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Abstract: Opium poppy is a medicinal plant, and its cultivation is illegal without legal approval in
China. Unmanned aerial vehicle (UAV) is an effective tool for monitoring illegal poppy cultivation.
However, targets often appear occluded and confused, and it is difficult for existing detectors to
accurately detect poppies. To address this problem, we propose an opium poppy detection network,
YOLOHLA, for UAV remote sensing images. Specifically, we propose a new attention module that
uses two branches to extract features at different scales. To enhance generalization capabilities,
we introduce a learning strategy that involves iterative learning, where challenging samples are
identified and the model’s representation capacity is enhanced using prior knowledge. Furthermore,
we propose a lightweight model (YOLOHLA-tiny) using YOLOHLA based on structured model
pruning, which can be better deployed on low-power embedded platforms. To evaluate the detection
performance of the proposed method, we collect a UAV remote sensing image poppy dataset. The
experimental results show that the proposed YOLOHLA model achieves better detection performance
and faster execution speed than existing models. Our method achieves a mean average precision
(mAP) of 88.2% and an F1 score of 85.5% for opium poppy detection. The proposed lightweight
model achieves an inference speed of 172 frames per second (FPS) on embedded platforms. The
experimental results showcase the practical applicability of the proposed poppy object detection
method for real-time detection of poppy targets on UAV platforms.

Keywords: opium poppy detection; UAV remote sensing; deep neural network; repetitive learning;
model pruning

1. Introduction

Poppy is the source of various sedatives and narcotics, such as morphine, codeine,
and thebaine. Planting poppies without the permission of relevant authorities is illegal
in China. However, poppies, being a plant with medicinal value, are privately grown
in some rural areas in China. The illicit cultivation of poppies poses a huge threat to
society, and they cause serious harm to people’s physical and mental health [1]. Anti-drug
efforts must be controlled at the source of illegal poppy cultivation, which has become a
primary task for drug enforcement agencies. Existing opium poppy detection methods
rely on field photography and manual collection, which require lots of manpower and
material resources. Furthermore, Poppies are often planted in hidden areas in order to
avoid inspection by anti-drug department. Traditional object detectors are inefficient
and difficult to detect accurately [2,3]. Moshia et al. [4] conducted an analysis of opium
poppy cultivation in Mexico using deep learning techniques. Their study focused solely on
distinguishing between corn seedlings and opium poppies.

In recent decades, the rapid development of remote sensing satellites has positioned
them as a crucial technology for combating illegal poppy cultivation. Demir et al. [2] have
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proposed using high-resolution remote sensing satellite images to detect poppy. Their
approach has provided a fundamental basis for utilizing remote sensing techniques to
detect poppy cultivation in flat regions. Liu et al. [5] collected a remote sensing image
dataset of poppies using satellite imagery and employed the SSD model for poppy detection.
However, their approach proves ineffective in detecting low-density poppy cultivation in
rural areas. There is still illegal poppy cultivation in some rural areas, and it is hard to find
by remote sensing satellite because of its scarcity, low density, and interference by other
plant species.

Unmanned aerial vehicle (UAV) is more flexible and mobile than remote sensing
satellite, and their high-resolution images can help to detect poppies in areas that are hard
to see. Zhou et al. [1] employed UAV for monitoring illicit poppy cultivation. Iqbal et al. [6]
utilized unmanned systems to estimate the height and yield of cultivated poppy plants.
Luo et al. [7] employed a semantic segmentation model for pixel-level extraction of poppy
regions and proposed a TransAttention U-Net model. However, poppies at various growth
stages bear a striking resemblance to vegetation in terms of shape, rendering existing object
detection methods potentially inadequate for accurately identifying poppies.

Preventing illicit poppy cultivation and providing accurate location information to
law enforcement personnel still necessitates the design of low-power models suitable for
drone platforms. While the aforementioned methods have achieved promising results,
existing approaches remain challenging to apply on drone platforms for eradicating illicit
poppy cultivation. The pursuit of lightweight and low-power models has been a prominent
research focus.

