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Abstract: The rubber tree (Hevea brasiliensis) is an important tree species for the production of natural
latex, which is an essential raw material for varieties of industrial and non-industrial products.
Rapid and accurate identification of the number of rubber trees not only plays an important role
in predicting biomass and yield but also is beneficial to estimating carbon sinks and promoting
the sustainable development of rubber plantations. However, the existing recognition methods
based on canopy characteristic segmentation are not suitable for detecting individual rubber trees
due to their high canopy coverage and similar crown structure. Fortunately, rubber trees have a
defoliation period of about 40 days, which makes their trunks clearly visible in high-resolution
RGB images. Therefore, this study employed an unmanned aerial vehicle (UAV) equipped with an
RGB camera to acquire high-resolution images of rubber plantations from three observation angles
(−90◦, −60◦, 45◦) and two flight directions (SN: perpendicular to the rubber planting row, and WE:
parallel to rubber planting rows) during the deciduous period. Four convolutional neural networks
(multi-scale attention network, MAnet; Unet++; Unet; pyramid scene parsing network, PSPnet) were
utilized to explore observation angles and directions beneficial for rubber tree trunk identification and
counting. The results indicate that Unet++ achieved the best recognition accuracy (precision = 0.979,
recall = 0.919, F-measure = 94.7%) with an observation angle of −60◦ and flight mode of SN among
the four deep learning algorithms. This research provides a new idea for tree trunk identification by
multi-angle observation of forests in specific phenological periods.

Keywords: rubber plantation; UAV; deep learning; defoliation period; multi-angle images; recognition

1. Introduction

Since natural latex is an important raw material for fiberboard, tires, and plywood, the
rubber tree (Hevea brasiliensis) is widely spread in tropical regions such as Southeast Asia
and the tropical region of China [1]. Rubber plantations have significantly impacted local
species diversity, carbon storage, land use conditions, the livelihoods of local communities,
and government revenue [2–4]. Thus, the growth monitoring of rubber plantations has
attracted great attention. Although a number of research studies have reported change
detection, disease detection, stand age, biomass and carbon, and leaf area index (LAI)
estimation in rubber plantations [5], the automatic rubber tree counting method based
on remote sensing imagery still remains unclear due to the high canopy coverage. It is
undeniable that accurately identifying the number of rubber trees is essential for predicting

Drones 2023, 7, 547. https://doi.org/10.3390/drones7090547 https://www.mdpi.com/journal/drones

https://doi.org/10.3390/drones7090547
https://doi.org/10.3390/drones7090547
https://creativecommons.org/
https://creativecommons.org/licenses/by/4.0/
https://creativecommons.org/licenses/by/4.0/
https://www.mdpi.com/journal/drones
https://www.mdpi.com
https://orcid.org/0000-0003-4390-7895
https://orcid.org/0000-0002-9588-4931
https://orcid.org/0000-0003-0214-5038
https://doi.org/10.3390/drones7090547
https://www.mdpi.com/journal/drones
https://www.mdpi.com/article/10.3390/drones7090547?type=check_update&version=1


Drones 2023, 7, 547 2 of 20

the yield, analyzing the driving force, and understanding the carbon storage and carbon
sequestration potential of rubber plantations in tropical areas.

The traditional rubber tree identification method is mainly manual counting in the
field, which is time-consuming and labor-intensive, and it is difficult to apply large-scale
rubber plantation monitoring. Nowadays, remote sensing techniques with the advantages
of obtaining large-scale, rapid, objective, and accurate forest information have been proven
to be an effective approach to forest growth monitoring [5,6]. Although previous studies
have obtained high estimation accuracy in large-scale forest monitoring with satellite data,
they could not meet the requirement of forest growth monitoring at the tree level due
to their low spatial-temporal resolution and inflexible maneuverability, and especially
their difficult operation when monitoring specific times and locations [7]. Compared
to satellite platforms, unmanned aerial vehicles (UAVs), with their flexible revisit time
and easy operation, have become a new cost-effective manner to obtain remote sensing
data [8]. UAVs have been popular in various applications since 2010 [9], especially in
precision agriculture, forestry, and photogrammetry. UAV-based images acquired from
user-defined sensors, flight height, and flight times have been used to extract various forest
parameters. For example, Han et al. [10] proposed a real-time orthophoto mosaicking-
based tree counting framework to detect trees using sequential aerial images, which is very
effective for the fast detection of large areas. Vélez et al. [11] proposed a novel technique
using planar area and ground shadows calculated from UAV RGB imagery to estimate
pistachio tree (Pistacia vera L.) canopy volume. Gan et al. [12] demonstrated the favorable
and robust performance of the Detectree2 method for tree crown detection and canopy
width extraction in high-mountain temperate deciduous forests with UAV imagery. These
studies indicated that UAV-based high-resolution RGB imagery has great potential in
retrieving the biophysical parameters of forests.

