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Abstract: In order to solve the problem of multiple aircraft formation transformation to a desig-
nated formation, a distributed formation transformation algorithm that decomposes the formation
transformation problem into target-matching problems and trajectory-planning problems was stud-
ied. According to the actual formation transformation requirements, the target allocation index
was proposed, and the improved genetic algorithm which is 23% better than other algorithms was
used to achieve target matching. The adaptive cross-mutation probability was designed, and the
population was propagated without duplicates by the hash algorithm. The multi-objective algorithm
of distributed model predictive control was used to design smooth and conflict-free trajectories for
the UAVs in formation transformation, and the trajectory-planning problem was transformed into a
quadratic programming problem under inequality constraints. Finally, point-to-point collision-free
offline trajectory planning was realized by simulation.

Keywords: distributed model predictive control; formation transformation; target matching;
trajectory planning

1. Introduction

UAV formation is a flexible and effective UAV management and organization mode,
including formation maintenance, formation change, and mission organization planning
execution. In the current advancement of multi-UAV formation research, centralized
communication-based multi-UAV formation has yielded significant theoretical outcomes
and practical applications in the domains of formation maintenance and cooperative
obstacle avoidance [1–5]. However, due to the growing demand for larger formation sizes,
the traditional centralized formation approach is inadequate in meeting the requirements of
large-scale formation control. With advancements in electronic information technology and
network communication, and by harnessing the benefits demonstrated by the distributed
formation control method, integrating distributed UAV formation with consistency theory
shows promising prospects for future research [6,7].

A well-designed information interaction mechanism is crucial for achieving rapid
convergence to the desired formation during multi-UAV operations. It facilitates main-
taining formation accuracy, expanding formation size, and enhancing overall redundancy.
Currently, three mainstream formation communication strategies exist: distributed [8–10],
centralized [11,12], and decentralized [13]. In the distributed strategy, each UAV com-
municates with its neighboring nodes, eliminating the need for a central node within the
formation [14].

Formation control is a crucial aspect of formation algorithms, complementing for-
mation communication. The consistency algorithm, leveraging graph theory, is a widely
employed strategy for formation control. For instance, Ren Wei introduced the concept of
consistent formation, where information exchange with neighboring nodes ensures consen-
sus among machines on specific cooperative state variables, enabling large-scale distributed
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cooperative formation [15–17]. Wang et al. proposed an adaptive distributed formation
protocol using time-varying gain, obviating the need for a global communication topology
map [18]. Deng et al. proposed a multi-step particle swarm optimization algorithm based
on swarm intelligence consistency theory for UAV formation trajectory planning, yielding
smooth trajectories and broad applicability [19]. Kuriki et al. developed a distributed model
predictive control mechanism aligned with the consistency algorithm, enabling cooperative
formation with collision avoidance capabilities [20]. Najm et al. proposed an enhanced
consistency algorithm for quad-rotor formations utilizing a master–slave communication
topology, with the algorithm’s controls being fine-tuned using genetic algorithms [21]. The
consistency algorithm finds applications in diverse fields such as multi-UAV time-varying
formations, sensor networks, and formation task decision making due to its scalability,
self-healing properties, and ease of implementation in UAV formation groups.

The purpose of this study is to propose a novel method for UAV formation transforma-
tion, which combines an improved genetic algorithm for target matching and a distributed
model predictive control strategy for trajectory planning. The significance of this research
lies in its potential to provide an effective solution for the challenging and crucial task of
UAV formation transformation in various applications of multi-UAV systems, including
military reconnaissance, rescue and disaster relief, environmental monitoring, traffic man-
agement, and more. This task necessitates the coordination and cooperation of multiple
UAVs, considering factors such as communication topology, obstacle avoidance, and control
input constraints. Existing methods for UAV formation transformation exhibit limitations,
such as high computational complexity, low convergence speed, and duplicate solutions.

The paper presents a novel method for UAV formation transformation that integrates
an improved genetic algorithm for target matching and a distributed model predictive
control strategy for trajectory planning. An adaptive genetic algorithm is devised to dynam-
ically adjust the crossover probability and variation probability based on the fitness value
of individuals, and a hash algorithm is employed to eliminate duplicate solutions. Further-
more, this paper applies an enhanced genetic algorithm in conjunction with a distributed
model predictive control strategy to address UAV formation transformation. The feasibility
of this approach is then confirmed through simulation and semi-physical experiments.

The rest of the paper is organized as follows: In Section 2, we present the optimization
of the target matching using an improved genetic algorithm. In Section 3, we describe
the use of distributed model predictive control (DMPC) for collision-free trajectory plan-
ning. Section 4 presents simulation results in various scenarios. Section 5 outlines the
shortcomings and presents a summary.

2. Objective Assignment Based on Improved Genetic Algorithm

There are two ways to obtain the optimal eye-matching solution from initial to target
formation during formation transformation: constructing an exact mathematical model
of the UAS and using metaheuristic algorithms. Although most metaheuristic algorithms
do not guarantee optimality, they simplify computational effort compared to the exact
mathematical model approach and find relatively optimal solutions through finite iterations.
Additionally, using metaheuristic algorithms eases deployment and implementation on
embedded system boards, making it a common strategy in engineering.

