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Abstract: Unmanned aerial vehicles (UAVs) are extensively employed for urban image captures and
the reconstruction of large-scale 3D models due to their affordability and versatility. However, most
commercial flight software lack support for the adaptive capture of multi-view images. Furthermore,
the limited performance and battery capacity of a single UAV hinder efficient image capturing of
large-scale scenes. To address these challenges, this paper presents a novel method for multi-UAV
continuous trajectory planning aimed at the image captures and reconstructions of a scene. Our
primary contribution lies in the development of a path planning framework rooted in task and
search principles. Within this framework, we initially ascertain optimal task locations for capturing
images by assessing scene reconstructability, thereby enhancing the overall quality of reconstructions.
Furthermore, we curtail energy costs of trajectories by allocating task sequences, characterized by
minimal corners and lengths, among multiple UAVs. Ultimately, we integrate considerations of
energy costs, safety, and reconstructability into a unified optimization process, facilitating the search
for optimal paths for multiple UAVs. Empirical evaluations demonstrate the efficacy of our approach
in facilitating collaborative full-scene image captures by multiple UAVs, achieving low energy costs
while attaining high-quality 3D reconstructions.

Keywords: multi-UAV; cooperation; continuous path planning; scene reconstruction; image capture

1. Introduction

Due to the rapid advancements in UAV technology, small commercial UAVs equipped
with a single high-resolution camera are becoming more affordable. Typically, the great
success achieved in image-based reconstruction [1–4] has led to the widespread adoption of
UAVs for the image captures and 3D reconstructions of large scenes. Commercial software,
such as DJI-Pilot [5] and Pix4Dcapture [6], offers the capability to automatically generate
grid flight paths for the complete coverage of the designated area. Nevertheless, these paths
typically capture scene images uniformly at a fixed height and viewing angle, resulting in
challenges when capturing the detailed elevation information of buildings. Consequently,
certain studies [7–13] have employed a two-stage “explore-and-exploit” approach. Initially,
during the “explore” phase, images are rapidly captured using an overhead grid path,
leading to the reconstruction of a coarse scene model known as a proxy. Subsequently,
during the “exploit” phase, the optimal path for reconstruction is generated under the
guidance of the proxy. These works have demonstrated that high quality 3D models can be
effectively reconstructed using the “explore-and-exploit” strategy.

Most existing methods [7–13] follow a framework where the optimal set of viewpoints
is initially determined during the “explore” phase. And paths are generated by solving
the traveling salesman problem (TSP). However, this approach leads to the creation of
non-continuous paths for a single UAV, necessitating frequent acceleration, deceleration,
and hovering. Such behavior poses challenges in two main regards. Firstly, non-continuous
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trajectories will result in the wasteful consumption of energy for UAVs designed for in-flight
photography. Secondly, in the case of large-scale scenes, a single UAV is extremely ineffi-
cient. While multiple UAVs can concurrently capture images by dividing a single trajectory
into segments, the potential for collisions among the UAVs must be acknowledged.

This paper introduces a methodology that tackles the previously mentioned chal-
lenges through the planning of multiple continuous trajectories. The objective is to ensure
safety and minimize energy costs, thus enabling collaborative image captures by multiple
UAVs. Our approach employs the “explore-and-exploit” strategy, with the difference that
we introduce a framework for path planning centered around task and search principles.
Specifically, we make key designs in three aspects. Firstly, regarding reconstructability
estimation, we develop a submodular reconstructability heuristic and generate a recon-
structability loss map (RLM) in the horizontal dimension to determine the priority task
locations. Secondly, in terms of task allocation, we address the optimization of task se-
quences for multiple UAVs by minimizing a fitness function encompassing the corners and
lengths of task sequences in a continuous real-numbered space. Thirdly, in path searching,
we assess safety and energy costs based on trajectory dynamics. Concurrently, we optimize
these factors along with scene reconstructability to generate optimal paths for multiple
UAVs to the task locations.

We extensively evaluated our method in diverse synthetic [14] and real environments.
Figure 1 displays the experimental results for some real-world scenarios. The experimental
results demonstrate that our method enables collaborative image captures using multiple
UAVs, leading to a significant improvement in image capture efficiency.
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Figure 1. Our proposed method efficiently plans safe and continuous trajectories for three commercial
UAVs equipped with a monocular camera and has excellent performance in terms of trajectory and
reconstruction quality.

In summary, the main contributions of this paper are as follows:

• A path planning framework rooted in task and search principles, which distinguishes
from prior research focused on path generation via TSP solutions is proposed. This
framework enables the collaborative capture of scene images by multiple UAVs;

• A submodular heuristic-based reconstructability loss map is introduced for predicting
global reconstructability. This map guides the identification of pivotal tasks’ locations,
enhancing the overall optimality of reconstructions.

• A task allocation method driven by task sequence corners and lengths within the realm
of real-numbered continuous space is proposed. This method promotes collaboration
among multiple UAVs and curbs energy costs for continuous trajectories.
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• A path searching method that concurrently optimizes trajectory safety, energy costs,
and scene reconstructability is presented. This approach enhances trajectory and
reconstruction quality while upholding safety standards.

2. Related Works

This section provides a summary and analysis of significant research in various do-
mains, including path planning for scene reconstructions, task allocation for guiding
multi-UAV collaborations, and path searching frameworks aimed at extending safe paths.

2.1. Path Planning for Scene Reconstruction

In the context of unknown scenarios lacking prior information, path planning for
scene reconstructions often relies on widely adopted strategies such as the Next-Best-View
(NBV) strategy [15–20] and the “explore-and-exploit” strategy [7–13].

2.1.1. NBV Strategy

The NBV strategy enables UAVs to predict, in real time during flight, the optimal
viewpoint based on the currently explored area. This iterative process allows for the grad-
ual extension of the trajectory until the complete scene is explored. Yamauchi et al. [18]
introduced the concept of frontier and extended the trajectory by continuously searching
for viewpoints that optimize the expansion of known area frontiers. Zhou et al. [19] pre-
sented a layered framework that employs a frontier information structure to systematically
search for a path that covers the entire scene. Feng et al. [20] introduced a coarse struc-
ture prediction module, which enables them to plan a trajectory at a local level, thereby
optimizing the reconstruction quality. However, all of these methods necessitate real-time
onboard processing and rely on costly equipment capable of performing real-time depth
computation. Therefore, these methods are impractical for low-cost commercial UAVs.

2.1.2. “Explore-and-Exploit” Strategy

The “explore-and-exploit” strategy has gained widespread adoption as a means to
decrease dependence on high-cost hardware devices [7–13,21,22]. To guide the optimiza-
tion of the trajectory, [9–11] developed mathematical models that approximated the ac-
tual reconstruction properties. Zhou et al. [12] introduced a novel Max–Min optimization
method aimed at maximizing scene reconstructability using an equal number of viewpoints.
Liu et al. [13] put forward the pioneering learning-based reconstructability predictor
and employed it to guide UAV path planning. However, these methods only yield non-
continuous paths that necessitate the UAV to hover at each viewpoint, resulting in sub-
stantial energy consumption. Zhang et al. [21] consequently modeled the correlation
between trajectory turning angles and time consumption. They further incorporated time
consumption and scene reconstruction quality to optimize the generation of a continuous
trajectory. However, the elapsed time of the trajectory alone does not provide an accurate
reflection of UAVs’ battery consumption. Furthermore, Zhang et al. [21] only considered a
single UAV trajectory generation, which remained inefficient for accomplishing large-scale
image capture tasks. While Zheng et al.’s path planning method [22] enables simultaneous
image captures by multiple UAVs, the trajectories lack continuity and pose a risk of col-
lisions among the UAVs. Consequently, this paper places emphasis on the generation of
cooperative and energy-efficient trajectories for multiple UAVs.