In recent years, image recognition based on deep learning (DL) algorithms has pro-
vided an outstanding technique in identifying and detecting observed objects, which has
been widely applied in crop automatic counting, such as rice (Oriza sativa L.) panicle
counting [13], wheat (Triticum aestivum L.) ears counting [14], corn (Zea mays L.) plant count-
ing [15], sorghum (Sorghum bicolor L. Moench) panicle counting [16], and ramie (Boehmeria
nivea) plant counting [17]. These studies found that the precision of crop recognition de-
pends not only on the DL algorithms but also on the acquired image resolution. There is
no doubt that higher-resolution images are beneficial for distinguishing crops and weeds
in a complex field environment [18]. Recently, many experts employed a UAV equipped
with RGB cameras to acquire high-resolution imagery for crop and tree counting. These
RGB images combined with DL technology can successfully extract vegetation features
and segment individual plants [19,20]. Additionally, Chen and Liao [21] provided fast
region-based convolutional neural network (Fast R-CNN) architecture to detect and classify
palm trees. Li et al. [22] developed a low-cost approach for counting rapeseed inflores-
cences using YOLOv5 with the convolutional block attention module based on UAV RGB
imagery. A similar study was also conducted in the counting of rice seedlings and achieved
a promised recognition accuracy [23].

The DL algorithm has greater advantages in processing digital images, video, voice,
natural language, and other high-dimensional data [24]. The convolutional neural network
(CNN) is a special deep feedforward network, which its components consist of an input
layer, a convolutions layer, fully connected layers, and an output layer [25]. CNN excels
at image-based tasks due to its advantages in learning the spatial structure of the pixels
automatically [26], which produces multiple DL network architectures, such as Unet [27],
Unet++ [28], multi-scale attention network (MAnet) [29], and pyramid scene parsing
network (PSPnet) [30]. In addition, these CNNs have been widely applied in medical image
segmentation [28] and the target detection of vehicles [31], crops [13], and trees [32], which
received an outstanding performance.

To achieve the automatic counting of trees from digital images, researchers have
investigated the potential of the CNN approach for tree counting using high-resolution
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images obtained from UAV-based sensors [33–35]. Previous studies have found that
CNN achieved high recognition precision values of 0.95 and 0.92 for citrus [36] and navel
orange trees [37], respectively. The improved CNN method called Fast R-CNN successfully
achieved average accuracies of 99.8%, 100%, and 91.4% in identifying palm trees from
young, mature, and mixed vegetation areas, respectively [21]. Although these studies have
retrieved high accuracy in counting trees by CNN with UAV-based images, the proposed
DL algorithms could not be directly migrated to other tree types because plant stand
counting is affected by the plant size, leaf overlap, and variable spacing factors [38].

At present, canopy characteristics and canopy height models (CHM) extracted from
UAV-based high-resolution images are mainly used for tree recognition. For example,
Aliero et al. [39] detected and delineated the palm oil crown using convolution and mor-
phological analysis based on the concept of crown geometry and vegetation response to
radiation. An image threshold method was employed to create the palm oil tree centroids
with an accuracy of 96.5%. Juan et al. [40] utilized the watershed algorithm to detect a single
tree by the height value difference between pixels from a two-dimensional gray image of
CHM. These studies mainly focus on canopy characteristic extraction in sparse forest envi-
ronments; few studies pay more attention to the automatic counting of rubber trees using
UAV-based RGB images due to high canopy coverage. Additionally, the main trunk of a
rubber tree will split into multiple secondary trunks during the growth stage [41], so there is
no significant difference in rubber tree crown architecture during the leaf flourishing period,
making the current tree identification methods based on canopy characteristics not suitable
for rubber tree recognition. Even though some studies attempted to segment tree crowns
using ground-based mobile LiDAR, there are still challenges in distinguishing individual
rubber trees in surroundings with self-occluded canopy architectures [42]. Fortunately, the
rubber tree trunk can be observed with high-resolution RGB images acquired from decidu-
ous periods because of special trunk characteristics, including a bright color, distinctive
shape, and large size compared to the surrounding background. However, DL methods
combining trunk-based features in identifying and counting rubber trees remain unclear.

To address the aforementioned issues, this study proposed an approach based on
CNN to cope with the challenge of estimating the number of rubber trees in highly dense
plantations from UAV-based RGB images. Given that it is difficult to identify the number
of rubber trees from the canopy characteristics during the flourishing period, this study
verifies the possibility of detecting rubber tree trunks by using UAV-based RGB images
acquired from multiple observation angles and flight directions in the deciduous period.
Four CNNs (MAnet; Unet++; Unet; PSPnet) were used to explore beneficial observation
angles and directions for rubber tree trunk identification and counting. Furthermore, this
study was the first attempt to detect rubber tree trunks by combining DL methods with
UAV-based RGB images.

2. Materials and Methods
2.1. Study Area

The experiment was performed in Jinghong city located in Xishuangbanna Dai Au-
tonomous Prefecture, Yunnan, China, in March 2021, at the coordinates 100◦25′ E–101◦31′

E longitude, 21◦27′ N–22◦36′ N latitude (Figure 1). Jinghong belongs to a humid tropical
monsoon climate with obvious dry and wet seasons. Its annual precipitation and annual
average temperature are 1200–1700 mm and 23.5 ◦C, respectively. Rubber plantations have
become an important economical species in this region. All rubber trees in this study area
were planted in 2000, with a row distance of 7–10 m and column distance of 1.5–2.5 m
according to planting field inventory. Rubber tree cultivation exhibits distinct row and col-
umn patterns except for the position of corners. The field investigation and flight campaign
were conducted during the deciduous period of rubber plantations, when only tree trunks
and branches remain on the ground. This study area covered an area of 142.6 ha, planted
with 614 rubber plants.
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2.2. Data Acquisition and Preprocessing
2.2.1. Data Acquisition