It is possible to turn the target-matching problem into an optimization problem by
establishing metrics for time and distance optimization. Optimization problems are a
classical application area for genetic algorithms due to their suitability in finding global
optimization solutions in large-scale problems containing discrete variables. This approach
is faster and provides better quality results than conventional methods. To solve the target
point matching, an improved genetic algorithm is used, which includes genetic coding,
fitness function calculation, selection, crossover, variation, and outputting an optimal match
through a specified number of iterations while meeting set conditions.
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2.1. Genetic Operator Coding Design

Selecting the appropriate encoding method for a genetic algorithm is crucial and
should depend on the specific problem and solution. Binary and symbolic coding methods
are appropriate for solving the target point matching problem. Binary coding offers
simple coding and decoding operations, crossover, and easy implementation of mutation
operations. Here, each point of the current and desired formations is labeled as 1, 2, 3, · · · , n,
and a feasible solution is represented by a two-dimensional matrix. The current queue
number serves as the column number while the desired queue number acts as the row
number. Each column has a separate match for each row, where the matrix element for
the matching row position is 1, and the rest of the row elements in that column are 0. Ten
UAVs are arranged in formation as shown in Figure 1.
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Assuming that the set of matches corresponding to 1, 2, 3, 4, 5, 6, 7, 8, 9, 10 is 7, 3,
2, 8, 9, 4, 1, 10, 6, 5, the corresponding binary code can be expressed in the form of a
two-dimensional matrix as follows:

A1 =



0 0 0 0 0 0 1 0 0 0
0 0 1 0 0 0 0 0 0 0
0 1 0 0 0 0 0 0 0 0
0 0 0 0 0 1 0 0 0 0
0 0 0 0 0 0 0 0 0 1
0 0 0 0 0 0 0 0 1 0
1 0 0 0 0 0 0 0 0 0
0 0 0 1 0 0 0 0 0 0
0 0 0 0 1 0 0 0 0 0
0 0 0 0 0 0 0 1 0 0


(1)

The symbolic encoding in this problem is a direct encoding using each UAV number
in the formation 1, 2, 3, · · · , n to construct a numeric string-based genetic operator as a
feasible solution. Taking the formation transformation shown as an example, assuming that
the set of matches corresponding to 1, 2, 3, 4, 5, 6, 7, 8, 9, 10 is 7, 3, 2, 8, 9, 4, 1, 10, 6, 5, the
corresponding symbolic encoding can be expressed in the form of a row vector as follows:

A2 = [7 3 2 8 9 1 10 6 5]; the implicit left-to-right indexes in the row vector match the
values corresponding to the indexes, forming a set of target null point matches.

Both of the above encoding methods can be implemented in the formation transforma-
tion to solve the target airspace point matching problem, but considering the engineering
problem of the actual algorithm, the space used for two-dimensional matrix storage is
larger. Assuming that the number of populations in the genetic algorithm is m and the
number of formation UAVs is n, the storage space occupied by a single genetic operator
with binary encoding is n2 and the overall space complexity is O(mn2); the storage space
occupied by a single genetic operator with symbolic encoding is n and the overall space
complexity is O(mn). Considering the small storage space of the embedded chip SDRAM,



Drones 2023, 7, 527 4 of 23

the symbolic encoding method is more convenient for the deployment of the algorithm
on the embedded system board, which is conducive to the engineering of the algorithm,
and the symbolic encoding method is more intuitive for the subsequent cross-variance
operation, so the symbolic encoding method is chosen for this problem.

2.2. Adaptation Function Analysis

Given that the genetic algorithm is a stochastic global search and optimization method
that mimics the evolutionary mechanism of organisms in nature, it is crucial to establish
evaluation metrics to score individuals in the population and implement survival of the
fittest. In this problem, a fitness function is constructed using the total distance metric
for formation transformation, as well as time and the number of trajectory crossings as
optimization objectives.

(1) Formation change flight distance constraint

In the process of formation transformation, the total distance from the current for-
mation to the desired formation is the metric that we need to optimize, and the smaller
the distance sum, the better. Suppose there are n UAVs, the position of the UAV in the
current formation is (xi, yi, zi), the corresponding matching target point in the desired
formation is marked as (ai, bi, ci), and the total distance cost is dsum; then, we have the
following equation:

dsum =
n

∑
i=1

(√
(xi − ai)

2 + (yi − bi)
2 + (zi − ci)

2
)

(2)

(2) UAV maximum flight time constraint

Assuming that each UAV has the same speed v during the formation change, the
time to complete the formation change depends on the UAV that takes the longest time to
reach the specified position, and the maximum flight time is recorded as tmax, the distance
from each UAV to the corresponding matching point is recorded as di, and the following
equations are obtained: di =

√
(xi − ai)

2 + (yi − bi)
2 + (zi − ci)

2

tmax = max
{

d1
v , d2

v , d3
v , · · · , di

v , · · · , dn
v

} (3)

(3) Constraint on the number of trajectory crossings

To subsequently reduce the difficulty of the collision avoidance algorithm, target
matching with the lowest possible number of trajectory crossings should be considered as
much as possible. Suppose the two position points of the current formation are A and C,
and the expected transformed position points are B and D. Let the coordinates of the four
points A, B, C, and D be (x1, y1, z1), (x2, y2, z2), (x3, y3, z3), and (x4, y4, z4). The parametric
equations of the line segments AB and CD are

x = x1 + (x2 − x1)t
y = y1 + (y2 − y1)t
z = z1 + (z2 − z1)t

,


x = x3 + (x4 − x3)t′

y = y3 + (y4 − y3)t′

z = z3 + (z4 − z3)t′
(4)

where t ∈ [0, 1] The parametric equation of the line CD is t
′ ∈ [0, 1]. Now, the question of

whether the two trajectories intersect translates into whether there exists t1, t2 ∈ [0, 1] such
that the following system of equations holds:

x1 + (x2 − x1)t1 = x3 + (x4 − x3)t2
y1 + (y2 − y1)t1 = y3 + (y4 − y3)t2
z1 + (z2 − z1)t1 = z3 + (z4 − z3)t2