2.2. Task Allocation for Multi-UAVs

Through judicious task allocation among multiple UAVs, a cooperative approach is
adopted, resulting in a synergistic effect that surpasses the cumulative impact of individual
contributions. Certain studies [23–25] utilized mixed integer linear programming models
to determine the optimal task allocation solution. However, these models entail significant
computational time when applied to large solution spaces. Consequently, Wang et al. [26]
employed a heuristic multi-objective shuffled frog-leaping algorithm, utilizing matrix



Drones 2023, 7, 544 4 of 26

binary encoding, to efficiently obtain an approximate optimal solution for the task allocation
problem. Swarm intelligence algorithms are prevalent in multi-task allocations. Classical
approaches like the genetic algorithm [27], ant colony optimization algorithm [28], and
particle swarm algorithm [29] can achieve task allocation quickly, but they focus solely on
optimizing theoretical task execution efficiency, disregarding the smoothness and energy
cost of the UAV’s continuous trajectory.

2.3. Path Searching Frameworks

To ensure the safe navigation of UAVs towards the target location, optimal paths
should be sought within the available free space. Over the past few decades, a wide range
of path-searching frameworks have been proposed, encompassing both sampling-based
approaches [30–32] and grid-based methods [33–35]. LaValle et al. [30] introduced a notable
sampling-based framework called the rapidly exploring random tree (RRT). This framework
navigates the tree towards the target location through random sampling within the free
space. Following the RRT, numerous enhanced variants were proposed, including RRT*,
RRT-Connect [31], and RRG [32]. Nevertheless, due to their reliance on random sampling,
these methods do not consistently yield the optimal path. Global optimization of the
search process can be attained by discretizing the free space and converting the path search
problem into a graph search problem. A* is the most representative of these frameworks,
with widely used variants including JPS [33], ARA* [34], etc. Among these frameworks,
Kurzer et al. [35] presented the Hybrid A*, which incorporates trajectory smoothing factors
to enhance its suitability for generating continuous trajectories. However, these works
are limited to pursuing a singular and 3D reconstruction-independent goal and fail to
simultaneously optimize both scene reconstructability and trajectory energy costs, which
constitutes another research focus of this paper.

3. Methodology

Our method takes the coarse proxy as input and comprises four primary steps: prelim-
inary preparation, reconstructability estimation, task allocation, and path searching. The
method ultimately generates multiple continuous trajectories and a high-quality 3D model,
as illustrated in Figure 2.
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Figure 2. Overview of our method. (a) Coarse proxy. (b) The black dots on the upper proxy represent
the surface points, and the solid blue circles below indicate the candidate viewpoints. (c) The
RLM is shown, represented by a gradient heat map from blue (low) to yellow (high). The circles
represent tasks. (d) The dashes indicate multi-UAV task sequences. (e) The light orange areas indicate
the searched space, the dark orange areas depict the optimal path, and the curve represents the
continuous trajectory. (f) The output multi-UAV continuous trajectories and reconstruction results.
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In the preliminary preparation phase (b), we uniformly sample N surface points on
the surface of the input proxy, where each surface point is considered as a representative of
its surrounding region. Additionally, we generate candidate viewpoints Vcandi uniformly in
the safe space, facilitating the subsequent path search in phase (e). In the reconstructability
estimation phase (c), we establish a submodular reconstructability heuristic to estimate the
reconstruction effect of each surface point. The heuristic is employed to generate a global
RLM. Furthermore, we identify critical regions within the RLM to serve as multi-UAV
tasks. In the task allocation phase (d), we transfer the discrete task assignment problem to
a continuous real number space and obtain the optimal task sequence for multiple UAVs
by minimizing the fitness function. In the path searching phase (e), we employ a novel
A* algorithm to search and extend the trajectories of each UAV in the candidate viewpoints
(Vcandi) to visit their respective task targets sequentially by task sequences. In this extension
process, we optimize by considering trajectory energy costs alongside scene reconstruction
contributions, among other factors, achieving high-quality multi-UAV path generations.
Reconstructability estimation is repeated once all task targets have been visited, continuing
until the scene reconstructability reaches the target or the multi-UAV trajectory’s energy
cost surpasses the threshold.

3.1. Reconstructability Estimation

This section provides a comprehensive description of the reconstructability estimation
method for surface points, denoted as S = {si}i=1,...,N , in the presence of a viewpoint
set, V = {vi}i=1,...,M, where M represents the number of viewpoints. The approach
involves the formulation of reconstructability heuristics (Section 3.1.1) and the creation of a
reconstructability loss map to localize tasks for multi-UAVs (Section 3.1.2).

3.1.1. Reconstructability Heuristic

By establishing a heuristic relationship between the viewpoints and the reconstructabil-
ity of the scene, the reconstruction effect of the scene can be quickly predicted [10]. As
shown in Figure 3, the reconstructability contribution of the viewpoint pair

(
vi, vj

)
to the

surface point sk is defined as follows:

w
(
sk, vi, vj

)
= w1(α)w2(α)w3(dm) cos(θm), (1)

where the distance dm = max (||−−→skvi ||, ||
−−→skvj ||) and the angle θm = max

(
θi, θj

)
. w1, w2,

and w3 are, respectively, defined as

w1(α) = (1 + exp(−k1·(α− α1)))
−1, (2)

w2(α) = 1− (1 + exp(−k2·(α− α2)))
−1, (3)

w3(dm) = 1−min
(

dm

dmax
, 1
)

. (4)

Here, we set the parameters k1 = 32, α1 = π
16 , k2 = 8, and α2 = π

4 as suggested by
Smith et al. [10]. The parameter dmax represents the maximum observable distance of a
viewpoint, and typically, a smaller value of dmax leads to improved reconstruction accuracy.
Smith et al. [10] proposed an additive heuristic to quantify the collective reconstructability
contribution of the viewpoint set V = {vi}i=1,...,M to the surface point sk:

h(sk, V) = ∑
i=1, ..., M
j=i+1,...,M

δ(sk, vi)δ
(
sk, vj

)
w
(
sk, vi, vj

)
. (5)
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Here, the visibility function, denoted as δ(s, v), determines whether the surface point
s is within the field of view of the viewpoint v. If s is not visible from v, δ(s, v) is set to 0;
otherwise, it is set to 1.

However, the reconstructability of surface points tends to exhibit diminishing re-
turns [36]. In other words, as the existing reconstructability of a surface point increases, the
additional gain from an extra viewpoint decreases, demonstrating a submodular character-
istic [37]. Consequently, when the scene reconstructability is high, the additive heuristic
proposed by [10] may struggle to accurately estimate the true reconstruction impact on
surface points. For this reason, we improve the total reconstructability contribution of the
viewpoint set V to the surface point sk as

h′(sk, V) = 2·hmax·
(

0.5− (1 + exp(k3·h))−1
)

. (6)

Here, hmax represents the maximum reconstructability value for surface point sk. As h
approaches infinity, the reconstructability heuristic h′(sk, V) converges to hmax, indicating
a decrease in the reconstruction depth error of the surface point. Thus, the contribution of
a single viewpoint, vi, to the overall reconstructability of the surface points S within the
entire scene can be expressed as

〈(S, V, vi) = ∑
k=1,...,N

h0(sk, V, vi)

h(sk, V)
·h′(sk, V), (7)

where
h0(sk, V, vi) = ∑

j=1,...,i−1,i+1,...,M
δ(sk, vi)δ

(
sk, vj

)
w
(
sk, vi, vj

)
. (8)

To improve the efficiency of estimating scene reconstruction effects, we integrate a
submodularization feature into the additive reconstructability heuristic. This augmenta-
tion benefits our path planning algorithm in two aspects. First, it enhances the accurate
localization of key task regions within the scene (Section 3.1.2). Second, it enhances the
quality of scene reconstructions by employing the submodular reconstructability heuristic
to ascertain the viewing direction for each viewpoint (Section 3.3.3).
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Figure 3. Reconstructability heuristics. This figure shows the profile view when viewpoints vi, vj are
simultaneously observing the surface point sk. nk denotes the surface normal of sk, while θi and θj

represent the angles between the vectors −−→skvi , −−→skvi , and nk. α denotes the angle between −−→skvi and −−→skvi .