Figure 1 shows some poppy image samples captured by UAV. It can be observed
that different growth stages, irregular shapes, low density, and surrounding vegetation
interference make it challenging for existing deep learning models to accurately detect
poppies. In addition, UAV platforms typically have limited computing power, making it
difficult to support the fast inference of convolution neural network (CNN)-based models.
Even object detection methods like the YOLO-series models [8–12] struggle to achieve
fast detection of poppy targets in UAV imagery. Therefore, designing an object detection
model with strong generalization performance, high detection accuracy, and fast inference
speed is the goal of this work. This paper introduces a framework for opium poppy
detection, named YOLOHLA, which leverages the YOLO model and the newly proposed
attention mechanism (High–Low scale attention module, HLA). In order to improve the
generalization performance of the detector, we propose a novel training strategy to optimize
the model based on repetitive learning (RL). Finally, in order to successfully deploy on
low-power UAV platforms, we propose a lightweight YOLOHLA-based structured pruning
method. The main contributions are as follows:

(1) To address the challenge posed by the varying size of opium poppies in different
growth stages and its impact on detection performance, we introduce a novel attention
model. This model integrates high-resolution and low-resolution features to bolster
the model’s localization capabilities.

(2) We propose a new training strategy to address the problem of poor accuracy of
existing models because of occlusion and confused vegetation. Referring to human
learning methods, we use a training strategy based on repetitive learning to find the
hidden features of hard examples.

(3) We design a lightweight opium poppy detection model (YOLOHLA-tiny) based on struc-
tured model pruning, which can achieve fast inference on embedded device platforms.
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Figure 1. Samples of opium poppies. (a) occlusion, (b) confused vegetation, (c) different growth 
periods. 
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remote sensing image processing method for the recognition of banana fusarium, their 
method provided guidance for banana cultivation. Alvarez-Vanhard et al. [18] argued that 
the combination of UAV and remote sensing satellite is potentially valuable for Earth ob-
servation. Maes and Steppe [19] gave a detailed analysis of the application of UAV remote 
sensing technology in precision agricultural production. In the field of plant disease de-
tection, Wang et al. [20] proposed an automatic classification method for cotton root rot 
disease based on UAV remote sensing images. Pu et al. [21] proposed a UAV platform 
flow-susceptibility detection and counting model based on YOLO. Their method was suc-
cessfully applied in practical detection scenarios. The above cases show that UAV remote 
sensing technology has been widely used in many fields and has achieved excellent ef-
fects, especially in the monitoring of plant diseases in precision agriculture. In recent 
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rithms have been used in various fields [22–31], including smart agriculture, industrial 
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such as military applications [33]. 

YOLO family [8–12] is one of the most popular object detection methods. Many schol-
ars improve the detection ability of the YOLO model by designing excellent feature ex-
traction modules and inserting attention mechanisms to meet the needs of different task 
scenarios. However, it is still necessary to design a professional object detection model for 
UAV poppy detection. 
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Some scholars have conducted research related to opium poppy detection. For exam-
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2. Related Works
2.1. UAV Remote Sensing

With the development of unmanned aerial vehicle (UAV) remote sensing technology,
researchers are using UAV to solve some problems in many fields, e.g., agricultural pro-
duction, Earth observation, and disaster monitoring [13–15]. Feng et al. [16] used UAV
remote sensing to achieve urban vegetation mapping. Ye et al. [17] proposed a UAV-based
remote sensing image processing method for the recognition of banana fusarium, their
method provided guidance for banana cultivation. Alvarez-Vanhard et al. [18] argued
that the combination of UAV and remote sensing satellite is potentially valuable for Earth
observation. Maes and Steppe [19] gave a detailed analysis of the application of UAV
remote sensing technology in precision agricultural production. In the field of plant dis-
ease detection, Wang et al. [20] proposed an automatic classification method for cotton
root rot disease based on UAV remote sensing images. Pu et al. [21] proposed a UAV
platform flow-susceptibility detection and counting model based on YOLO. Their method
was successfully applied in practical detection scenarios. The above cases show that UAV
remote sensing technology has been widely used in many fields and has achieved excellent
effects, especially in the monitoring of plant diseases in precision agriculture. In recent
years, with the development of deep learning technology, many object detection algorithms
have been used in various fields [22–31], including smart agriculture, industrial production,
medical image processing, remote sensing image processing, and more. With the rapid
development of drones in various fields, communication security has gradually become
an important research area in drone transmission [32], especially in crucial sectors such as
military applications [33].