(5)
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Equation (5) can be expressed in matrix form as follows:

a
[

t1
t2

]
= b (6)

a =

x2 − x1 x3 − x4
y2 − y1 y3 − y4
z2 − z1 z3 − z4

 =

a11 a12
a21 a22
a31 a32

, b =

x3 − x1
y3 − y1
z3 − z1

 =

b1
b2
b3

 (7)

When aTa is invertible, at which point there is an intersection or dissimilarity of the
two line segments, solving the system of equations using the least squares method yields

A11 = a2
11 + a2

21 + a2
31

A12 = a11a12 + a21a22 + a31a32
A21 = A12
A22 = a2

12 + a2
22 + a2

32
B1 = a11b1 + a21b2 + a31b3
B2 = a12b1 + a22b2 + a32b3
t1 = −(A12B2 − A22B1)/(A11 A22 − A12 A21)
t2 = (A11B2 − A21B1)/(A11 A22 − A12 A21)

(8)

where A11A22 – A12A21 6= 0. After solving for t1, t2, determine if its value is within the
interval [0, 1], and then further determine if the following equation holds:

|(x1 + (x2 − x1)t1)− (x3 + (x4 − x3)t2)| < eps
|(y1 + (y2 − y1)t1)− (y3 + (y4 − y3)t2)| < eps
|(z1 + (z2 − z1)t1)− (z3 + (z4 − z3)t2)| < eps

(9)

where eps is the set tolerance; if (9) holds, then the line segment AB intersects the line
segment CD; otherwise, the line segment AB is opposite to CD. When aTa is not invertible,
then the two line segments are parallel, and the trajectories do not have the possibility
of intersection.

Using the above derivation, we can determine whether the assigned trajectories are
crossed or not, and we can achieve the statistics of the number of crossings for all trajectories
with the time complexity of O(n2), and the number of crossings is mcross. Considering the
above optimization indexes, the following cost function can be constructed:

Fitness (cur, tar, v, chrom) = k − a1dsum − a2tmax − a3mcorss (10)

where k is the bounding value constant, v is the formation transformation UAV flight
speed, a1 is the total distance scaling factor, a2 is the maximum time scaling factor, the
scaling factor a3 is used to maintain uniform order of magnitude for the medium distance
cost, the maximum time cost, and the trajectory crossing number cost. curn×3 stores the
coordinates 1, 2, 3, · · · , n corresponding to the current numbered queue. tar′n×3 stores the
coordinates 1, 2, 3, · · · , n corresponding to the desired numbered queue. chrom is a set
of feasible symbolic encoding solutions. tar′n×3 can be adjusted based on the matching
information provided by chrom, resulting in a two-dimensional matrix that stores the
corresponding matched coordinates. This matrix is denoted as tar′n×3. To solve dsum, the
Euclidean distance between the corresponding rows of curn×3 and tar′n×3 is calculated
individually and then accumulated.

2.3. Selection Operator and Hash De-Duplication Design

The selection strategy used in this paper utilizes the roulette selection algorithm.
Firstly, the fitness of individuals in the population is calculated. Then, individuals are
selected at random based on their fitness, using a proportional range to determine the
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likelihood of selection. As a result, individuals with higher fitness levels are more likely to
be selected and retained during the evolutionary iteration process.

If an individual is denoted as i and its fitness is fi, the probability that it will be selected
is expressed as

Pi =
fi

n
∑

i=1
fi

(11)

High-fitness individuals are more likely to be selected. The retention method for elite
individuals is utilized in the initial selection strategy, where the top 5% of high-fitness
individuals in the population are retained, and the remaining individuals are randomly
selected using the roulette algorithm.

After the roulette strategy selection, some individuals with higher fitness will be
selected repeatedly, which may lead to the individuals with higher fitness occupying
the population rapidly in the subsequent iterative solution process, resulting in the local
optimal solution at the initial iteration stage. Therefore, steady-state selection without a
repeat string should be realized. In this section, the Rabin–Karp string hashing algorithm is
used to realize the non-repeated string judgment of genetic operators. Let the symbolic
code of each feasible solution be chrom; chrom is a sequence consisting of numbers a0, a1,
a2, · · · , an−1, which can be treated as a max{ai} + 1 progressive number, and then the
corresponding value of this sequence can be calculated by the following equation:

f (chrom) =
n−1

∑
i=0

(max{ai}+ 1)
i

× ai (12)

Considering that the hash value obtained from the calculation will be very large, it is
necessary to mold the result of the calculation f (chrom) on a large prime number P and map
this value to the int range. Two different genetic operators will have different encoding
values before modulo, but the encoding values may be the same after modulo, because
the hash encoding method is not single-shot, and there is a possibility of hash collision.
However, according to the birthday paradox, there is a high probability of collision when a
sequence of O

(√
mod

)
numbers is generated randomly, so the modulus can be set as large

as possible to avoid collision. So, the actual hash function is modified as follows:

f (chrom) =
n−1

∑
i=0

(max{ai}+ 1)
i

× ai(modP) (13)

The Rabin–Karp string hashing algorithm can be employed to eliminate duplicate
genetic operators in the roulette wheel selection strategy. Subsequently, the excluded
genetic operators can be replenished by randomly initializing new genetic operators.