3.1.2. Reconstructability Loss Map and Task Localization

We create a reconstructability loss map for the efficient retrieval of reconstructability
loss data across any scene region. This map aids our path planning algorithm in identifying
crucial image capture points as task targets, thereby mitigating local optimization issues
related to reconstruction.
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To construct the RLM, we undertake two primary steps: Firstly, we partition the scene’s
point cloud, sized X×Y in the horizontal dimension, using resolution r0. This generates
a grid denoted as G =

{
gi, j
}

i = 1, . . . , Nx
j = 1, . . . , Ny

, as depicted in Figure 4a. Here, Nx =
[

X
r0

]
and Ny =

[
Y
r0

]
indicate the count of grid cells along the x and y directions, respectively.

The scene’s point cloud comprises surface points denoted as S. Secondly, we evaluate
the reconstructability loss value for every cell within grid G. With regard to the set of
viewpoints V, the reconstructability loss within a region encompassing a radius r1, centered
on grid cell gi, j, is formulated as follows:
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(
S, V, gi,j

)
= ∑

k=1,...,M

(
hmax − h′(sk, V)

)
·ρ1
(

gi,j, sk
)
, (9)

where ρ1
(

gi,j, sk
)

represents the distance evaluation function. If the distance between
the surface point sk and the position of gi,j is greater than r1, ρ1

(
gi,j, sk

)
= 0; otherwise,

ρ1
(

gi,j, sk
)
= 1. Typically, the radius r1 is determined based on the maximum visible

distance dmax. In our study, we set it as 3dmax
4 . Upon completing the computation of all grid

cells in G, an RLM is generated, as depicted in Figure 4b.
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Figure 4. Reconstructability loss map generation principle and multi-UAV task allocation.
(a) shows the point cloud composed of surface points S, where the green point clouds fall within the
computation range of grid g5,13 and the red point clouds fall within the computation range of grid
g14,3. In (b), the RLM is represented by a heat map from blue (low) to yellow (high). (c) displays
circles that denote the centers of high loss areas in the RLM, which are utilized as task targets for
multiple UAVs. The different-colored lines indicate the task sequences for different UAVs.

In the task localization method, we begin by sorting the reconstructability loss values
of all grid cells in the RLM. Then, we select Nt cells with the highest loss values among them,
ensuring that the distance between each selected cell exceeds the maximum visible distance,
dmax. The locations of these cells are designated as the task targets T = {T1, T2, . . . , TNt}
for the multi-UAV system, as depicted in Figure 4c.

To summarize, we construct the RLM by calculating the sum of reconstructability
losses in each region in the horizontal dimension, which allows us to make a quick sense of
the global reconstructability. In addition, we consider a number of locations with the worst
reconstructability as task targets, which enables the UAV to capture the scene images more
uniformly and thus reconstructs a higher-quality 3D model within a limited flight time.

3.2. Task Allocation

We steer the collaborative image captures by multiple UAVs through the allocation
of optimal task sequences. Our approach involves two primary design aspects. Firstly, to
convert the discrete task allocation problem for multiple UAVs into a continuous real number
space, we formulate a set of rules that serve as a codec for the task sequence-solution space.
Considering Nuav UAVs and Nt tasks, we treat any real vector with Nt dimensions and
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values within the interval (1, Nuav + 1) as a potential solution for task allocation. Each task is
uniquely represented by a real number within the solution, serving as a code. Tasks associated
with the same integer code are designated for execution by the same UAV, with the task
execution order determined by the numerical magnitude of the code.

In our implementation, considering 3 UAVs and 8 task targets, the solution vector at a
specific instance is given as [1.56 2.80 1.23 2.02 1.79 3.20 2.91 3.11]T . Table 1 illustrates the
mapping between individual tasks and codes. Following the decoding of this solution, we
acquire the task execution sequence for each UAV, as demonstrated in Table 2.

Table 1. Multi-UAV task sequences-solution space coding table.

Task Code Task Code

T1 1.56 T5 1.79
T2 2.80 T6 3.20
T3 1.23 T7 2.91
T4 2.02 T8 3.11

Table 2. Solution space-multi-UAV task sequences decoding table.

UAV ID Code Comparison Task Sequence

1 1.23 < 1.56 < 1.79 T3 → T1 → T5
2 2.02 < 2.80 < 2.91 T4 → T2 → T7
3 3.11 < 3.20 T8 → T6

Secondly, we introduce a novel fitness function. Our objective is to ensure that the
task allocation outcomes facilitate the creation of seamless, energy-efficient continuous
trajectories. By minimizing the fitness function, we anticipate achieving several effects as
outlined below:

1. Minimize βmax, the maximum inflection angle. As shown in Figure 4c, a significant
inflection angle β can result in high flight energy costs;

2. Minimize dave, the average of the distances between adjacent tasks. This objective
ensures that each UAV gives higher priority to tasks closer to its current location.
Notably, when calculating dave, it is important to consider the distance from the
starting point to the first task;

3. Minimize ddelta, the difference between the longest and shortest distances in multiple
task sequences. This ensures that the path lengths of multiple UAVs are as similar
as possible.

Therefore, the fitness function is designed as follows:

f (T ,S) = k4βmax + k5dave + k6ddelta, (10)

where S is the starting state of the multi-UAV, including the starting position and velocity
direction. k4, k5, and k6 are the weight parameters.

We establish a mapping of task sequences into a continuous real solution space by
formulating codec rules for the task sequence-solution space. This mapping enables us
to employ swarm intelligence algorithms [27–29,38] for the swift acquisition of the vector
solution that corresponds to the fitness function’s minimum value. Post-decoding, we can
retrieve the optimal task sequences for multiple UAVs. These innovations not only reduce
the time required for task allocation but also empower the task allocation outcomes to
inform the creation of energy-efficient paths.

3.3. Path Searching

Subsequent to the task allocation outcomes, the multiple UAVs embark on sequential
path search procedures. Individual UAVs visit designated task targets according to their
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respective task sequences. Throughout this process, we assess the safety and energy costs
of continuous trajectories (Section 3.3.1) and employ a novel A* algorithm (Section 3.3.2) to
prolong the trajectory towards the task target’s location. This extension aims to minimize
an objective function that integrates energy costs, safety considerations, and contributions
to scene reconstructability (Section 3.3.3).