UAV-based RGB images were collected by the DJI Phantom 4 RTK after the leaves
of rubber trees fell in March 2021. The UAV was equipped with an RGB camera with
a resolution of 5472 × 3648 pixels. Flight campaigns were conducted in clear weather
from 11:00 a.m. to 1:00 p.m. local time. To generate an orthophoto image covering the
study area, a predefined flight path was designed to acquire imagery with 80% forward
overlapping and 70% side overlapping. Multi-angle RGB images of rubber trees at a flight
altitude of 100 m were acquired from three observation angles (−45◦, −60◦, −90◦). All
flight parameters related to the flight plan were set using the DJI GS RTK app on the DJI
remote controller. In addition, 75 rubber trees in 3 regions of interest (ROI, 20 m × 25 m) of
this study area were measured by the ZHD V200 (RTK, Guangzhou Hi-Target Navigation
Tech Co., Ltd., Guangzhou, China) to obtain the location, which was utilized to evaluate
the recognition accuracy of rubber tree trunks with DL techniques.

2.2.2. UAV Image Processing

The high-quality UAV-based RGB images were used to generate a digital orthophoto
map (DOM) with Agisoft Metashape software (https://www.agisoft.com/ accessed on
17 October 2022). Firstly, the generated DOM from RGB original images was utilized as a
reference to visually interpret rubber trees within the study area. Secondly, DL algorithms
were employed to generate binary mask images of the rubber trees based on original
images. To integrate the identification results of individual images of rubber trees and
cover a large study area, the recognition resultant images of rubber trees were mosaicked
to an orthophoto using Agisoft Metashape software. The detailed orthophoto generation
process can be found in the research of Lu et al. [43]. Lastly, ArcGIS software was used
to evaluate the identification performance of rubber trees with DL techniques in a visual
interpretation method on two overlapping DOMs. A total of 614 trees were manually
identified according to the generated orthophoto of the study area.

To meet the requirement of the DL architecture, UAV-based high-resolution RGB
images were resized to 320× 320 pixels to match the size of a rubber tree and DL algorithms.
A total of 600 images including their horizontal flip images, vertical flip images, and
brightness contrast change images were randomly divided into training images of 80%
and validation images of 20% based on a dataset partitioning strategy from Ariza-Sentís
et al. [44]. The ground truths of rubber tree trunks were labeled as a polygon by using
the publicly available “Labelme” (https://github.com/wkentaro/labelme accessed on
10 October 2022) tool. Each labeled image has an additional JSON file containing the
coordinates of the annotated bounding boxes.

2.3. Convolutional Neural Network

This study employed four convolutional neural networks (MAnet, Unet++, Unet, PSP-
net) to recognize rubber tree trunks using single images collected from different observation
angles. To improve the efficiency of CNN, ResNet50 was utilized to optimize the network
framework. The four CNN architectures used for this study are shown in Figure 2.

https://www.agisoft.com/
https://github.com/wkentaro/labelme
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Figure 2. The architecture of four CNNs used for this study: (a) Unet, (b) Unet++, (c) pyramid scene
parsing network (PSPnet), and (d) multi-scale attention network (MAnet). The left RGB images are
the labeled images, and the right images are the detected images. Trees are highlighted in yellow,
while the background is depicted in purple.

2.3.1. Unet and Unet++ Network

Unet is named based on its U-shaped structure and is a network with encoder and
decoder architecture. This network has been applied excellently in medical image segmen-
tation [27]. Figure 2a shows the overall architecture of Unet. This method, by optimally
using the fully convolutional (FC) network’s key ideas (skip connections, adding convo-
lutions and non-linearities between each up-sampling step), makes FC methods suitable
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for semantic segmentation. In this way, the high-resolution feature mapping of the input
was directly extracted from the encoder to the decoder network through a simple skip
connection. However, the output result after encoding and decoding has the problem of
incomplete correspondence with the original input image.

To confirm the appropriate depth of the network and to reduce the semantic gap
between the encoder and decoder of the feature maps, Zhou et al. [28] proposed the Unet++
network (Figure 2b). This method can restore the extracted feature map size as the original
image size after the decoding process and add more skip connections between encoding
and decoding. Thus, the semantics of the encoder are closer to those of the decoder, and
the network depth can be optimized.

2.3.2. Pyramid Scene Parsing Network

The pyramid scene parsing network (PSPnet) was proposed by Zhao et al. [30] to
obtain appropriate global characteristics. This algorithm exploits the capability of global
context information by different-region-based context aggregation with a pyramid pooling
module. PSPnet provides a complete understanding of the scene, which can be used
to predict the label, location, and shape of each scene element. Meanwhile, using both
local and global information makes prediction more reliable. This method integrates the
information from different scales and different subregions and plays a crucial role in the
parsing task of complex scenes. In addition, more attention will be paid to the tiny targets
in the scene to enhance the recognition effectiveness. This network uses four different
pyramid scale pool modules to collect context information in the process of the training.
Then, pyramid pooling module combines the characteristics of the pyramid of four different
scales as the global prior. Finally, the global prior features with the original figure and the
subsequent convolution are used to generate the final prediction figure (Figure 2c).