2.4. Crossover and Variational Operator Design

A crossover operation involves permuting and reconstructing the local structure of two
parent operators to create new individuals. In the iterative process of a genetic algorithm, a
crossover operation has a probability of producing new and improved individuals.

In this section, we utilize partial cross-matching. The following Figures 2 and 3 depicts
the encoding pre- and post-exchange.
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The operator crossover generation strategy is specific to the following steps: Firstly,
we save the numbers in the sequence for each genetic operator using a hash table. Then,
we perform a two-point crossover for the genetic operator. Next, we traverse the number
sequence for the other genetic operator, removing numbers from the corresponding hash
table if present and marking the corresponding number in the genetic operator as visited.
Finally, we traverse the exchanged fragment of the genetic operator and sequentially
remove and replace the data in the hash table of the genetic operator with the data removed
from the unvisited position in the hash table. The resulting modified operator is shown in
Figure 4.

Drones 2023, 7, x FOR PEER REVIEW 7 of 25 

collision when a sequence of  modO  numbers is generated randomly, so the modulus 

can be set as large as possible to avoid collision. So, the actual hash function is modified 
as follows: 

      
1

0
max 1 mod

in

i i
i

f chrom a a P




    (13) 

The Rabin–Karp string hashing algorithm can be employed to eliminate duplicate 
genetic operators in the roulette wheel selection strategy. Subsequently, the excluded 
genetic operators can be replenished by randomly initializing new genetic operators. 

2.4. Crossover and Variational Operator Design 
A crossover operation involves permuting and reconstructing the local structure of 

two parent operators to create new individuals. In the iterative process of a genetic 
algorithm, a crossover operation has a probability of producing new and improved 
individuals. 

In this section, we utilize partial cross-matching. The following Figures 2–3 depicts 
the encoding pre- and post-exchange. 

 
Figure 2. Pre-crossover coding. 

 
Figure 3. Post-crossover coding. 

The operator crossover generation strategy is specific to the following steps: Firstly, 
we save the numbers in the sequence for each genetic operator using a hash table. Then, 
we perform a two-point crossover for the genetic operator. Next, we traverse the number 
sequence for the other genetic operator, removing numbers from the corresponding hash 
table if present and marking the corresponding number in the genetic operator as visited. 
Finally, we traverse the exchanged fragment of the genetic operator and sequentially 
remove and replace the data in the hash table of the genetic operator with the data 
removed from the unvisited position in the hash table. The resulting modified operator is 
shown in Figure 4. 

 
Figure 4. Modified crossover operator. 

The variation operation often accompanies the selection and crossover operations to 
prevent the genetic algorithm from converging to a local optimum too early in the iterative 

Figure 4. Modified crossover operator.

The variation operation often accompanies the selection and crossover operations to
prevent the genetic algorithm from converging to a local optimum too early in the iterative
process. Variation is carried out on a single chromosome; we employ the reversal variation,
depicted in Figure 5.
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The operator crossover probability Pc and variance probability Pm are fixed values in
conventional genetic algorithms, and these two parameters directly affect the convergence
of the algorithm. Based on this, an adaptive genetic algorithm is proposed that can dynami-
cally modify the crossover probability Pc and the variation probability Pm. For individuals
whose fitness is higher than the average fitness value of the population, Pc and Pm with
smaller probability values are constructed so that the individuals have a higher probability
of being retained.

Pc =

{
Pc1 − (Pc1−Pc2)( fmax− f ′)

fmax− favg
, f ≥ favg

Pc1, f < favg
(14)

Pm =

{
Pm1 − (Pm1−Pm2)( fmax− f )

fmax− favg
, f ≥ favg

Pm1, f < favg
(15)

where f max is the maximum fitness value in the population; f avg is the average fitness value
of the population per generation; f

′
is the larger fitness value of the two individuals to be

crossed; f is the fitness value of the individual to be mutated; and Pc1, Pc2, Pm1, and Pm2
are constants. The Figure 6 is the overall flow chart of the improved genetic algorithm.
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3. Design of Trajectory-Planning Strategy Based on Distributed Model Prediction
3.1. The Basic Principle of MPC Algorithm

The model predictive control (MPC) algorithm is a model to predict the performance
of the system in a future time period for optimal control, mostly used for digit control, and
is a discrete state space expression.

Suppose the following discrete state space expression is available:

x(k + 1) = Ax(k) + Bu(k) (16)

Let the predicted system input at time k for the system at time k + i be denoted as
u(k = i|k) and the predicted system state vector k be denoted as x(k = i|k). The prediction
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horizon of the system is N. Considering the initial state of the system as xk, the following
recursive equation can be obtained:

x(k | k) = xk
x(k + 1 | k) = Axk + Bu(k | k)
x(k + 2 | k) = A2xk + ABu(k | k) + Bu(k + 1 | k)

...
x(k + N | k) = ANxk + AN−1Bu(k | k) + · · ·+ Bu(k + 1 | k)

(17)

Let Xk be the column vector consisting of the system state variables at N + 1 mo-
ments and Uk be the column vector consisting of the system predicted input variables at
N moments; the above equation can be written in the following matrix form:

Xk = Mxk + CUk (18)

where Xk =


x(k|k)

x(k + 1|k)
x(k + 2|k)

...
x(k + N|k)

, M =


I
A
A2

...
AN

, Uk =


u(k|k)

u(k + 1|k)
...

u(k + N − 1|k)

, xk is the initial state

variables, and C =


0 0 · · · 0
B 0 · · · 0

AB B · · · 0
...

