MC.

The structure of the component of NN cryptographic data decryption is shown in
Figure 7, where DCSB is the decryption component setting block, and x∗j ¯j-th masked
initial data.
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The NN cryptographic data decryption component with symmetric keys works as
follows. Before the start of data decryption, a key arrives, which, with the help of DCSB,
configures the architecture (the number of N neuro-like elements) of the NN. For the
selected NN architecture, the matrix of weighting coefficients Wj and the table of macro-
partial products PMi are calculated using DCSB, and the mask digits are recorded in the
MN node. Encrypted data y1, . . . , yN in floating-point format are sent to the input of
the DCSB, in which the order alignment of the encrypted data and the formation of bit
sections of the mantissas of the encrypted data y1i, . . . , yNi are performed. Alignment of
the orders of the encrypted data y1, . . . , yN is performed by determining the maximum
order mmaxy, calculating the difference of orders for each yj of the encrypted number
∆myj = mmaxy −myj , and shifting the mantissa of each number to the right by the amount
∆myj . After the alignment of the orders, the formation of bit cuts of the mantissa of the
encrypted numbers y1i, . . . , yNi is performed, starting with the lowest digits.

The bit cuts y1i, . . . , yNi obtained at the output of the DCSB are the address for reading
from the MP memory of the macro-partial product PMi, which are used in the proposed
table-algorithmic calculation of the scalar product. Calculated macro-partial PMi product
is recorded in the register Rg1. With the help of the adder Add, the summation of macro-
partial products PMi is performed according to Equation (23). The number of cycles required
to calculate the scalar product is determined by the mantissas of encrypted numbers ny.
Management of the process of decryption of encrypted data is performed using MC.
Decrypted masked initial data x∗1 , . . . , x∗N are received at the inputs of the MN, at the output
of which we receive the initial data x1, . . . , xN .

The process of decrypting encrypted data takes much longer than the encryption pro-
cess. The number of cycles required to calculate the scalar product during data decryption
has increased by q =

⌈
ny
m

⌉
times, where d e—the sign of rounding up to a larger whole

number, ny is the digits number of the mantissa of the encrypted data, and m is the digits
number of the input data x1, . . . , xN . It is possible to reduce the time of calculating the
scalar product by using an algorithm that provides for the submission of q bit slices to the
address inputs of q tables of macro-partial products. The use of such an algorithm reduces
the time of calculating the scalar product by q times.

6. Results and Discussion

For experimental verification of the proposed NN technology for cryptographic protec-
tion of data transmission system, the simulation was performed. Currently, the hardware
description languages such as VHDL, VHDL-AMS, Verilog, and Verilog-AMS are widely
used for creating behavioral descriptions and models of digital, analog, and mixed-signal
devices and systems [44,45].

The design of specialized onboard hardware systems for NN cryptographic data
encryption was performed in the VHDL hardware programming language in the Quartus
II ver. 13.1 development environment using its libraries. The Quartus II development
environment supports the entire process of designing specialized hardware, from user
input to FPGA programming and debugging of both the chip itself and the tools as a whole.

A schematic diagram of the specialized hardware components of NN cryptographic
data encryption is shown in Figure 8. The inputs of module XOR_Mask1_4_2:
X [7..0]—are the input data; Clk—input sync for input data download; X_Mask [7..0]—8-bit
mask. At the output of this block, N vectors with bit length m are formed. Synchronization
is implemented on the leading edge of Clk pulses.

Block V_Cutter with N = 4 input vectors of bit length m = 2 consists of N registers of
parallel-serial type and forms vertical bit slices. Input data: Data_1 [n-1..0], . . ., Data_N [n-
1..0]—N input vectors with bit length n; Clk—pulses of synchronization of forming vertical
bit slices; Reset—the signal of the initial reset in the “0” output of the registers R_Par_Ser;
Load—the signal to allow data to be loaded into the R_Par_Ser registers. Outputs: V_Out1,
. . ., V_OutN—vertical bit slice. The formation of vertical sections begins with the lower bit.
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Figure 8. A circuit of the specialized hardware components of NN cryptographic data encryption.