3.3.1. Safety and Energy Costs

To facilitate our path planning algorithm in generating safe and energy-efficient
trajectories for multiple UAVs, we must assess both the safety and flight energy costs
associated with continuous trajectories for these UAVs. A continuous trajectory traversing
all viewpoints [39–41] can be expressed as L(t) = {Lk(t)}k=x,y,z, with Lk(t) representing
a smooth curve tracing the trajectory’s coordinates in dimension k as a function of time t.
Typically, this curve is represented using an n-degree polynomial, which also embodies a
dynamic characteristic of the continuous trajectory [39]:

Lk(t) = ∑
i=0,1,...,n

ak,iti, (11)

where ak,i represents the polynomial coefficient of the curve. In this work, we set n = 5.
To ensure the safety of continuous trajectories, we compute the real-time distance,

denoted as duav, between any two UAVs using the following equation:

duav
(
L,L′, t

)
=

√
∑

k=x,y,z

(
Lk(t)− L′k(t)

)2. (12)

Here, L and L′ denote the flight trajectories of distinct UAVs, respectively. To prevent
collisions between multiple UAVs, it is crucial to ensure that the minimum value of duav is
consistently greater than the safe distance. Although the state-of-the-art methods [9,10,12,21]
enable the simultaneous capture of image data by dividing a single trajectory into multiple
segments, they still entail the risk of collision among multiple UAVs.

To evaluate the energy costs of continuous trajectories, we calculate the squared
integral of the acceleration trajectory’s derivative:

J (L) = ∑
k=x,y,z

∫ τ

0

(
Lk

(3)(t)
)2

dt, (13)

where τ represents the duration of the trajectory. Equation (13) can be employed to repre-
sent the dynamical continuity and smoothness of the trajectory throughout its duration.
A lower value of J (L) indicates a shorter trajectory duration and smoother accelera-
tion/deceleration, resulting in reduced trajectory energy costs. Therefore, in this study, we
regard J (L) as an approximation and quantification of the trajectory’s energy costs.

In summary, our approach involves calculating the real-time distance between any
two UAVs and evaluating trajectory smoothness based on the dynamics of the continuous
trajectory. These calculations serve to quantify both the safety and energy costs of the multi-
UAV continuous trajectory. This integrated assessment enables us to optimize trajectory
energy costs while simultaneously ensuring the safety of multiple UAVs during the path
searching process.

3.3.2. Searching Process

We have developed a novel A* algorithm to extend the path of UAV u towards the
region where the task target T is located. The schematic diagram and pseudo-code of the
algorithm are presented in Figure 5 and Algorithm 1, respectively. The algorithm follows a
similar framework to the traditional A*, and the process is outlined as follows: We begin by
defining two sets of viewpoints, Open_Set and Closed_Set. Additionally, we assign a Score
attribute to each candidate viewpoint in Vcandi. Following initialization, the viewpoint vcurr
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with the lowest Score in Open_Set is successively moved to Closed_Set until it approaches
the task goal T. If vcurr is not yet close to T, we search for neighboring viewpoints Vneib
in the candidate viewpoints Vcandi that are not in Closed_Set and are in a safe space. The
viewpoints in Vneib that are not part of Open_Set are added to Open_Set, and we calculate
the score S for each neighboring viewpoint vneib. If S is lower than the original Score of
vneib, we update the Score of vneib to S and its source viewpoint to vcurr.

Algorithm 1: Path_Searching
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6    break; 
7   end  
8   ℒୡ୳୰୰ ← Obtain the path with 𝑣ୡ୳୰୰ as the end viewpoint by backtracking 𝑣ୡ୳୰୰, and generate the 

continuous trajectory [39–41]; 
9   𝐷ୡ୳୰୰ ← End tangent direction of ℒୡ୳୰୰; 
10   𝑣ୣ୶୲ = 𝑣ୡ୳୰୰ + 𝑑ୣ୶୲ × 𝐷ୡ୳୰୰; 
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12   For each 𝑣୬ୣ୧ୠ in 𝑉୬ୣ୧ୠ do 
13    if 𝑣୬ୣ୧ୠ is not in Closed_Set and is in safe space then 
14     𝒮 ← Calculate the score of 𝑣୬ୣ୧ୠ;  % see Section 3.3.3 
15     if 𝑣୬ୣ୧ୠ is not in Open_Set then 
16      Insert 𝑣୬ୣ୧ୠ into Open_Set; 
17     end 
18     if 𝒮 < the Score of 𝑣୬ୣ୧ୠ then 
19      Update 𝑣୬ୣ୧ୠ�s source viewpoint to 𝑣ୡ୳୰୰; 
20      Update the Score of 𝑣୬ୣ୧ୠ to 𝒮; 
21     end 
22    end 
23   end    
24  end     
25  𝑃ϐ୧୬ୟ୪ ← Tracing the 𝑣ୡ୳୰୰ to get the final path of UAV 𝑢; 
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Figure 5. Schematic diagram of path search and extension. The solid circles, depicted in various
colors, represent candidate viewpoints.

In contrast to the traditional A*, firstly, our approach draws inspiration from Hybrid
A* [35]. We prioritize trajectory smoothness by refining the process of locating neighboring
viewpoints. The process begins by backtracking the viewpoint vcurr, generating a con-
tinuous trajectory denoted as Lcurr. Furthermore, we extend the distance dext from vcurr
along the end tangent direction of Lcurr to reach the position vext. Finally, within Vcandi, we
perform a K-NN search to find multiple nearest neighbors Vneib using vext as the center and
rneib as the radius. Secondly, to calculate the score of viewpoints, we design an objective
function that incorporates factors such as trajectory energy costs, scene reconstructability,
and flight safety. The detailed description of the specific objective function can be found in
Section 3.3.3.

In essence, building upon the foundation of the classical A* algorithm, we curtail the
direction and extent of the continuous trajectory expansion. This is achieved by strategically
situating neighboring viewpoints along the tangent line at the trajectory’s terminus, thereby
guaranteeing heightened trajectory smoothness. Furthermore, our objective function en-
ables the concurrent optimization of the trajectory and reconstruction quality.

3.3.3. Objective Function

As described in Section 3.3.2, the objective function is utilized in each path searching
loop to calculate the score of vneib, which represents a neighboring viewpoint of vcurr. This
score guides the selection of viewpoints and the extension of paths. The objective function
is designed to achieve the following effects on path guidance:

Close to the task target. To guide the current path towards the region where the task
target T is located, we aim to predict the minimum energy cost of reaching T after adding
vneib to the path. A lower cost indicates that the UAV is closer to the task target. Therefore,
we backtrack from vcurr to acquire the path denoted as Pcurr. Furthermore, we extend Pcurr
by adding vneib, along with a viewpoint sharing both the horizontal position of T and the
height of vneib. This augmentation results in the creation of Ppre, serving as the foundation
for generating a continuous trajectory labeled as Lpre which originates at the initial path
point, traverses vcurr, encompasses vneib, and culminates in reaching T. The energy cost
J
(
Lpre

)
represents the minimum value required to reach T. However, we observed in

practice that when T is distant from the search starting point, the trajectory may take a
considerable amount of time to extend to T. Consequently, we design an exponential
function as a component of the objective function:

W1(vcurr, vneib, T) = exp
(
b1
(
J
(
Lpre

)
−J (Lstart)

))
, (14)

where Lstart denotes the initial continuous trajectory of the path before initiating the path
search process. The parameter b1 corresponds to W1.
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Maximize reconstruction contribution. In order to calculate the score of vneib, it is
necessary to determine the direction with the highest reconstruction contribution for vneib,
which requires the design of a contribution evaluation function. Our reconstructability
heuristic indicates that the reconstructability of a surface point can only be increased if
it is effectively observed by at least two viewpoints simultaneously. If we defined the
contribution of a viewpoint as solely the improvement in reconstructability of surface
points, the viewpoints would tend to observe regions that have already been explored,
resulting in inadequate scene coverage. Therefore, we introduce a coverage attribute Ui for
each viewpoint vi to keep track of the number of new surface points observed by vi. The
contribution evaluation function of viewpoint vi is

c(S, V, vi) =
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(S, V, vi) + k7·Ui, (15)

where V represents all the viewpoints selected currently, encompassing vneib, the view-
points in Pcurr, and viewpoints from other paths. k7 denotes the coverage weight. The
incorporation of the coverage attribute aims to stimulate viewpoints to actively observe
previously unexplored regions.