2.3.3. Multi-Scale Attention Network

The multi-scale attention network (MAnet) proposed by Fan et al. [29] was first used
to segment the liver and tumors (Figure 2d). This method models the feature interde-
pendencies in spatial dimensions using a position-wise attention block, which is able to
obtain the spatial dependencies between pixels in a global view. In addition, it has the great
advantage of using a multi-scale fusion attention block to capture the channel dependencies
among any feature maps by multi-scale semantic feature fusion via combining the high-
and low-level feature maps. Thus, local features and their global correlations are adaptively
integrated to improve the performance of the network.

2.3.4. ResNet50 Network

The residual network (ResNet) is one of the most popular image segmentation archi-
tectures [45]. ResNet50 has been proven to produce the best performance in the Timm
open-source datasets due to its advantages in the subsampling part of feature map ex-
traction [46]. Compared to ResNet50, the traditional method is to deepen or widen the
network to improve the recognition accuracy, which leads to an increase in the number
of hyperparameters and an increased computational burden for DL networks [47]. The
ResNet’s cross-layer connection addressed the issue of diminishing gradient return val-
ues, which will make training deep convolutional neural networks easier. In this study,
all four networks used ResNet50 with the first four encoder layers to obtain the feature
representation and optimize the accuracy without increasing the complexity parameters.

The Unet is a classic architecture that provides a baseline for image segmentation
tasks, but it has some limitations in capturing detailed context information due to the
limited receptive field. The Unet++ extends these capabilities by incorporating nested skip
connections. The involved nested skip pathways increase its computational complexity
compared to the original Unet. The PSPnet can more effectively capture context information
at various scales, allowing it to handle objects of different sizes and improve segmentation
accuracy, while it may not perform as well when it comes to fine-grained segmentation tasks.
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Although the above methods can obtain context fusion information, they cannot describe
the spatial and channel relationships among objects in a global view. The MAnet considers
the spatial and channel dependencies, which fuse the high- and low-level semantic features
in the channel-wise dependencies [29]. Although all DL networks lack interpretability,
most of the four DL techniques have achieved promising recognition accuracy in plant
counting and tree detection [48,49].

2.4. Rubber Tree Trunks Identification from CNNs

To address the issue of rubber tree counting automatically and efficiently, this study
proposes an approach based on DL techniques using UAV-based multi-angle RGB im-
agery. All DL algorithms described in Section 2.3 were implemented with the Pytorch DL
framework. The workflow of the proposed approach is presented in Figure 3. Rubber tree
images were obtained from a UAV-based RGB sensor with three multi-angle observations of
−45◦, −60◦, and −90◦ during the defoliation period. These original images from different
angles were spliced and generated a DOM. Meanwhile, the UAV original images were
resized to smaller sizes and labeled manually using the “labelme” tool. The tree trunk
label dataset was then divided into training (80%) and validation (20%) datasets. Four DL
algorithms combined with the ResNet50 network were employed to build the rubber tree
trunk recognition model. Finally, the detection mask images of rubber tree trunks were
used to generate a DOM again and compare it with the visual interpretation results.
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Figure 3. Experimental methodology and procedure of rubber tree recognition used in this study.
Data acquisition included field measurement in rubber tree counting, multi-angle image series
acquisition, and digital orthophoto map (DOM) generation. The procedure of using deep learning
methods for rubber tree trunk recognition included the first step of manually labeling RGB images,
the second step of dividing these labeled RGB images into training and validation datasets, followed
by training four deep learning networks (Unet, Unet++, pyramid scene parsing network (PSPnet),
and multi-scale attention network (MAnet)) using the training dataset, and finally, evaluating the
recognition accuracy using the validation dataset.

2.5. Accuracy Analysis

To evaluate the learning effect of the CNN network, this research employed intersec-
tion over union (IOU) loss and dice loss as two assessment indicators. IOU measures the
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quality of target detection by calculating the ratio of the intersection and union between
the prediction box and the real box (Figure 4). In addition, dice loss is used to evaluate the
similarity between two labels (Equations (1) and (2)). It is worth noting that the smaller the
values of IOU loss and dice loss, the better the detection effect.

dice =
2|X∩ Y|
|X|+|Y| (1)

dice loss = 1 − dice (2)

where X is the predicted box, while Y represents the real box. The intersection between X
and Y is denoted by |X∩Y|. Additionally, |X| and |Y| refer to the pixel numbers of X
and Y, respectively.
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Figure 4. Illustration of the intersection over union (IOU) used to assess the performance metric of
the CNN network in image segmentation.