The weights of the NN with N = 4 inputs with a bit length of m = 2 are stored in the
FPGA ROM in the form of four tables. Each of them consists of 16 words with a bit length
of 32 bits. Reading data from these tables is performed using blocks ROM_W_4_2_1, . . .,
ROM_W_4_2_4.

Inputs of these blocks: addr [3..0]—the address of the cell of the table from which the
data will be read; clk—synchronization pulses for reading data from the table. Synchro-
nization is implemented on the leading edge of the pulses clk. Output: q [31..0]—data read
from the cell with the input address.

The data read from the tables is transmitted to the input blocks Shift_EXP, which
perform their multiplication by 2j, where j = 0, . . . , n− 1. Upon receipt of this block of
data corresponding to the zero digit, the bit counter is reset. Synchronization of this block
is carried out by means of clock pulses Clk. At the output X_Out [0..31], we obtain the
input data multiplied by 2j.

From the output of the Shift_EXP blocks, the data are sent to one of the inputs of
the adders FP_ADD. The other input of the adders is connected to their output. Adder
input signals: clk—synchronization pulses; reset—signal to reset the input data opa when
implementing the adder with the battery; opa [0..31], opb [0..31]—terms. On the leading
edge of the first pulse clk, the adders are loaded into the adder, and on the leading edge of
the second pulse, the received sum is displayed. Adder output: the sum add [0..31].

From the output of the adders, FP_ADD data is fed to the input of the block XOR_
Mask2_32, which performs the overlay of the 32-bit mask. Inputs of the block XOR_Mask2_
32: X [31..0]—encrypted output data; Clk—synchronization of input data download;
X_Mask [31..0]—32-bit mask. Block output: vector Y [31..0]. Synchronization is imple-
mented on the leading edge of Clk pulses. The encrypted data are obtained at the outputs
D_Out_1, D_Out_2, D_Out_3, D_Out_4.

The timing diagram of the specialized hardware of NN cryptographic data encryption
is presented in Figure 9.

The time diagram (Figure 9) shows an example of NN cryptographic encryption of
eight-bit data, which are received in binary code at inputs X_In X [7..0]. An 8-bit mask
170 = 0xAA is received at the X_Mask [7..0] inputs, which is set using the lpm_const_XOR1
component (Figure 7). It is used to mask input data using the XOR operation. For
input X_In_1—01001100 XOR 10101010 = 11100110; for input X_In_2—01010100 XOR
10101010 = 11111110. For the first number 01001100 at the outputs Y_1[1. . .0], Y_2[1. . .0],
Y_3[1. . .0], Y_4[1. . .0] of the XOR_Mask1_4_2 block, we obtain 11, 10, 01, and 10, respec-
tively. When encrypting the first vector of input data at the Adr outputs, we obtain 4-bit
slices starting from the lowest bits, which are sent to the address inputs of ROM_W4_2_1,
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ROM_W4_2_2, ROM_W4_2_3, and ROM_W4_2_4 blocks. These lookup tables contain
pre-calculated neuro elements’ weights.

Figure 9. The timing chart of the specialized hardware of NN cryptographic data encryption.

For lower bits 1010 from ROM_W4_2_1 block, the 32-bit macro-partial product BEE-
BAE00 is read, which is fed to the input D_In_1 and to the input of the first block Shift_EXP,
which performs the multiplication operation by shifting by 2j, where j = 0, . . . , n− 1. At
the output of the first block Shift_EXP and at the input D_In_2, we obtain BEEBAE00. For
the next 1101 bits, the 32-bit macro-partial product 3ED81E40 is read from the ROM_W4_2_1
block. At the output of the first block Shift_EXP and at the input D_In_2, we obtain the
macro-partial product multiplied by two, which is equal to 3F581E40.