...
. . .

...
AN−1B AN−2B · · · B

.

For model predictive control, the commonly used optimization strategy is quadratic
programming (QP). The general form of quadratic programming is as follows:

f = ZTQZ + CTZ (19)

where ZTQZ is quadratic and CTZ is linear for the model predictive control algorithm in
which the cost function needs to be reduced to a general quadratic form for optimal control.
To simplify the derivation, this paper treats the reference state quantity as 0, so the error
state quantity is the system state quantity, so the following cost function can be obtained:

J =
N−1
∑

i=0

(
x(k + i|k)TQx(k + i|k) + u(k + i|k)T Ru(k + i|k)

)
+x(k + N|k)T Fx(k + N|k)

(20)

where Q, R, and F are diagonal matrices. The above cost function can be written in the
following form:

J = XkQXk + UT
k RUk (21)

where Q =


Q

Q
Q

. . .
F

 and R =


R

R
. . .

R

. Substituting Formula (20)

into the previous Equation (21), we can further expand it, resulting in the following:

J = (Mxk + CUk)
TQ(Mxk + CUk) + UT

k RUk
=
(

xT
k MT + UT

k CT)Q(Mxk + CUk) + UT
k RUk

=
(

xT
k MTQ + UT

k CTQ
)
(Mxk + CUk) + UT

k RUk
= xT

k MTQMxk + xT
k MTQCUk + UT

k CTQMxk + UT
k CTQCUk + UT

k RUk
= xT

k MTQMxk + 2xT
k MTQCUk + UT

k
(
CTQC + R

)
Uk

(22)
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Let MTQM be G, MTQC be E, and CTQC + R be H, so the above equation can be
reduced to

J = UT
k HUk + 2xT

k EUk + xT
k Gxk (23)

This transforms the optimization problem of model predictive control into a quadratic
programming problem.

3.2. Single UAV Prediction Modeling

An improved genetic algorithm can be implemented to determine the optimal target
matching during the formation transformation process and determine the destination point
of each UAV. In this section, we conduct conflict-free trajectory planning to solve the UAV
point-to-point transformation problem. For trajectory generation, we employ a distributed
model predictive control (DMPC)-based multi-objective algorithm.

The UAV uses a second-order integrator model. Assume that at time step k, the
position vectors in the three directions of x, y, z for UAVi are represented as di[k]3×1, the
velocity vector is represented as vi[k]3×1, and the acceleration vector is represented as
ai[k]3×1. If the acceleration is used as the system input and the discretization step is s, then
the dynamic model of the UAVi is as follows:

di[k + 1] = di[k] + svi[k] + s2

2 ai[k]
vi[k + 1] = vi[k] + sai[k]

(24)

At each discretized time slice, an optimal input sequence can be obtained based on the
controlled object’s model, within the given prediction interval. The resulting first input is
applied to the actual system, and the current system state variables are measured to initiate
the optimal control problem in the subsequent moment. This approach enables rolling
control optimization. Considering the current discrete time slice sequence as the first kt,
UAVs are deployed in a distributed manner, iteratively optimizing trajectory generation
by sharing predicted state sequences with neighboring UAVs. Each UAV calculates the
optimal input sequence considering collision possibilities, system constraints, and motion
model parameters. The first input of the obtained sequence is applied to the UAV, followed
by a collective movement to the next time step while sharing state variables. The prediction
model of the UAVi is as follows:[

d̂i[k + 1|kt]
v̂i[k + 1|kt]

]
=

[
I3 sI3
03 I3

][
d̂i[k|kt]
v̂i[k|kt]

]
+

[(
s2/2

)
I3

sI3

]
âi[k|kt] (25)

By choosing acceleration as the model input, the above equation can be reduced to the
following form:

x̂i[k + 1|kt] = Ax̂i[k|kt] + Bûi[k|kt] (26)

where x̂i ∈ R6, A ∈ R6×6, B ∈ R6×6, and ûi ∈ R3. The state of the system at time kt is
as follows:

di = A0X0,i + ΛUi (27)

where X0,i = xi[kt], di ∈ R3K, Ui ∈ R3K, Λ =


ΨB 03 · · · 03

ΨAB ΨB · · · 03
...

...
...

...
ΨAK−1B ΨAK−2B · · · ΨB

, Λ ∈ R3K×3K,

Ψ =
[
I3 03

]
, and A0 =

[
(ΨA)T (

ΨA2)T · · ·
(
ΨAK)T

]T
∈ R3K×6.

3.3. Establishment of the Cost Function of the DMPC Algorithm

The goal of optimal control is to minimize the cost function. In this section, the cost
function primarily comprises error tracking, control input, and input variation terms. Our
aim is to find the optimal input sequence that minimizes the cost function.
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(1) Error tracking term

The error tracking term is used to better track the reference trajectory. The smaller the
error tracking, the better the actual flight fits the target planning curve. The form of the
error tracking term is as follows:

ei =
K

∑
K−κ

∥∥∥d̂i[k|kt]− dO,i

∥∥∥
2

(28)

where do,i is the final desired target location point and K− κ is the discretization step from
K to κ. Using (23), the error tracking term can be written in the following quadratic form:

Je,i = UT
i

(
ΛTQ̃Λ

)
Ui − 2

(
dT

O,iQ̃Λ− (A0X0,i)
TQ̃Λ

)
Ui (29)

where Q̃ ∈ R3K×3K is a positive definite diagonal matrix and the elements on the diagonal
indicate the error weights corresponding at each sampling point, when κ = 1, correspond-
ing to Q̃ = diag(03, · · · , Q); Q is also a positive definite diagonal matrix, Q ∈ R3×3. The
larger κ is, the more drastically the UAV moves toward the target point and may appear to
overshoot at the end point.