Maximize the average contribution of each viewpoint to the scene. Excessive den-
sity of viewpoints not only increases the reconstruction elapsed time but can also introduce
errors that reduce the reconstruction quality [11]. Hence, it is crucial to minimize the
number of viewpoints while striving to maximize the trajectory’s contribution to the scene.
To achieve this, we incorporate W2 as a component of the objective function:

W2(Pneib, S, V) =
∑i=1,...,Mneib

c(S, V, vi)

Mneib
, vi ∈ Pneib, (16)

where Pneib represents the path obtained by appending vneib to the end of Pcurr and Mneib
denotes the number of viewpoints present on this path.

Maximize the contribution to the scene per unit of energy cost. One of our objectives
is to capture scene images that result in a higher quality 3D model while minimizing the
energy cost. Therefore, we aim to maximize the reconstruction contribution of the trajectory
per unit of energy cost. This is achieved through the design of W3 as follows:

W3(Pneib, S, V) =
∑i=1,...,Mneib

c(S, V, vi)

J (Lneib)
, vi ∈ Pneib, (17)

where Lneib represents the continuous trajectory that traverses all the viewpoints in Pneib.
Consequently, the objective function can be designed as follows:

W(S, T, vcurr, vneib ) = (W1(vcurr, vneib, T)− b2·W2(Pneib, S, V)− b3·W3(Pneib, S, V))·ρ2(Lneib), (18)

Here, b2 and b3 represent weight parameters. ρ2 signifies the safety evaluation function
for the trajectory Lneib. Real-time computation of the minimum separation between Lneib
and ongoing continuous paths of multiple UAVs is determined using Equation (12). When
the computed distance falls below the safety threshold, ρ2 is assigned the value of Inf;
otherwise, it takes on the value of 1.

In this work, we maintain an ongoing influence over viewpoint selection and trajectory
extension, driven by the minimization of the designated objective function, denoted as W.
The objective function encompasses energy costs, contributions to reconstructability, and
safety considerations. This approach not only ensures that the trajectories of our multi-UAV
system achieve efficiency in terms of energy costs but also ensures the secure acquisition of
scene images with substantial reconstruction contributions.

4. Experiments

We conducted a comprehensive series of experiments in both synthetic and real
environments to validate the effectiveness of our approach. Firstly, we introduce the
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dataset utilized in the experiments (Section 4.1). Subsequently, we provide a description of
the hardware devices employed in the experiments, along with the implementation details
(Section 4.2). Following that, we conduct a self-evaluation of various components of our
method (Section 4.3). Lastly, to demonstrate the superiority of our approach, we compare
it with the state-of-the-art methods in both synthetic (Section 4.4) and real environments
(Section 4.5).

4.1. Benchmark

To conduct a comprehensive evaluation and comparison with advanced methods,
we utilized the UrbanCity dataset, published by Lin et al. [14]. This dataset encompasses
diverse synthetic scenes and includes trajectory and image data generated through a variety
of state-of-the-art technologies [10,12,21], along with an oblique photography method for
each scene. This facilitates convenient comparison experiments for our study. Three
representative scenes with distinct characteristics (School, Town, and Castle) were chosen
from UrbanCity, as depicted in Figure 6. These three scenes encompass the majority of
prevalent artificial building types.
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4.2. Experiment Details

This section outlines the experiment’s details. We commence by elucidating the hardware
and software employed. Subsequently, we expound upon the methodology of obtaining
the coarse proxy. Following this, a comprehensive depiction of parameter settings ensues.
Conclusively, we explicate the evaluation metrics adopted within the experimental framework.

4.2.1. Hardware and Software

The algorithm is executed on a computer equipped with an 11th Gen Intel® Core™
i7-11700 @ 2.50 GHZ CPU, 32 GB RAM, and NVIDIA GeForce RTX 3080 Ti GPU. For real
scenario experiments, we employed three DJI Phantom 4 RTK UAV devices, each equipped
with a single camera featuring focal lengths ranging from 8.8 mm to 24 mm. We utilized
DasEarth [42] to reconstruct 3D models from captured images. In the interest of fairness, all
reconstructed models in the experiments were generated using DasEarth’s default settings.

4.2.2. Coarse Proxy

In real scenes, we employ the DJI-Pilot [5] to automatically generate a vertical photog-
raphy path that covers the target area. Coarse proxies are reconstructed from the captured
images. The UrbanCity dataset [14] provides four levels of precision proxies for each syn-
thetic scene, ranging from coarse to fine: box, coarse, inter, and fine. The inter proxy closely
resembles the reconstructed effect achieved using vertical photography. Consequently, all
path planning experiments conducted in the synthetic scenes were based on inter-level
precision proxies.

4.2.3. Parameter Settings

For the reconstructability heuristic, we set hmax = 20 and k3 = 0.24. For the recon-
structability loss map, we defined the map resolution as r0 = 5. During the task allocation
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process, we assigned 12 tasks (Nt = 12) for large-scale scenes and 7 tasks (Nt = 7) for
small-scale scenes. For the fitness function in the task allocation, we determined k4 = 0.2,
k5 = 0.8, and k6 = 0.1 based on experience. In Algorithm 1, we set dext = 7 and rneib = 5
for small-scale scenes and dext = 10 and rneib = 7 for large-scale scenes. We consider the
path to be in proximity to the target when the horizontal distance between the path and the
task target is below dend = 30. Based on experience, we assigned the weight parameters
in the objective function as follows: b1 = 9, b2 = 15, b3 = 1, and k7 = 0.4. Finally, for the
termination condition of our method, we set to output multi-UAV trajectories when the
proportion of surface points with a reconstructability reaching 12 exceeds 92% or the total
energy cost of multiple trajectories surpasses 65.

4.2.4. Evaluation Metrics

We employed two evaluation metrics, Error and Completeness, proposed in [10], to
quantify the disparity between the reconstruction results and the ground truth. Error is
determined by calculating the closest distance between each surface point of the recon-
struction result and the ground truth surface. The distances are sorted from smallest to
largest, and the values corresponding to the 90th and 95th percentiles are designated as
Error 90% and Error 95%, respectively. Meanwhile, Completeness is evaluated based on the
surface points of the ground truth. We calculate the closest distance between each surface
point of the ground truth and the reconstructed surface. The percentage of surface points
with distances less than 0.020 m, 0.050 m, and 0.075 m relative to the total are referred to
as Completeness 0.020 m, Completeness 0.050 m, and Completeness 0.075 m, respectively.
These metrics indicate that lower Error and higher Completeness values indicate a better
reconstruction quality. Additionally, we assess the quality of the multi-UAV trajectories
based on the total length, total energy cost, and maximum time cost.

4.3. Self Evaluation

This study introduces a path planning framework rooted in task-oriented and search-
based principles. The framework encompasses three distinct modules: reconstructability
estimation, task allocation, and path searching. Within this section, we subject each module
to isolated testing for individual assessment. Additionally, we conduct a direct compara-
tive analysis of each module’s impact on the path planning framework through ablation
experiments, as elaborated in Section 4.3.4. Finally, we present a comprehensive evaluation
of the method’s collective efficacy in Section 4.3.5.