YOLO family [8–12] is one of the most popular object detection methods. Many
scholars improve the detection ability of the YOLO model by designing excellent feature
extraction modules and inserting attention mechanisms to meet the needs of different task
scenarios. However, it is still necessary to design a professional object detection model for
UAV poppy detection.

2.2. Opium Poppy Detection Based on CNN

Some scholars have conducted research related to opium poppy detection. For exam-
ple, Wang et al. [34] proposed an improved YOLOV3 model to achieve rapid and accurate
image processing in low-altitude remote sensing poppy inspection. Zhou et al. [3] proposed
an SPP-GIoU-YOLOv3-MN model-based YOLOV3, Spatial Pyramid Pooling (SPP) unit,
and Generalized Intersection over Union (GIoU) for UAV opium poppy detection and
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achieved a better performance than general YOLOv3. Wang et al. [35] proposed an opium
poppy image detection system based on YOLOV5s and DenseNet121, which reduced the
number of incorrectly detected images by 73.88% and greatly reduced the workload of
subsequent manual screening of remote sensing images. Rominger et al. [36] suggested
using UAV imagery to study endangered plant species such as opium poppy. They used
images with a resolution of 50 m to find marked poppy plants and then used 15 m im-
ages to locate them accurately. He et al. [37] proposed to use hyperspectral imaging and
spectral matching classification techniques to identify poppies and distinguish them from
the surrounding environments. Pérez-Porras et al. [38] proposed an early opium poppy
detection method and used YOLOV3, V4, and V5 frameworks as basic models to perform
extensive comparative experiments. They concluded that the YOLOV5s model has higher
performance in speed and accuracy.

2.3. Model Pruning

Due to the relatively larger number of parameters in CNN compared to traditional
methods, it requires a significant amount of computational power, posing a major chal-
lenge for low-power and computationally limited UAV platforms. To address this, many
researchers have adopted model pruning techniques to reduce the parameter count of CNN
models. Li et al. [39] have made pioneering contributions in the field of model pruning.
They proposed an efficient CNN pruning method that reduced the computational cost of
the ResNet110 by up to 38% while maintaining almost the same model recognition accu-
racy. Liu et al. [40] rethought model pruning and emphasized the importance of balancing
three aspects: large model size, learning importance weights, and the pruned model’s
structure. Xia et al. [41] proposed a task-specific pruning model, employing a progressive
pruning approach from coarse to fine. Regarding model pruning for UAV platforms, many
researchers have also explored this area. For instance, Zhang et al. [42] conducted model
pruning based on YOLOv3 and designed a “Narrower, Faster, and Better” inference model
specifically tailored for UAV platforms. Recently, Li et al. [43] proposed an efficient UAV
tracking system, in which they also employed model pruning techniques to reduce the
parameters of the tracking model. The pruned model demonstrated excellent performance
across multiple datasets.

Among the aforementioned related works, model pruning methods are highly suitable
for low-power embedded platforms. Therefore, in this paper, we also propose a model
pruning-based rapid opium poppy object detection method tailored for UAV platforms.