(2) Control input items

The smaller the input control term, the smaller the overall energy consumption of the
system. Based on the derivation in the previous section, the term can be written in the
following quadratic form:

Jc,i = UT
i R̃Ui (30)

where R̃ ∈ R3K×3K is a positive definite diagonal matrix; the elements on the diagonal
represent the corresponding input weights at each sampling point; and R̃ = diag(R, · · · , R),
R ∈ R3×3, and R are also positive definite diagonal matrices.

(3) Input change items

The smaller the input variation term, the smoother the control will be, and no violent
oscillations or large changes in trajectory will occur. The cost expression of the input
variation term is as follows:

∆i =
K−1

∑
k=0
‖ûi[k|kt]− ûi[k− 1|kt]‖2 (31)

The above expression can be rewritten as the following quadratic form:

Jδ,i = UT
i

(
ΓT S̃Γ

)
Ui − 2

(
UT

ii S̃Γ
)

Ui (32)

where S̃ = diag(S, · · · , S) ∈ R3K×3K is a positive definite diagonal array, and the elements
on the diagonal represent the weights of the input variables corresponding to S ∈ R3×3,

Uii =
[
ui[kt − 1]T 0T

3×1 · · · 0T
3×1

]T
∈ R3K, and Γ =


I3 03 03 · · · 03 03
−I3 I3 03 · · · 03 03
03 −I3 I3 · · · 03 03
...

...
...

. . .
...

...
03 03 03 · · · −I3 I3


at each sampling point, and summing the above three surrogate values gives the final
cost function:

Ji(Ui) = Je,i + Jc,i + J∆,i (33)
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3.4. Collision Avoidance Constraints and Physical Constraint Design

We can use the prediction property of DMPC to detect collision trajectories and impose
constraints to avoid collisions. The constraint condition for UAV i to avoid collision with
UAV j at time step kC,i is as follows:

ϑij =
∥∥∥M−1

(
d̂i[kC,i|kt − 1]− d̂j[kC,i|kt − 1]

)∥∥∥
n
≥ lmin (34)

lmin denotes the minimum distance between the UAVi and the UAVj in the xy plane.
M denotes the scaling matrix, which is expanded in the following form:

M =

a 0 0
0 b 0
0 0 c

 (35)

Generally, take a = b = 1, c > 1; thus, the minimum distance constraint required at
the z axis is lz,min = clmin. The solution time is at kt, and each UAV has only the information
of other UAVs at the time of kt − 1; then, the collision prediction occurs at the time of
kc,j + kt − 1, and the set of collision constraints is

Ωi =
{

j ∈ {1, · · · , N}
∣∣ϑij < f (lmin), i 6= j

}
(36)

If a collision is detected, a new input sequence must be calculated by including a
collision constraint. Considering that the optimization problem can sometimes be infeasible,
a relaxed obstacle avoidance constraint is developed as follows:∥∥∥M−1

(
d̂i[kC,i − 1|kt]− d̂j[kc,i|kt − 1]

)∥∥∥
n
≥ lmin + εij (37)

where εij is a relaxation factor less than 0. We can use the first-order Taylor expansion
at kC,j + kt − 1 of the UAVi to make an approximation to the above equation, with the
expansion point taken as d̂i[kC,i − 1|kt], and the approximate expansion process is as fol-

lows: let f (x, y, z) =

∥∥∥∥∥∥M−1

x
y
z

− 2d̂j[kC,i|kt − 1]

∥∥∥∥∥∥
n

; the column vector parametrization

is defined as

∥∥∥∥∥∥
x

y
z

∥∥∥∥∥∥
n

= (xn + yn + zn)
1
n , M−1 =

1
1

c−1

. The partial derivative of

f (x, y, z) gives the following results:
∂

∂x f (x, y, z) = f 1−n × (x− d̂j,1[kC,i|kt − 1])
n−1

∂
∂y f (x, y, z) = f 1−n × (y− d̂j,2[kC,i|kt − 1])

n−1

∂
∂z f (x, y, z) = c−n f 1−n × (z− d̂j,3[kC,i|kt − 1])

n−1
(38)

Taking the independent variable as x = p̂i[kc,i − 1|kt] and the expansion point as

x0 = d̂i[kC,i

∣∣∣kt − 1] , by Taylor expansion, we have the following:

f (x) ≈ f (x0) + f ′(x0)(x− x0)
T

= f (x0) + [ f (x0)]
1−nM−n

(
x0 − d̂j[kC,i | kt − 1]

)T
(x− x0)

(39)

It can be inferred from (34) that

f (x0) = ϑij =
∥∥∥M−1

(
d̂i[kC,i|kt − 1]− d̂j[kC,i|kt − 1]

)∥∥∥
n

(40)
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Substituting the above equation into (39) yields

f (x) ≈ ϑij +
(
ϑij
)1−nM−n

(
x0 − d̂j[kC,i | kt − 1]

)T
(x− x0)