4.3.1. Reconstructability Estimation

During the reconstructability estimation phase, we assess the scene reconstruction effec-
tiveness through the formulation of a reconstructability heuristic. In contrast to the simple
additive heuristic [10], we incorporate submodular features into this heuristic. To establish
that the reconstructability heuristic can more effectively predict reconstruction depth errors
following the integration of submodular features, we formulate the subsequent experiment:

Firstly, we created 30 viewpoints facing a wall within a virtual environment
(see Figure 7, top left). These viewpoints were randomized in terms of both position
and viewing direction. We reconstructed a 3D model of the wall using images captured
from these viewpoints. Additionally, we conducted a dense sampling of the ground truth
surface of the wall. For each surface point, we calculated the closest distance to the recon-
structed surface. This calculation allowed us to determine the reconstructed depth error for
all surface points, as depicted in the upper right panel of Figure 7. Finally, we estimated
the reconstructability of the ground truth surface points using two distinct heuristics: the
additive heuristic [10] and our developed submodular heuristic. The resulting estimates
are displayed in the bottom two panels of Figure 7.
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Figure 7. Comparison of the reconstructability heuristic. The upper left panel displays the ground
truth of the wall, while the upper right panel presents the reconstruction depth error. The bottom
two figures show the reconstructability estimation results of the additive heuristic [10] and our
submodelized heuristic, respectively.

Furthermore, we computed the mean reconstruction depth error for each 0.01 interval
of the reconstructability heuristic. We plotted the resulting trend of the mean reconstruction
depth error in relation to the reconstructability heuristic. This visualization, presented in
Figure 8, serves to illustrate the connection between the actual reconstruction error and the
estimated reconstructability.
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In Figure 7, the reconstruction depth error plot uses a blue color to represent a low
error, while the reconstructability heuristic plot uses a yellow color to indicate high recon-
structability. Notably, the yellow region in our reconstructability heuristic plot shows a
substantial overlap with the blue region in the reconstruction depth error plot. This visual
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overlap serves to demonstrate that our reconstructability heuristic excels in estimating and
predicting reconstruction depth errors.

Figure 8 illustrates that with an increment in the reconstructability heuristic, the re-
duction in depth error stemming from an equivalent increase in the additive heuristic [10]
diminishes progressively. This trend aligns with the principle of diminishing returns
inherent in image-based 3D reconstructions. Furthermore, the Pearson correlation coef-
ficient between the mean reconstruction depth error and the additive reconstructability
heuristic [10] is computed as −0.7866, whereas ours achieves a correlation of −0.9362. This
result provides additional empirical evidence that, at the data level, our submodularized re-
constructability heuristic exhibits a more robust predictive capability for reconstructability.

4.3.2. Task Allocation

During the task allocation phase, we encode task sequences for multiple UAVs and
optimize the allocation of tasks by minimizing the fitness function. To assess the impact of
individual terms in the fitness function, we systematically remove these terms from the
function f . Subsequently, we devise flight paths for multiple UAVs within the synthetic
School scenario. Here, we consider a configuration with three UAVs (Nuav = 3) and eight
tasks (Nt = 8). Figure 9 displays the outcomes from the initial task allocation round, while
Table 3 presents the ultimate quality assessment of the trajectories for multiple UAVs.
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Figure 9. Task allocation results corresponding to different fitness functions (from left to right:
without βmax, without dave, without ddelta, and the complete version). Circles denote task targets,
while distinct colored lines depict task sequences associated with individual UAVs.

Table 3. Effect of different fitness functions on trajectory quality. Total Length represents the combined
length of the continuous trajectories of multiple UAVs. Total Energy Cost denotes the total energy
expenditure across all continuous trajectories of multi-UAVs. Max Time Cost indicates the longest
time taken by multiple continuous trajectories, reflecting the overall mission completion time of the
multi-UAV system. The data marked in bold represents the optimal values.

Fitness Function f Total Length (m) Total Energy Cost Max Time Cost (min)

without βmax 8381.76 71.361 27.36
without dave 7412.43 50.496 17.94

without ddelta 6744.96 44.911 22.13
complete f 6949.42 46.449 15.81

Observing Figure 9 and Table 3 reveals three main findings. First, in the absence
of βmax, the task allocation favors directing UAVs towards the nearest task, disregarding
corners between adjacent tasks. Consequently, this inclination leads to significantly elevated
trajectory lengths and energy costs. Second, excluding dave results in instances where
neighboring tasks are distantly positioned, consequently impairing the trajectory quality.
Third, the omission of ddelta overlooks length gaps between task sequences. Notably,
although the collective trajectories attain their lowest overall length and energy costs at this
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juncture, specific UAV paths sometimes become excessively prolonged, thereby extending
the overall task completion time.

Ultimately, when the fitness function remains complete, the trajectory length and energy
cost approach optimality, resulting in minimized overall task time consumption. This outcome
suggests that the fitness function’s terms effectively regulate task corners, distances between
neighboring tasks, and length gaps within task sequences. By achieving equilibrium among
these factors, the production of superior continuous trajectories is accomplished.

4.3.3. Path Searching

During the path searching phase, we formulate a novel A* algorithm to optimize
multi-UAV trajectories by minimizing the objective function. The cumulative optimization
impact of the search algorithm on trajectories will be presented in Section 4.3.4. Within this
section, we will conduct targeted tests of the influence of each component in the objective
function on the planning outcomes. These experiments were carried out in the synthetic
School scenario, and the results are presented in Table 4.

Table 4. Impact of objective function compositions on reconstruction and trajectory quality.

Objective Function W Num. Images Error 95% (m) ↓ Comp. 0.075 m (%) ↑ Total Length (m) Total Energy Cost

only W1 700 0.4531 30.23 10,531.73 65.000
W1 and W3 413 0.0831 42.43 7169.86 46.371
W1 and W2 324 0.0894 44.83 7628.49 64.648

without coverage 345 0.0798 34.59 6511.37 50.158
full W 332 0.0824 46.76 6949.42 46.449

Firstly, we examined the impact of trajectory planning and 3D reconstructions when
only W1 is present in the objective function. The purpose of extending the path at this time
is solely to reach the target area, which results in poor quality reconstructed models based
on the captured images, even if high-energy cost, long-distance multi-UAV trajectories with
numerous viewpoints are extended.

Secondly, we added W3 to the objective function and showed that the multi-UAV
trajectories were able to reconstruct a higher quality 3D model with lower energy costs than
if only W1 was present. Nevertheless, the excessively high number of viewpoints would
result in an extended 3D reconstruction time. And the opposite outcome occurs when only
W1 and W2 are incorporated.

Thirdly, we examined the impact of incorporating coverage on the trajectory and re-
construction quality. When coverage is excluded from the composition of the reconstruction
contribution, the reconstruction results exhibit a marginal error improvement. Nonetheless,
this change leads to a significant reduction in completeness.

Finally, by employing the complete objective function, our approach successfully
devises multi-UAV trajectories characterized by a minimized energy cost, a reduced length,
and an exceptional reconstruction quality. The incorporation of W2 and W3 effectively
empowers our path planning approach to achieve a well-calibrated equilibrium among
the reconstruction quality, viewpoint count, and trajectory excellence. Additionally, the
introduction of coverage markedly enhances the comprehensive reconstruction quality of
the 3D model.