3. Materials and Methods
3.1. Image Acquisition and Processing

In this work, images are acquired from Qingdao, Taian, and Yantai in Shandong
Province, China. The drone we use is DJL Matrice 300 RTK equipped with an optic camera.
The dataset consists of 549 UAV images, each with a size of 5184 × 3888 pixels. Limited
by the memory, we use the overlapping segmentation method to segment the original
image, and the overlap is 300 pixels, as shown in Figure 2. Each image is divided into
small patches, there are a total of 2975 images with the size of 2000 × 2000 pixels. Images
are manually labeled with the open-source tool LabelMe [44]. The dataset is divided into
training and test sets with proportions of 80% and 20%, respectively. During the training
stage, we divide the training set into training and validation parts, and the test set is only
used to test the generality of the model.
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3.2. HLA Module

It is difficult for UAV to capture a complete image because people usually plant opium
poppies in hidden places to avoid detection. Moreover, there are differences in the shape
and texture of poppies due to the imaging angles and growth stages. Therefore, existing
object detection models are difficult to apply to poppy detection in real scenes.

For this reason, we proposed an HLA module that uses two branches to capture
high-scale and low-scale representations, respectively. Figure 3 presents the structure of the
proposed HLA module. Given an input feature map x, x ∈ Rc×w×h, where c is the number
of input channels, h and w denote height and width, respectively. We use a convolution
layer (Conv) with kernel size of 1 × 1 to capture the high-scale representations (xh). For the
low-scale features, an average pooling player (POOL) and a Conv module with kernel size
of 1 × 1 are used to get xl . Then, xl and xh can be defined as follows:

xh = Conv(x), (1)

xl = Conv(POOL(x)), (2)

where xh ∈ Rc×w×h, xl ∈ Rc× w
2 ×

h
2 . We then extract the global features of xh and xl by

global average pooling (GAP) operation, and use the fully connected layer (FC) to capture
the latent representations to generate the feature vectors vh and vl ,

vh = FC(GP(xh)), (3)

vl = FC(GP(xl)). (4)

Next, we fuse vh and vl by vector addition operation and use a ReLU (γ) module to
achieve linear rectification. We can get,

Vx,h = γ(vh + vl). (5)

Vx,h is fed into two Conv modules (kernel size is 1 × 1) and follows a sigmoid function
(δ) to generate the importance of each channel. The process is defined as follows,

p = δ(Conv(γ(Conv(Vx,h)))). (6)

The importance maps of input features can be obtained,

map = x× p. (7)
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Finally, the output y is obtained based on the residual connection.

y = map + x. (8)
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According to the above steps, high-scale features and low-scale features are combined
in the importance feature maps, which is of great significance for the model to detect opium
poppies with different scales and shapes. The attention mechanism module can be trained
to make the regions of interest more prominent, similar to how human eyes tend to focus
more on objects of interest. Our attention module achieves this by extracting features from
two different scales and compressing them into 1-D feature vectors. The 1-D vectors possess
a global receptive field, which is more conducive for CNN to learn the regions of interest.
To better illustrate the role of HLA, Figure 4 provides a visual comparison of the input
and output feature maps of the HLA module. It can be observed that the HLA module
effectively filters out some background noise interference, allowing the model to focus
more on the poppy regions.
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Figure 4. Visualization comparison of feature maps for HLA input and output. The first row displays
the input feature maps, while the second row showcases the visualized feature maps extracted
by HLA.

3.3. YOLOHLA Network

Figure 5 presents the structure of the proposed YOLOHLA. To extract the semantic
features of the poppy, we use a backbone to downsample the input images. To meet the
multi-scale object detection requirements, the upsampling branch of the Neck module is
used to decouple the features extracted by the backbone network. The information obtained
from the decoupled features at different scales is obtained by downsampling. We then use
three detection heads to generate the detailed coordinates and class confidence.
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Figure 5. The architecture of the proposed YOLOHLA. “↑” denotes the upsampling operation with
the nearest interpolation, “↓” is the downsampling operation with convolution layer.

In this paper, based on the existing works [12], we adopt a similar backbone structure
as YOLOV5s. The Backbone is composed of four CBS modules, three RB modules, and
an SPPF module. CBS contains a convolution layer, a batch normalization layer, and
a SiLU module [45]. RB is composed of multiple CBS modules and residual units, as
shown in Figure 6. SPPF contains three max-pooling modules to capture the representation
information at three scales, respectively. The neck module consists of two branches, an
upsampling branch and a downsampling branch. The former employs two UP modules to
upsample features four times, and an HLC module is used to improve the representation
ability. HLC includes the proposed HLA module, which will make it easier to extract
features at different scales. The features obtained by the first branch in the Neck module
are decoupled to obtain the location-sensitive and class-sensitive features. In the second
branch, we use three HLC modules to enhance the representation ability of the model.
Moreover, two CBS modules are used to downsample these features, in order to obtain
information of interested objects. Finally, we use three conventional convolution layers to
regress the coordinates and categories of the objects.