= ϑij +
(
ϑij
)1−nM−n

(
x0 − d̂j[kC,i | kt − 1]

)T
x

−
(
ϑij
)1−nM−n

(
x0 − d̂j[kC,i | kt − 1]

)T
x0

(41)

It can be inferred from (37) that

f (x) ≥ lmin + εij (42)

Substituting into the above equation, we obtain

f (x) ≈ ϑij +
(
ϑij
)1−nM−n

(
x0 − d̂j[kC,i | kt − 1]

)T
x

−
(
ϑij
)1−nM−n

(
x0 − d̂j[kc,i | kt − 1]

)T
x0 ≥ lmin + εij

(43)

Further simplification yields

ϑn
ij + M−n

(
x0 − d̂j[kC,i | kt − 1]

)T
x−M−n

(
x0 − d̂j[kC,i | kt − 1]

)T
x0

≥ lminξn−1
ij + εijϑ

n−1
ij

⇒ M−n
(

x0 − d̂j[kC,i | kt − 1]
)T

x− εijϑ
n−1
ij

≥ lminϑn−1
ij − ϑn

ij + M−n
(

x0 − d̂j[kC,i | kt − 1]
)T

x0

(44)

Obtain
υT

ij d̂i[kC,i|kt]− εijϑij ≥ ρij (45)

where υij = M−n
(

d̂i[kC,i|kt − 1]− d̂j[kC,i|kt − 1]
)n−1

. As physical constraints, this paper
considers acceleration as well as position sequences, and the following constraints can be
obtained: amin ≤ ai[k] ≤ amax and dmin ≤ di[k] ≤ dmax. Expressing them in matrix form,
we have 

Dmin =
[
dT

min · · · dT
min
]T , Dmax =

[
dT

max · · · dT
max
]T

Umin =
[
aT

min · · · aT
min
]T , Umax =

[
uT

max · · · uT
max
]T

Dmin − A0X0,i ≤ ΛUi ≤ Dmax − A0X0,i
Umin ≤ Ui ≤ Umax

(46)

By listing all the constraints for the K prediction interval and rewriting them in matrix
form, the final inequality constraint is obtained as follows:

AinUi ≤ bin (47)

In order to transform the collision constraint into an affine function of the decision
variables, we expand the previously obtained formula by introducing column vectors,
Ei ∈ Rnc,i , and nc,i denoting the number of neighboring UAVs within the collision radius,
and Ei can be expressed as follows:

Ei =


...

εij
...

 (48)
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where i ∈ Ωi =
{

j ∈ {1, · · · , N}
∣∣ξij < f (rmin), i 6= j

}
, µT

ijΛUi − εijξij ≥ ρij − µT
ij A0X0,i,

µij ∈ R3K, and µij =
[
0T

3(ke ,i−1)υ
T
ij0

T
3(K−ke,i)

]T
. Listing the above inequalities in order by

i = 1, 2, · · · 3K + nc,i and writing them in matrix form yields.

AcollYi ≤ bcoll (49)

where Yi =

[
Ui
Ei

]
; the final cost function with obstacle avoidance information is as follows:

Jaug,i(Yi) = J(Ui) + YT
i Hε,iYi − f T

ε,iYi (50)

where fε,i = ς
[
0T

3K×1 1T
nc,i×1

]T
and Hε,i = τ

[
03K×3K 03K×nc,i

0nc,i×3K Inc,i

]
.

4. Simulation Results and Analysis
4.1. Target Assignment Algorithm Simulation Verification

According to simulation comparison results in Figure 7, the improved genetic al-
gorithm demonstrates the smallest total distance traveled. In terms of solving time, the
Hungarian algorithm experiences slower solving speed due to the increasing matrix di-
mension with a growing number of UAVs, while the improved genetic algorithm becomes
faster. Additionally, regarding the number of trajectory crossings, the improved genetic
algorithm maintains fewer crossings compared to the ordinary genetic algorithm and the
Hungarian algorithm, which do not consider this element and result in more random
trajectory crossings. In conclusion, the proposed improved genetic algorithm exhibits
excellent performance in solving the queue transformation goal assignment problem.
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The target-matching results of the Hungarian algorithm and the improved genetic
algorithm are shown in Figure 8.

The two comparison experiments above reveal that with a small number of UAVs in
the formation transformation, trajectories rarely intersect. However, as the number of UAVs
increases, the Hungarian algorithm, which does not consider trajectory crossover, generates
more crossovers in its optimal solution compared to the improved genetic algorithm.
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algorithm target-matching results for 10 UAVs; (d) Description of improved genetic algorithm target-
matching results for 10 UAVs.

4.2. Simulation Verification of Formation Transformation Collision Avoidance Constraints

This subsection examines the impact of collision avoidance constraints in the trajectory-
planning algorithm to demonstrate that collision-free arrival at the target position is possible
during the formation transformation. We set the initial formation of four UAVs as a rect-
angle to necessitate trajectory crossover during the transformation process. The crossover
transformation is then applied to the diagonal vertices within the 2D xoy plane. The co-
ordinates of UAVs 1–4 are set as (0, 0), (50, 50), (50, 0), and (0, 50), respectively, and the
simulation results are presented in Figures 9–12.