In the first adder FP_ADD, we sum up the data from the outputs of the first block
Shift_EXP and obtain the sum (its value is not displayed on the time charts), which is sent
to the first block XOR_Mask2_32. In the first block, XOR_Mask2_32, the XOR operation is
performed with the sum in IEEE 754 format and mask 2852192170 = 0xAA00FFAA. At the
D_Out_1 output, we obtain the encrypted value 0x94C4712A.

For input data with a dimension of 1 byte X_In = {01001100}, we obtain an encrypted
value with a dimension of 16 bytes D_Out_1 = 0x94C4712A; D_Out_2 = 0x153912B0;
D_Out_3 = 0x6A69F209; D_Out_4 = 0x6A01F74C.

The implementation of the specialized hardware for NN cryptographic data encryption
based on the FPGA EP3C16F484C6 Cyclone III family [46] requires 3053 logic elements and
745 registers. Approximately 160 nanoseconds are required to encrypt one input vector.

For comparison with the above-described hardware implementation on FPGA, the
same components were implemented exclusively as the software. The components were
created in the C language using the Code::Blocks development environment version 20.03.
The execution time of a similar NN cryptographic data encryption procedure using a
NanoPi Duo microcomputer based on the Allwinner Cortex-A7 H2+ SoC was about
20 ms. The results of the comparison allow us to see a significant gain in time for the
implementation of NN cryptographic data encryption and decryption.

The authors understand the importance of the issue of cryptographic stability. How-
ever, this is beyond the scope of this study. The security of the neural network cryptographic
approach mainly depends on the length of the key, which is determined by the masking
codes, the neural network architecture, and the floating-point weighting matrix, as well
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as on the frequency of its change. The length of the key depends on the number of neural
elements N, which determine the size of the matrix of weighting coefficients.

The operation of onboard communication cryptographic systems for UAVs can be
exposed to an attack on the secret key by breaking, through which it is possible to gain
access to protected data. However, the time and resources required to crack the key and
decrypt the encrypted data depend on the complexity of the algorithm for calculating
the floating-point weighting matrix and the decryption algorithm. The number of opera-
tions required to calculate the matrix of weighting coefficients is approximately equal to
N2n arithmetic operations (where n is the data bit width), and the number of operations
required to decrypt encrypted data approximately equals N2 operations of multiplying
floating-point numbers and N2 operations of adding floating-point numbers. Therefore, the
computational complexity of the proposed NN approach is high. Obviously, the evaluation
of security analysis could be performed in further studies.

7. Conclusions

The approach to the implementation of neural networks for cryptographic protection
of data transmission at UAV onboard communication systems has been presented in this
work. This paper describes the UAV onboard system for NN cryptographic data protection
in real-time using an integrated approach based on the following principles: variable
equipment composition; modularity; conveyorization and spatial parallelism; software
openness; and suitability for hardware implementation on FPGA.

The information technology of real-time neuro-like cryptographic data protection with
symmetric keys (masking codes, neural network architecture, and matrix of weighting
coefficients) oriented for onboard implementation has been developed. Due to the pre-
calculation of matrices of weighting coefficients and tables of macro-partial products, use
of tabular-algorithmic implementation of neuro-like elements, and dynamic change of
keys, it provides increased cryptographic stability and hardware–software implementation
on FPGA.

The table-algorithmic method of calculating the scalar product has been improved,
by bringing the weighting coefficients to the greatest common order, pre-calculating the
tables of macro-partial products and using instead of floating-point multiplication and
summation the operations of reading from memory, fixed-point summation and shift, it
provides a reduction hardware costs for its implementation and calculation time.

A real-time neural network cryptographic data protection system has been developed
on the basis of a processor core supplemented with specialized hardware modules for
calculating the scalar product, which, due to the combination of universal and specialized
approaches, software and hardware, ensures the effective implementation of neuro-like
algorithms for real-time cryptographic encryption and decryption of data.

The specialized hardware for NN cryptographic data encryption was developed in the
VHDL equipment programming language in the Quartus II environment and implemented
using family Cyclone III FPGA EP3C16F484C6.
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