3.4. Repetitive Learning

There are different stages of growth for poppies, such as seedling, flowering, and
fruiting, resulting in objects with different shape and texture features. Furthermore, poppies
are usually mixed with the surrounding vegetation. Therefore, it is difficult for a model
trained only once to effectively capture the invariant features of poppies. For this reason,
we proposed a novel RL strategy to enhance the learning ability of the model.
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Figure 6. Components of each module. “Conv” denotes the convolution layer, “BN” is the batch
normalization, “SiLU” is the activation layer, “Concat” is the concatenation operation, and ⊕ is the
addition operation.

The core idea of RL is to keep learning the latent representation of the object and add
the hard samples to the training dataset for the next training until the model reaches a
best-fitting state. Here, hard samples are found by the model in continuous learning. A
hard sample is an image that cannot be accurately detected by detectors. Assuming that
the test dataset is C, the training dataset is A, and the validation dataset is B. At the n-th
training round, let the training dataset be An and the validation dataset be Bn. The hard
samples from the dataset Bn will be taken and put into An at the round n + 1. It is assumed
that the hard sample at each round is En. We then can get the dataset at round n + 1.

An+1= An+En, (9)

Bn+1= Bn− En. (10)

The accuracy of the detector on the test set C is recorded in each round. In case
the accuracy curve reaches saturation or when the validation set Bn is below a threshold,
training would be stopped. In order to inherit the knowledge that has been learned
previously, we use the previous weight as the initial condition for the next training. In the
initial state, the ratio of A to B is 2:8. The reason for this is that we want the model to learn
and find harder samples in the set (A + B). Therefore, the proportion of the training set A0
is small. In the experiment, we take 10% of the total number of samples and put them in
the training set as hard samples for repetitive learning.

Figure 7 presents the process of the repetitive learning strategy. We need to partition
the original dataset into a training dataset and a test dataset, where the ratio is kept small
primarily to identify more hard samples from the validation dataset. The first step is
model training, from which we obtain trained weights. The second step involves testing
the model’s accuracy on the test dataset and recording the results. The third step entails
identifying hard samples from the validation dataset. The fourth step is to assess whether
the model’s accuracy meets the desired target based on the recorded results from the second
step. If not, the hard samples from the validation dataset are added to the training dataset
for repetitive learning.

Different from existing methods that train the model multiple times to improve the
detection performance, our repetitive learning method requires repartition of the dataset
at each training, and some hard samples are taken out of the validation dataset and put
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into the training dataset. Based on the proposed method, most of the hard samples can be
found, and the model is retrained on them to improve the performance of the opium poppy
detection task. In order to show the extraction of effective features by our method each
time, Figure 8 illustrates the feature responses after multi-round learning. The accuracy
of object detection is gradually improved with each round of learning, and the feature
response becomes increasingly intense.
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3.5. Structured Pruning of YOLOHLA

On limited computing resources, unmanned platforms face challenges in providing
sufficient power to achieve real-time object detection tasks with CNN models. Models
obtained by altering filter groups and feature channel numbers in the network are capable
of running without the need for specialized algorithms or hardware. This is known as struc-
tured model pruning [46]. Based on the structured pruning method, we propose a lightweight
model (YOLOHLA-tiny) to achieve rapid poppy detection on low-power platforms.