The accuracy of detection was evaluated by three generally used quality factors: preci-
sion, recall, and F-measure [13]. Precision represents the percentage of examples classified
as true positive examples that are positive examples. Recall represents the percentage of
examples classified as true positive examples of all samples, and the F-measure is the evalu-
ation index that integrates these two indexes and reflects the overall index comprehensively.
The equations are defined as follows:

Precision =
TP

TP + FP
(3)

Recall =
TP

TP + FN
(4)

F−measure =
2 × Precision × Recall

Precision + Recall
% (5)

where true positive (TP) represents the correct classification of a region as a rubber tree, and
false positive (FP) represents the error classification of a background region as a rubber tree.
False negative (FN) indicates an incorrect classification of a tree as a background region.
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3. Results
3.1. Comparison of Learning Effect of Different DL Algorithms

The numbers of epochs and loss function scores obtained from all the models were
shown in Figure 5. During the training process, the dice loss value of the models gradually
decreased as the number of iterations increased. Among the proposed networks, the dice
loss value of the PSPnet decreased faster than the others and the dice loss tended to be
stable around 3 epochs with its score of 0.997, while the other networks initially decreased
slowly but sharply after 40 epochs and obtained the smallest dice loss between 42 and
46 epochs. It is noteworthy that the PSPnet had a slightly smaller dice loss score compared
to the other networks. As for the IOU loss values, the dice loss value of the PSPnet snapped
towards stability at around three epochs. Meanwhile, the other three DL algorithms, after
experiencing an initial upward trend followed by stabilization, sharply decreased to their
minimum values and remained constant after 40 epochs. Different from dice loss, all
networks gained the same score for IOU loss.
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3.2. Identification and Counting of Rubber Trees

For visual comparison, this study utilized original images to visualize the detection
results based on different recognition methods. Figure 6 shows the results of rubber trunk
prediction based on four DL methods. Unet++ and Unet can more accurately recognize
the trunk outline and identify more trees than the other two DL architectures. However,
PSPnet and MAnet had obviously missing detection in some cases. In particular, some
rubber tree trunk outlines identified by PSPnet were not integrated, which resulted in the
possibility of multiple detections.
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Different from previous recognition research based on a single UAV image, in this
study, the number of rubber trees in the study area was obtained by generating the detected
mask orthophoto images. As demonstrated in Figure 7, the ability to accurately identify
rubber tree trunks was affected by the distance and angle of the UAV-based camera shot.
The tree trunks were closer and the center of the photo can be identified with greater
precision. As the UAV moves forward in flight, the rubber tree trunks in the back rows can
also be identified row by row, which makes it possible to recognize rubber tree trunks in a
large region by mosaicking identified binary mask images.
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To assess the capability of recognizing rubber tree trunks based on multi-angle original
UAV images, this research compared the number of rubber tree trunks identified in the
images captured from the same location. As Table 1 shows, it was found that 226 rubber
trees could be identified using images at the observation angle of −90◦; 216 plants could
be identified at −45◦ SN; 75 plants at −45◦ WE, 410 plants at −60◦ SN, and 159 plants
at −60◦ WE. It is obvious that the −60◦ SN observation angle can retrieve more trunk
information in images of a rubber forest.

Table 1. Comparison of the identification of rubber tree trunk counts in images from different
observation angles at the same location.

Direction and Angle Tree Number

−90◦ 226
−45◦ SN 216
−45◦ WE 75
−60◦ SN 410
−60◦ WE 159

Note: SN represents that the UAV acquired the images in the direction of flight perpendicular to the rubber
planting rows; WE represents that the UAV acquired the images in the direction of flight parallel to the rubber
planting rows; −45◦, −60◦, −90◦ represent the three observation angles.

3.3. Performance of DL Techniques with Multi-Angle Observation in Rubber Tree Identification

Table 2 shows the identification accuracy of rubber tree trunks in terms of precision,
recall, and F-measure based on the proposed method by using images from different
observation angles and orientations. It can be seen that the recognition precision of rubber
tree trunks from different angles and directions was more than 0.93 by applying different
recognition methods. But the recall values fluctuated greatly ranging from 0.088 to 0.919.
The F-measure values also fluctuated greatly. The best F-measure values of the ResNet-
Unet++, ResNet-Unet, ResNet-PSPnet, and ResNet-MAnet were 94.7%, 90.0%, 42.3%, and
90.8%, respectively.

Table 2. The recognition accuracy comparison of rubber tree trunks using four distinct CNN algo-
rithms (Unet, Unet++, PSPnet: pyramid scene parsing network, and MAnet: multi-scale attention
network) with UAV-based RGB images acquired from different observation angles and orientations.
SN: images taken perpendicular to the rubber planting row flight, WE: images taken parallel to the
rubber planting rows.

Method Angle Precision Recall F-Measure

ResNet-Unet++

−90◦ 0.979 0.901 93.8%
−60◦ SN 0.979 0.919 94.7%
−60◦ WE 0.977 0.687 80.7%
−45◦ SN 0.972 0.862 91.4%
−45◦ WE 0.979 0.756 85.3%

ResNet-Unet

−90◦ 0.983 0.824 90.0%
−60◦ SN 0.974 0.730 83.4%
−60◦ WE 0.977 0.546 70.0%
−45◦ SN 0.961 0.764 85.1%
−45◦ WE 0.970 0.427 59.3%

ResNet-PSPnet

−90◦ 0.965 0.090 16.4%
−60◦ SN 0.967 0.241 38.6%
−60◦ WE 0.968 0.148 25.7%
−45◦ SN 0.971 0.270 42.3%
−45◦ WE 0.931 0.088 16.1%