It can be seen from the figure that in the diagonal vertex exchange process, collision
avoidance constraint plays a role in trajectory planning; when UAV 1 and UAV 2 are
exchanged in position, the UAV 1 trajectory is shifted, avoiding the situation of head-on
collision with UAV 2.
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4.3. Simulation and Verification of Trajectory-Planning Algorithm

We independently simulated transformation scenarios for distance-sparse and distance-
dense formations to gauge the efficacy of the trajectory planner. Firstly, we defined the
following simulation conditions for the distance sparse formation:

The current formation of 13 UAVs is set as the letter “N”, the desired formation is set
as the letter “A”, and the compactness factor of the formation is set as ktight. The larger the
ktight is, the thinner the formation is. For this simulation, ktight = 10; the specific coordinates
of formation “N” and formation “A” are presented in Table 1.

Table 1. Initial and desired formation coordinate settings for 13 UAVs.

UAV Number Position Coordinates of the
Actual Formation N (m)

Position Coordinates of the
Desired Formation A (m)

1 ktight (10, 10, 10) ktight (−50, −50, 20)
2 ktight (10, 10, 12) ktight (−49, −50, 22)
3 ktight (10, 10, 14) ktight (−48, −50, 24)
4 ktight (10, 10, 16) ktight (−47, −50, 26)
5 ktight (10, 10, 18) ktight (−46, −50, 28)
6 ktight (12, 10, 16) ktight (−45, −50, 30)
7 ktight (14, 10, 14) ktight (−44, −50, 28)
8 ktight (16, 10, 12) ktight (−43, −50, 26)
9 ktight (18, 10, 10) ktight (−42, −50, 24)
10 ktight (18, 10, 12) ktight (−41, −50, 22)
11 ktight (18, 10, 14) ktight (−40, −50, 20)
12 ktight (18, 10, 16) ktight (−46, −50, 24)
13 ktight (18, 10, 18) ktight (−44, −50, 24)

Figures 13–18 depict the initial state diagrams of formation transformation and the
corresponding target-matching results.

In the simulation of compact formation transformation, the formation compactness
factor ktight was set to 2, and the rest of the conditions were set to be consistent with the
sparse formation transformation; the simulation results are presented in Figures 19–22.
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Figure 20. Compact formation transformation x-direction displacement curve for 13 UAVs. 
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Figure 22. Compact formation transformation z-directional displacement curve for 13 UAVs.

From the simulation results, Figure 14 shows that the improved genetic algorithm
successfully performs the UAV formation position assignment. Figure 15 shows the path
diagram of 13 UAVs planned from their own starting point to the end point, from which it
can be seen that the trajectories of individual UAVs do not cross each other. Figures 16–18
show the displacement curves of each UAV in the x, y, z directions with time during the
formation transformation. From the final end coordinates, the x-axis coordinates of the
13 drones are concentrated in the range of −500 m to −400 m, while the y-axis coordinates
are concentrated around −500 m. In the z-axis direction, two drones converge at a height
of 200 m, two at 220 m, four at 240 m, two at 280 m, and one at 300 m. The actual
simulation results are consistent with the expected results set in the experiment. Therefore,
the trajectories planned by the UAVs can ensure the smooth transformation of each aircraft
from the current formation to the desired formation.

When the formation spacing was decreased, the single-axis distance between UAVs
ranged between 2 m and 4 m. Simulation results indicate that collision-free trajectory
planning can still be achieved with smooth convergence from the current formation “N” to
the desired formation “A”, as shown in Figures 20–22.

4.4. Semi-Physical Simulation Results and Analysis

The formation transformation algorithm was previously verified by Matlab simulation.
In order to further verify the effectiveness of the proposed algorithm in real engineering
applications, semi-physical simulations were performed using Airsim Unreal Engine in
conjunction with the Ardupilot flight control and distributed networking data transmission.

The goal of the simulation was to change the 13 UAVs from the initial “M” formation
to the “A” formation, and the initial and final formations of UAV 1 to UAV 13 are shown in
Figure 23.
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Figure 23. Formation transition diagram.

The initial coordinates of UAVs 1–13 are (0, 0, 10), (6, 0, 10), (12, 0, 10), (18, 0, 10), (12, 3,
10), (6, 6, 10), (0, 9, 10), (6, 12, 10), (12, 15, 10), (18, 18, 10), (12, 18, 10), (6, 8, 10), and (0, 18,
10). The coordinates of the final formation are (60, 60, 50), (64, 63, 50), (68, 66, 50), (72, 69,
50), (76, 72, 50), (80, 75, 50), (76, 78, 50), (72, 81, 50), (68, 84, 50), (64, 87, 50), (60, 90, 50), (68,
69, 50), and (68, 72, 50). The simulation results are plotted in Figures 24–27.
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From the simulation diagram, it can be seen that each UAV flies according to the target
position point assigned by the improved genetic algorithm, there is no cross-collision in
the trajectory of the formation transformation, and there is an error of about 2 m in the
composition of “A”, but the transformed formation is basically maintained.

5. Conclusions

When designing a formation transformation algorithm, the possibility of failure in
planning trajectories using distributed model predictive control algorithms for overly
compact formations should be acknowledged. Moreover, further discussions should be con-
ducted regarding collision avoidance constraints to address the formation transformation
problem under more compact conditions.

This paper primarily addresses the formation transformation problem, which in-
volved decomposing it into target-matching and trajectory-planning problems. The target-
matching algorithm adopts the improved genetic algorithm, designs the adaptive cross-
mutation probability, and realizes the population reproduction without a repeated string
using a hash algorithm, and the improved genetic algorithm is combined with the dis-
tributed model predictive control strategy to achieve the formation transformation. The
feasibility of the engineering of the method was verified by simulation as well as semi-
physical experiments.
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