Sparsity training involves learning channel sparsity in deep neural networks to identify
channels that need to be pruned, thereby achieving model pruning. It mainly involves
adding regularization constraints to the BN layers to induce channel sparsity in the model.
The level of sparsity determines whether the model pruning can achieve the desired results.
In other words, the goal is to minimize the accuracy loss in the pruned model. For this
purpose, we set a sparsity factor p to control the sparsity of the model. The formula is
as follows:

L = l(w) + p× sign(γ), (11)

where l(w) is the loss function, and sign(γ) is the constraint. In multiple experiments, we
found that setting p = 0.0001 allows the model to achieve the best performance. BN layer
can be defined as follows:

Xout = α×
Xinput − µ
√

σ2 + ε
+ β, (12)

where α represents the scaling factor, β represents the shift factor, µ, σ2 represents the mean
and variance, and ε is a constant.

Assuming the initial weights obtained after the first training of the model are denoted
as W0, according to Equation (11), we can apply L1 regularization to constrain the coeffi-

cients of BN layers, resulting in sparse model weights
→
W0. Assuming the pruning rate is

denoted as pr, the pruning threshold (PI) can be defined as follows:

PI = pr×∑n
i=1 α, (13)

where n is the number of channels. From Equation (12), it can be observed that Xout is
positively correlated with the scaling factor α. Therefore, when α approaches zero, it
indicates that the corresponding channel can be pruned. After sparse training and under
the regularization constraint, we can obtain a model with many scaling factors close to 0.
Each channel has a unique scaling factor α, and for channels with α below the threshold PI,

pruning is required. Following this principle, we can prune
→
W0 to obtain

→
W1. Due to the

accuracy drop caused by the loss of a large number of channels, we employ fine-tuning to
optimize the model’s accuracy and obtain the weights W1. To achieve a more lightweight
model, we typically repeat the above process of pruning the model multiple times.

Figure 9 illustrates the schematic diagram of model pruning; we can prune the channels
and weights corresponding to scaling factors that are close to 0. The pruning ratio (pr) is
determined based on the sorted order of all scaling factors. If the pr is set to 50%, it means
that we will remove the first 50% of the channel connections, including input and output
channels, as well as the corresponding convolutional kernels.
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4. Experimental Results and Analysis

In this section, the experimental setup of this work is described in Section 4.1, and
the evaluation criteria of detectors are presented in Section 4.2. The comparison results
are given in Sections 4.3 and 4.4, respectively. In Section 4.5, we present the experimental
results and comparisons on the embedded platform.

4.1. Implementation Details

In this work, the hardware and software configurations for training are as follows:

(1) Microsoft Corporation, Redmond, Washington, USA, CPU, Inter i7-12700F @ 48G;
(2) NVIDIA Corporation, Santa Clara, California, USA, graphics card, GeForce RTX 3090

@ 24GB GPU;
(3) operating system, 64-bit Ubuntu 20.04.2 LTS;
(4) CUDA version 11.6;
(5) Pytorch version 1.8.2.

In order to ensure the fairness of the experiment, all models are trained and tested on
the same equipment, and the training strategy is the same for all models. The input size of
the images is resized to 640 × 640 pixels, the training epoch is 300, and the batch size is 32.
In experiments with repetitive learning, the initial learning rate is 20% of the previous one,
and the minimum learning rate is 0.0001.

k = min
(

0.2n−1 × 0.01, 0.0001
)

, (14)

where n is the number of rounds of repetitive learning.

4.2. Metrics

To evaluate the performance of the model, precision (P), recall (R), mean average
precision (mAP) and F1 score (F1) are used as evaluation metrics. Their expressions are
as follows:

P =
TP

TP + FP
, (15)

R =
TP

TP + FN
, (16)

AP =
∫ 1

0
P(R)dR , (17)
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mAP =
1
C ∑C

i=1 APi , (18)

F1 =
2PR

P + R
, (19)

where TP represents positive and positive samples, FP represents negative and positive
samples, FN represents negative and negative samples, i denotes the i-th category, and C
is the number of classes. For model inference speed, we use frames per second (FPS) to
evaluate the performance of the model.