ResNet-MAnet

−90◦ 0.985 0.842 90.8%
−60◦ SN 0.985 0.839 90.5%
−60◦ WE 0.974 0.611 75.1%
−45◦ SN 0.950 0.711 81.3%
−45◦ WE 0.982 0.531 68.9%
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Our results also show that the ResNet-Unet++ achieved the best recognition accuracy
and the highest recall with a UAV perpendicular to the rubber planting row flight mode (SN)
and an observation angle of −60◦ (precision = 0.979; recall = 0.919; F-measure = 94.7%).
In addition, the recall values of the rubber tree trunks identified by the images taken
in parallel to the rubber planting rows (WE) were always lower than that of another
shooting direction. By comparing the F-measure accuracy, the ResNet-Unet++ algorithm
substantially outperformed the other DL algorithms, followed by ResNet-MAnet (Figure 8).
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Figure 8. The F-measure results of rubber tree trunk identification with different observation angles
and orientations using four CNN algorithms (Unet, Unet++, pyramid scene parsing network (PSPnet),
and multi-scale attention network (MAnet)). SN: images taken perpendicular to the rubber planting
rows, WE: images taken parallel to the rubber planting rows.

To further validate the robustness and effectiveness of the proposed methods, the
identified results were compared and analyzed with the field investigation of rubber
trees (75 plants) obtained by the RTK, which represents the real position and the num-
ber of rubber trees (Table 3). The results show that ResNet-Unet++ performed the best
(F-measure = 96.6%), while the ResNet-PSPnet had the lowest recognition accuracy among
the four DL networks (F-measure = 35.2%) in this study area. The ResNet-Unet and ResNet-
MAnet achieved similar recognition accuracy (F-measure = 89.7% and F-measure = 87.6%,
respectively).

Table 3. The accuracy assessment of four CNN algorithms (Unet, Unet++, pyramid scene parsing net-
work (PSPnet), and multi-scale attention network (MAnet)) compared with the field measured result.
The UAV RGB images were taken perpendicular to the rubber planting rows with an observation
angle of −60◦.

Method Detect TP FP FN Precision Recall F-Measure

ResNet-
Unet++ 74 72 2 3 0.973 0.960 96.6%

ResNet-Unet 61 61 0 14 1.000 0.813 89.7%
ResNet-
PSPnet 16 16 0 59 1.000 0.213 35.2%

ResNet-
MAnet 62 60 2 15 0.968 0.800 87.6%
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4. Discussion
4.1. Challenges in Canopy Segmentation of Single Trees in Rubber Forests

The conventional approach to tree identification based on canopy feature segmentation
is not suitable for rubber forests. The main reasons can be attributed to two aspects: On the
one hand, rubber forests have a high canopy coverage rate and high canopy overlap during
their flourishing period, making it difficult for existing canopy segmentation methods to
distinguish individual trees. Previous studies have focused on tree recognition of coniferous
forests or orchards using UAV-based high-resolution RGB images of tree canopy [33,50,51].
These characteristics of tree canopy related to sparse growth scenarios and non-overlapping
tree crowns are significantly different from rubber forests (Figure 9a). On the other hand,
most rubber trees have more than one crown, which leads to large recognition errors in the
crown-based segmentation algorithm. As shown in Figure 9b, the trunk of a rubber tree
will generate multiple branches when it grows to a certain height (about 3 m). This means
a rubber tree has one to three corresponding crowns, which makes it a great challenge to
count the number of trees from UAV-based canopy RGB images.
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Figure 9. Images of the rubber tree crown and trunk in the stationary phase. (a) Canopy images
of rubber trees acquired from UAV-based RGB sensors; (b) trunks of rubber trees captured by a
phone sensor.

Even though the optical sensor has no penetrability compared to light detection and
ranging (LiDAR), the trunk of a rubber tree can be seen clearly in UAV-based RGB images
without the cover of leaves during the deciduous period (Figure 10b). Given the special
characteristics of rubber forests with a 40 days defoliation period per year, this study
attempted to identify individual rubber tree trunks in UAV-based high-resolution RGB
images with four DL algorithms. This idea is consistent with a previous study that utilized
the phenological characteristics of different vegetation in mixed forests for tree crown
recognition. Chadwick et al. [52] delineated and measured the regenerating conifer crowns
located beneath deciduous overstorey using UAV imagery. They found that regenerating
conifer crowns can be well recognized under leaf-off conditions. However, their study
only utilized images acquired from a vertical view and did not evaluate the performance
of images from different observation angles. Our results prove the feasibility of rubber
tree recognition through the use of multi-angle UAV images. These findings open a new
perspective for the detection of tall deciduous trees.



Drones 2023, 7, 547 15 of 20

Drones 2023, 7, x FOR PEER REVIEW 15 of 21 
 

images with four DL algorithms. This idea is consistent with a previous study that utilized 
the phenological characteristics of different vegetation in mixed forests for tree crown 
recognition. Chadwick et al. [52] delineated and measured the regenerating conifer 
crowns located beneath deciduous overstorey using UAV imagery. They found that re-
generating conifer crowns can be well recognized under leaf-off conditions. However, 
their study only utilized images acquired from a vertical view and did not evaluate the 
performance of images from different observation angles. Our results prove the feasibility 
of rubber tree recognition through the use of multi-angle UAV images. These findings 
open a new perspective for the detection of tall deciduous trees. 

 
Figure 10. The bare crowns and trunks of rubber forest during the deciduous period. (a) Bare crowns 
of rubber tree images acquired from an observation angle of −90°; (b) rubber tree trunk images ac-
quired from an observation angle of −90° on the complex terrain. 