4.3.4. Contribution of Each Module

Within the proposed path planning framework, which is rooted in task-oriented
and search-based principles, the three distinct modules are allocated specific roles while
being interdependent. To comprehensively compare the influence of each module on
the overarching path planning framework, we conducted three ablation experiments in
the synthetic School scenario: Ablation 1 entails the omission of the reconstructability
estimation module’s task location determination based on RLM, opting instead to uniformly
distribute task objectives across the scene’s horizontal plane. Ablation 2 involves generating
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randomized task sequences for multiple UAVs within the task allocation module. Ablation
3 entails substituting the A*-based searching process within the path searching module with
the NBV strategy to extend multi-UAV trajectories. The extension objective is restricted
solely to proximity to the task target location. The outcomes of the experiments are depicted
in Figure 10.
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When compared to Full Framework, several conclusions can be drawn: Firstly, the
reconstruction quality in Ablation 1 demonstrates that our approach, which determines
task locations by generating RLM within the reconstructability estimation module, achieves
superior global optimization in terms of reconstruction quality. Secondly, the total energy
cost of the trajectories in Ablation 2 exceeds that of Full Framework, indicating that our
task allocation module’s multi-UAV task sequences effectively facilitate the generation
of energy-efficient continuous trajectories. Thirdly, the unsatisfactory reconstruction and
trajectory quality in Ablation 3 underscores the capability of our path searching module to
jointly incorporate trajectory energy costs and scene reconstructability into optimization,
thereby significantly enhancing reconstruction and trajectory quality.

4.3.5. Overall Performance Evaluation

In this section, we conduct a comprehensive assessment of our path planning algo-
rithm, considering both its collaborative performance and path planning time.

Collaborative capability. Our method involves planning safe continuous trajectories
for multiple UAVs to capture images of a scene. To demonstrate the collaborative capability
of our method, we plan trajectories for clusters with different numbers of UAVs in the
synthetic scene School, showcasing that multiple UAVs can complete tasks in a coordinated
manner instead of capturing data relatively independently. The impact of the UAV number
on the reconstruction results and trajectory quality is presented in Table 5. The results
indicate that the total length and the total energy cost of multiple trajectories decrease as
the number of UAVs increases, while maintaining a similar reconstruction quality. This
demonstrates that our method effectively enables the collaborative capture of scene images
by multiple UAVs. However, when the number of UAVs reaches nine, both the total length
and the total energy cost of the multi-trajectories tend to increase. This indicates that an
excessive number of UAVs in the same scene can lead to redundant trajectories, thereby
diminishing the trajectory quality. To simplify the experiment, we set the number of UAVs
to three in all subsequent synthetic and real scenes, which serves the experimental purpose
and closely aligns with real-world application scenarios.
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Table 5. Impact of UAV number on reconstruction results and trajectory quality.

Num. UAVs Num. Images Error 95% (m) ↓ Comp. 0.075 m (%) ↑ Total Length (m) Total Energy Cost Max Time Cost (min)

1 369 0.0835 44.15 7835.64 50.157 39.90
3 332 0.0804 46.76 6949.42 44.449 15.81
5 328 0.0812 45.56 6589.38 38.183 10.11
7 340 0.0791 47.01 6377.49 37.251 7.42
9 351 0.0779 46.13 6531.17 40.067 5.44

Path Planning Time. As part of the self-evaluation, we assessed the overall runtime of
our algorithm. Our algorithm required 31.3, 18.1, and 16.5 min to plan the trajectories of three
UAVs in the School, Town, and Castle environments, respectively. Despite its longer runtime
compared to other state-of-the-art methods [10,12,21], our method facilitates collaborative
image captures by multiple UAVs, resulting in a significant reduction of tens of minutes in the
image capture session. Additionally, since the 3D reconstruction session often lasts several
hours, the algorithm’s runtime is generally considered acceptable in comparison.

4.4. Comparisions in Synthetic Scenes

We compare our method with various state-of-the-art methods [10,12,21], as well as
the oblique photography (OP) method, in the synthetic scenes of School, Castle, and Town.
We obtained the trajectories of these methods used for comparison from the UrbanCity
dataset [14]. Specifically, we selected trajectories with low_overlap generated by each method
in different scenes. It is important to note that since all other methods can only generate a
single trajectory, we divided these trajectories into three equal segments to ensure fairness
and assess our multi-UAV collaboration performance. Furthermore, since the oblique
photography trajectories in the UrbanCity dataset are generated assuming the UAV has five
lenses, we compare the length, energy cost, and time cost values of the oblique photography
trajectories with our method after applying a four-fold improvement, considering that all
our experiments are based on the assumption of a UAV with a monocular camera.

Quantitative analysis. Table 6 presents a comparison of the Error and Completeness of
the reconstruction results achieved by various methods across different scenes. Compared
to other methods, our method demonstrates the capability to reconstruct a 3D model of
similar or higher quality using fewer images, except in the Castle scene. In the Castle
scene, although our method captures slightly more images, a substantial improvement
in reconstruction quality is observed. The above observations suggest that our method
exhibits greater robustness in capturing images for 3D reconstructions.

Table 6. Comparison of the reconstruction quality achieved by various methods across different scenes.

Scene Methods Num. Images Error 90% (m) ↓ Error 95% (m) ↓ Comp. 0.020 m
(%) ↑

Comp. 0.050 m
(%) ↑

Comp. 0.075 m
(%) ↑

School

OP 1079 0.1511 0.2671 16.25 25.36 34.79
Smith et al. [10] 559 0.0418 0.0937 30.39 40.92 46.18
Zhou et al. [12] 323 0.0456 0.0950 29.82 43.13 46.02
Zhang et al. [21] 342 0.0805 0.1623 20.95 40.06 46.8

Ours 321 0.0474 0.0824 30.93 42.20 46.76

Castle

OP 800 0.1271 0.2354 37.21 41.21 53.97
Smith et al. [10] 251 0.0670 0.1230 50.96 61.87 66.20
Zhou et al. [12] 213 0.0414 0.1295 54.71 59.46 62.76
Zhang et al. [21] 213 0.0583 0.1729 54.83 59.74 63.12

Ours 228 0.0205 0.0260 55.92 62.71 66.03

Town

OP 720 0.0652 0.1337 37.61 47.07 64.65
Smith et al. [10] 155 0.0571 0.1208 26.51 42.51 55.63
Zhou et al. [12] 259 0.0142 0.0207 41.54 51.69 64.94
Zhang et al. [21] 258 0.0391 0.0819 35.03 45.72 59.68

Ours 248 0.0126 0.0213 43.25 50.16 67.53

Figure 11 presents a comparison of different methods in terms of the trajectory quality.
This figure reveals that our method is capable of planning trajectories with the lowest or
nearly the lowest total length across different scenes. Moreover, leveraging the advantage
of collaborative image captures by multiple UAVs, our method achieves full scene image
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captures in the shortest time. Furthermore, by quantifying energy costs and incorporating
them into optimization, our multi-trajectory exhibits a significantly lower total energy cost
compared to other methods. This advantage enables us to effectively apply our method in
real scenes, facilitating the completion of the entire image capture task without the need for
battery replacement midway.
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Figure 11. Comparison of trajectory quality among different methods in terms of Total Length, Max
Time Cost, and Total Energy Cost. Due to the excessive total length and maximum time cost of oblique
photography, only 1/5 of their values are presented in the figure to allow for clear comparison with
other methods [10,12,21].

Qualitative analysis. Figure 12 depicts the ground truth surfaces densely sampled
in each synthetic scene. We compute the closest distance between each surface point and
the reconstructed surface of each method, representing it with a gradient color ranging
from blue (low) to red (high). Figure 12 reveals that our method exhibits a predominant
blue color with minimal occurrences of green and red areas. This observation signifies the
outstanding reconstruction quality achieved by our method.

Figure 13 presents a visual comparison of trajectory and surface details across different
scenes for various methods. In comparison to other state-of-the-art methods [10,12,21], our
approach excels at capturing images that make a significant contribution to reconstructions
by employing continuous trajectories in close proximity to the building surface. This
capability enables the reconstruction of finer surface details.
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Figure 12. A comprehensive visual comparison of the reconstruction quality achieved by various
methods. The reconstruction depth error is visualized using a gradient ranging from blue (low) to
red (high) [10,12,21].