4.2. Effects of UAV Multi-Angle Observations and Orientations on Tree Identification in a Rub-
ber Forest 

This study assessed the detection performance of rubber tree trunks using UAV-
based high-resolution RGB images obtained from three observation angles (−90°, −60°, 
−45°) and two flight orientations (SN: perpendicular to rubber planting rows, and WE: 
parallel to rubber planting rows) during a defoliation period, with four deep learning 
techniques. For the two flight directions, we found that more rubber tree trunks could be 
detected in the SN mode than the WE mode based on the same research area (Table 3). 
This can be explained explicitly by the fact that the flight direction was highly correlated 
with the rubber forest planting orientation. According to the field investigation, the row 
spacing (7–10 m) of rubber planting is larger than the column spacing (1.5–2.5 m). Since 
the observation from south to north (SN) was perpendicular to the planting row direction 
of the rubber forest, more rubber trees can be seen in the UAV-based RGB images. Con-
versely, the smaller column spacing in the WE mode limited the visibility of tree trunks 
due to tree occlusion. Therefore, when the UAV collected images in the SN mode, the ob-
served occlusion between the front and back rows was much smaller than the occlusion 
between adjacent trees, which could explain why the SN observation was superior to the 
WE observation.  

For different observation angles, it was found that the observation angle of −60 ° was 
the best, followed by −90°, and then −45°, in detecting the number of rubber tree trunks at 
the same location. A reasonable explanation is that the view angle of −60° observed more 
rubber forest profile information than −90°, while −45° may be due to an excessive incli-
nation angle in the shooting process, resulting in increased occlusion between the rubber 
trees. Despite a larger oblique angle and larger coverage of the image, the obtained oblique 
image has a lower spatial resolution when it is far away from the acquisition position [53]. 
Thus, using −45° observation angle images to generate orthophotos may lead to inaccurate 
calculations of the proportions and angles between the camera space and the real space. 

Figure 10. The bare crowns and trunks of rubber forest during the deciduous period. (a) Bare crowns
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4.2. Effects of UAV Multi-Angle Observations and Orientations on Tree Identification in a
Rubber Forest

This study assessed the detection performance of rubber tree trunks using UAV-based
high-resolution RGB images obtained from three observation angles (−90◦, −60◦, −45◦)
and two flight orientations (SN: perpendicular to rubber planting rows, and WE: parallel to
rubber planting rows) during a defoliation period, with four deep learning techniques. For
the two flight directions, we found that more rubber tree trunks could be detected in the SN
mode than the WE mode based on the same research area (Table 3). This can be explained
explicitly by the fact that the flight direction was highly correlated with the rubber forest
planting orientation. According to the field investigation, the row spacing (7–10 m) of
rubber planting is larger than the column spacing (1.5–2.5 m). Since the observation from
south to north (SN) was perpendicular to the planting row direction of the rubber forest,
more rubber trees can be seen in the UAV-based RGB images. Conversely, the smaller
column spacing in the WE mode limited the visibility of tree trunks due to tree occlusion.
Therefore, when the UAV collected images in the SN mode, the observed occlusion between
the front and back rows was much smaller than the occlusion between adjacent trees, which
could explain why the SN observation was superior to the WE observation.

For different observation angles, it was found that the observation angle of −60 ◦ was
the best, followed by −90◦, and then −45◦, in detecting the number of rubber tree trunks
at the same location. A reasonable explanation is that the view angle of −60◦ observed
more rubber forest profile information than −90◦, while −45◦ may be due to an excessive
inclination angle in the shooting process, resulting in increased occlusion between the
rubber trees. Despite a larger oblique angle and larger coverage of the image, the obtained
oblique image has a lower spatial resolution when it is far away from the acquisition
position [53]. Thus, using −45◦ observation angle images to generate orthophotos may
lead to inaccurate calculations of the proportions and angles between the camera space
and the real space. This research employed four DL methods due to the discrepancy
in pixel resolution within an image [54]. This large offset resulted in multiple feature
matching points to filter out in the calculation of the camera position and direction in
different positions. As a result, the final mosaicked orthophoto became fuzzy due to the
inclusion of more details of the tree branches, which lowered the recognition accuracy of
rubber tree trunks. In addition, our finding is in agreement with a recent study by Hati and
Singh [55], which reported that side-view images were more effective in identifying species
and tracking growth with a deep neural network approach.

This study found that the oblique observation only slightly improved the recognition
accuracy of the rubber tree in a deciduous period compared to the conventional vertical
observation. The reasons may be as follows: Firstly, although the study area is a plan-
tation with relatively fixed row and column distance, its arrangement is not absolutely
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south–north or west–east. As shown in Figure 10b, different from crops, the row and
column distribution of rubber tree planting is irregular and uneven due to complex ter-
rain. Therefore, there was still a certain observation angle between the rubber forest and
the aerial images acquired from the vertical observation angle of −90◦, which yielded a
promised recognition accuracy. Secondly, only three fixed observation angles were used
in this study, which may not include an optimal oblique observation angle for rubber tree
trunk identification. Furthermore, this study focused on recognizing rubber tree trunks
using UAV-based RGB images collected during the defoliation period from a single ob-
servation angle. A previous study proved that the integration of multi-angle information
improved the estimation accuracy of crop N nutrition status [53]. Thus, the performance of
multi-angle observation information fusion for rubber tree trunk identification should be
evaluated in further research.