4.5. Comparisions in Real Scenes

In real scenes, we compare our method solely with the open-source approach [10]
and the oblique photography method available in the commercial software DJI-Pilot [5].
As the DJI Phantom 4 RTK used in our experiment is equipped with a monocular camera,
DJI-Pilot [5] generated five trajectories to simulate the use of five lenses, as shown in
Figure 14. To ensure fairness, similar to the experiments conducted in the synthetic scenes,
the trajectories generated by both the oblique photography method and [10] were divided
into three equal segments. Subsequently, three UAVs were assigned to capture the images
simultaneously.

Figure 14 presents the visual effects of various methods in the GradSch, LiterColl,
and Gym scenes, focusing on trajectories and the reconstruction of surface details. Due to
space limitations, the performance of the oblique photography method is only displayed
in the Gym scene at the bottom of Figure 14. In the Gym scene, the oblique photography
method struggles to accurately recover the façade details of the building, resulting in
stretched textures. Furthermore, the presence of duplicated textures on the roof of Gym
presents a reconstruction challenge, resulting in surface holes in the reconstructed output
of the method proposed by Smith et al. [10]. Our method effectively resolves this issue.
Additionally, in the other two scenes, our method produces 3D models with enhanced
surface details and a closer resemblance to the original geometry. This demonstrates that
our method maintains an excellent 3D reconstruction performance in real scenes.



Drones 2023, 7, 544 22 of 26Drones 2023, 7, x FOR PEER REVIEW 22 of 27 
 

 

Figure 13. Visual comparison of trajectory and surface details across different scenes (School, Castle, 

and Town from top to bottom) for various methods [10,12,21]. 

4.5. Comparisions in Real Scenes 

In real scenes, we compare our method solely with the open-source approach [10] 

and the oblique photography method available in the commercial software DJI-Pilot [5]. 

As the DJI Phantom 4 RTK used in our experiment is equipped with a monocular camera, 

DJI-Pilot [5] generated five trajectories to simulate the use of five lenses, as shown in 

Figure 14. To ensure fairness, similar to the experiments conducted in the synthetic scenes, 

the trajectories generated by both the oblique photography method and [10] were divided 

into three equal segments. Subsequently, three UAVs were assigned to capture the images 

simultaneously. 

Figure 14 presents the visual effects of various methods in the GradSch, LiterColl, 

and Gym scenes, focusing on trajectories and the reconstruction of surface details. Due to 

space limitations, the performance of the oblique photography method is only displayed 

in the Gym scene at the bottom of Figure 14. In the Gym scene, the oblique photography 

method struggles to accurately recover the façade details of the building, resulting in 

stretched textures. Furthermore, the presence of duplicated textures on the roof of Gym 

presents a reconstruction challenge, resulting in surface holes in the reconstructed output 

of the method proposed by Smith et al. [10]. Our method effectively resolves this issue. 

Additionally, in the other two scenes, our method produces 3D models with enhanced 

Figure 13. Visual comparison of trajectory and surface details across different scenes (School, Castle,
and Town from top to bottom) for various methods [10,12,21].

Table 7 provides quantitative data regarding the size of each scene and the quality of
trajectories generated by various methods. Due to the automated generation of oblique
photography trajectories in each scene using commercial flight software, it was not possible
to calculate the precise energy cost of the trajectories as described in Section 3.3.1. As a result,
the corresponding positions in Table 7 are left blank. However, during the experiments in
real scenes, we recorded the battery consumption of all UAVs and determined the average
battery consumption of the three UAVs. This average was expressed as a percentage of the
total battery power. Based on the results, we can draw the following two conclusions:

1. Merely having longer flight paths and longer flight times does not necessarily imply
increased battery power loss. Instead, the energy cost metric we introduced exhibits a
significant positive trend with battery consumption, demonstrating a superior ability
to predict battery consumption;

2. In comparison to alternative methods, our approach empowers multiple UAVs to
capture image data, making a greater contribution to scene reconstructions while
consuming less battery and shorter times.
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Table 7. Comparison of the trajectory quality between our method, the method proposed by
Smith et al. [10], and the oblique photography method in real scenes (GradSch, LiterColl, and Gym).
The trajectories of the oblique photography method are automatically generated using commercial
flight software, thus making the theoretical trajectory energy cost unavailable.

Scene Area (m2) Hight (m) Mathods Num. Images Total Length
(m)

Total Energy
Cost

Max Time
Cost (min)

Average Battery
Consump. (%)

LiterColl 28,490 28.87
OP 618 9911.86 - 11.44 24.78

Smith et al. [10] 388 6606.84 460.92 19.14 67.67
Ours 379 4495.14 42.44 12.87 26.15

GradSch 11,772 31.00
OP 401 5901.14 - 7.83 17.31

Smith et al. [10] 424 6532.91 435.64 15.51 74.67
Ours 401 4495.58 38.07 10.89 21.56

Gym 18,848 28.24
OP 442 6457.25 - 8.67 20.12

Smith et al. [10] 493 6937.18 844.85 20.17 92.62
Ours 419 4702.58 42.11 11.61 22.01

Additionally, it is noteworthy that during our experiments in the GradSch scenario
using the method proposed by Smith et al. [10], an incident arose where the mission was
automatically halted due to a couple of UAVs being in close proximity. Only through
our manual intervention was the mission able to proceed safely. In contrast, our method
completely circumvents this situation.
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5. Discussion

Although our method effectively devises energy-efficient paths for multiple UAVs and
demonstrates an exceptional reconstruction quality, it still has some limitations. Firstly, our
approach necessitates a coarse proxy input. This implies that, for a completely novel scene,
the vertical image must be pre-captured and the coarse proxy reconstructed, thereby leading
to a further increase in overall flight elapsed time. Furthermore, our method prioritizes the
global optimality of trajectories at the expense of algorithmic complexity. Consequently,
the runtime is prolonged compared to alternative methods, presenting a challenge in the
context of outdoor scene planning. Finally, despite real scenario experiments indicating
a distinct positive trend in quantifying energy costs and real power losses, their linear
correlation remains absent. Consequently, constraining trajectories based on UAV battery
capacity continues to pose challenges. This results in planned trajectories that may not
be executable by a UAV in a single pass. We believe that these limitations merit further
exploration in future research endeavors.

6. Conclusions

This work introduces a task-oriented and search-based path planning framework
that achieves the creation of energy-efficient continuous trajectories for multiple UAVs,
enabling collaborative image captures for the reconstruction of high-quality 3D models.
Our framework comprises three key modules. Firstly, the reconstructability estimation
module enhances reconstructions’ global optimality by constructing a submodular re-
constructability heuristic and reconstructability loss map. These tools aid in pinpointing
essential task locations within the scene. Secondly, the task allocation module involves the
design of a task sequence-solution space codec, facilitating the allocation of optimal task
sequences to multiple UAVs. This is achieved through the minimization of the fitness func-
tion within the real number space, promoting collaboration among UAVs and enhancing
trajectory smoothness. Thirdly, the path searching module involves the quantification of
safety and energy costs across multiple trajectories, guided by the dynamics of continuous
trajectories. These quantifications are subsequently integrated into the path optimization
process, together with scene reconstructability considerations. This integration significantly
enhances both the path and reconstruction quality. Subsequent research could tackle the
constraints of our approach, including the mitigation of time consumption by fully utilizing
vertical photographic images. Furthermore, there is the potential to explore learning-based
strategies to advance path planning performances.
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