4.3. Comparison of CNN Methods for Rubber Tree Identification

This research employed four DL methods (Unet++, Unet, PSPnet, MAnet) to recognize
rubber tree trunks using UAV-based RGB imagery acquired from different observation
directions and angles. In order to reduce the model degradation caused by the increase in
network depth and minimize training errors, the residual network was utilized to improve
the performance of DL models [56]. The study results show that Unet++ achieved the best
recognition accuracy among the four DL algorithms for rubber tree trunk identification
from UAV-based RGB images. This finding is in line with previous studies that reported
that the Unet++ performed well in tasks like X-ray microscopy image segmentation, crowd
counting, and liver CT image segmentation. [57–59]. The possible reason for this is that
the Unet++ added more dense skip links to reduce the semantic gap between encoding
and decoding. In addition, the Unet++ used network pruning to improve learning ability
and reduced prediction time, which could be easier to deal with learning tasks than the
Unet [28]. Although the MAnet achieved optimal target detection on datasets related to
the medical field, it achieved moderate accuracy in rubber tree trunk identification. The
plausible explanation is that compared to the medical images, the branches of the rubber
forest in the study area are disordered and overlapped, and the branches in the obtained
rubber tree images are irregular, which affected the final recognition precision [29]. In
contrast, the PSPnet exhibited the poorest performance among the four deep learning
techniques. The reason for this is that the pyramid pool module in the PSPnet algorithm
expanded the identification boundary and ignored the edge details, resulting in unclear
boundaries and blurry edges of the rubber tree trunks in the recognition result image. Even
if the secondary filtering with a threshold of 0.2 was utilized to obtain a distinct rubber
trunk profile with the PSPnet (Figure 11), the recognition effect of the PSPnet was not as
good as the other algorithms used in this research. The secondary filtering filtered out
image boundary pixels with smaller gray values to retrieve clear rubber trunks. However,
it increased the loss value so that the detection accuracy was the lowest. This also resulted
in significant false negatives in rubber tree trunk detection. A similar finding was also
reported by Torbati-Sarraf et al. [57], who demonstrated that the Unet++ outperformed the
PSPnet in medical image segmentation.
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4.4. Implications of Tree Trunk Identification and Counting

The homogeneous and highly overlapping canopy characteristics of rubber trees make
existing crown-based segmentation methods for counting the number of individual trees
impractical. Given the distinctive shape and large size of rubber tree trunks compared to
small branches and the surrounding background during the defoliation period, it is easy to
recognize tree trunks from UAV-based RGB images. This study proposes an innovative
method to count the number of rubber trees by trunk recognition with DL techniques.
Our findings demonstrate that high-resolution RGB images obtained by UAV combined
with DL algorithms are feasible and effective detecting rubber tree trunks, which can be
used to overcome the individual tree segmentation challenges in dense forests. Similarly,
a recent study attempted to utilize tree trunk information extracted from UAV-based
LiDAR for single-tree detection in a dense cedar plantation forest and achieved promising
recognition accuracy [60]. Although their study differed from ours in terms of sensors,
tree species characteristics, and acquisition time, the common idea of both is to extract
tree trunks to calculate the number of trees. Compared to the expensive cost and complex
data processing of LiDAR, this study provides a new perspective for tree trunk recognition
using cost-effective UAV RGB imagery acquired during a deciduous period.

This study assessed the performance of UAV-based multi-angle RGB images for rubber
tree trunk detection, but we did not consider the impact of tree shadows caused by sunlight
from multi-angle observations. Although our flight campaigns were conducted from
11:00 am to 1:00 pm, shadows are still present in some angle images due to terrain influence.
This study proposes a tree trunk identification approach based on the flight path, which
makes the rubber tree trunk bright and has the advantage of mitigating shadow effects.
The idea can be applied to extract the variables (e.g., tree height, crown diameter) of
specific tree species in mixed forests based on tree phenological characteristics. In addition,
the integration of multi-angle observation images and the impact of different resolution
images on the accuracy of tree trunk recognition should also be explored. Meanwhile, the
robustness and transferability of this proposed approach should be validated for different
tree species and sites in future research.

5. Conclusions

This study evaluated the performance of four DL techniques in recognizing rubber
tree trunks using UAV-based RGB images acquired from three view angles (−90◦, −60◦,
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45◦) and two flight directions during a deciduous period. Our results demonstrate that the
Unet++ outperformed the other three DL algorithms with the best recognition accuracy
(precision = 0.979, recall = 0.919, F-measure = 94.7%) from a −60◦ observation angle and
the SN (SN: perpendicular to the rubber planting rows) flight mode. Compared to conven-
tional vertical observation, UAV-based images acquired from an oblique angle only slightly
improved the accuracy of rubber tree identification due to its irregular planting caused by
complex terrain. This implied that the oblique observation did not provide a significant
advantage in detecting rubber tree trunks. However, this study demonstrated substantial
potential in identifying rubber tree trunks using UAV-based high-resolution RGB images
acquired during the defoliation period and in conjunction with DL algorithms. These find-
ings provide new insights into tree identification using UAV-based RGB images acquired
from specific growth stages and oblique observation angles based on tree characteristics.
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