4.3. Comparison of Different Detectors

In this section, we perform comparative experiments based on the proposed method,
and existing popular detectors includes YOLOV4-tiny [11], YOLOV5s [12], YOLOV6s [47],
YOLO7-tiny [48], YOLOV8 (https://github.com/ultralytics/ultralytics, accessed on 14
April 2023), PP-PicoDet [49], NanoDet (https://github.com/RangiLyu/nanodet, accessed
on 21 February 2021), DETR [41], Faster R-CNN [50], and RetinaNet [51], to evaluate the
effectiveness of the proposed method.

Table 1 presents experimental results with different detectors; the proposed method
has the best mAP for opium poppy detection. The F1 value and mAP value of YOLOHLA
are 0.882 and 0.855, respectively. Compared with YOLOV6-tiny, the precision and mAP are
both increased by 0.9%, but the F1 score is reduced by 1.6%. In terms of the inference time,
our method is faster than YOLOV6-tiny. It is worth noting that we adopt YOLOV5s as the
baseline, but our YOLOHLA is much better than YOLOV5s. The proposed RL method
further improves the detection accuracy of the model and achieves the best accuracy in all
metrics compared with YOLOHLA.

Table 1. Comparison results with different detectors on the test dataset (Input size 640 × 640).

Model FLOPs Param. FPS P R F1 mAP

YOLOV4-tiny 20.6 G 8.69 M 217 0.840 0.749 0.792 0.837
YOLOV5s 15.9 G 6.70 M 294 0.785 0.779 0.782 0.818

YOLOV6-tiny 36.5 G 14.94 M 169 0.882 0.861 0.871 0.873
YOLOV7-tiny 13.2 G 5.74 M 370 0.740 0.699 0.720 0.755

YOLOV8s 28.6 G 10.65 M 145 0.825 0.752 0.772 0.831
PP-PicoDet 8.3 G 5.76 M 251 0.808 0.734 0.769 0.792
NanoDet 3.4 G 7.5 M 196 0.784 0.744 0.763 0.714

DETR 100.9 G 35.04 M 117 0.812 0.763 0.787 0.852
Faster R-CNN 81.9 G 36.13 M 40 0.824 0.792 0.808 0.842

RetinaNet 91.0 G 41.13 M 41 0.813 0.828 0.820 0.795
YOLOHLA 13.8 G 5.72 M 323 0.839 0.770 0.803 0.842

YOLOHLA + RL 13.8 G 5.72 M 323 0.891 0.822 0.855 0.882

Figure 10 shows the Precision and Recall (PR) curves of different methods. The
proposed HLA significantly improves the recall and precision for poppy detection. With
the RL training strategy, the performance of the YOLOHLA can be improved further. This
also shows that our method has better detection performance. Figure 11 illustrates the
recognition effects comparison with different detectors. We can find that the existing
detectors have a poor performance compared with our model. There is always a false
detection in each of them.

https://github.com/ultralytics/ultralytics
https://github.com/RangiLyu/nanodet
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4.4. Comparison of Model Pruning 
Figure 12 shows the comparison of each convolutional layer before and after pruning. 

Due to the YOLOHLA model having fewer channels in the shallow convolution layers, 
each channel contributes significantly to the model. Therefore, the number of channels 
pruned in the shallow layers is almost negligible. For deeper convolutional layers, they 
possess a relatively higher number of channels, serving as a primary source of parameter 
redundancy. Thus, a larger pruning ratio is set for these layers. According to Figure 12, it 
can be observed that after pruning, some convolutional channels in the model are notice-
ably removed. 

Figure 11. Visualization results with different detectors. The dashed yellow circles represent the mis-
detected objects, and the solid yellow circles represent the missed objects. (a) YOLOV5s. (b) YOLOV6-
tiny. (c) YOLOV7-tiny. (d) YOLOHLA.
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4.4. Comparison of Model Pruning

Figure 12 shows the comparison of each convolutional layer before and after pruning.
Due to the YOLOHLA model having fewer channels in the shallow convolution layers, each
channel contributes significantly to the model. Therefore, the number of channels pruned
in the shallow layers is almost negligible. For deeper convolutional layers, they possess a
relatively higher number of channels, serving as a primary source of parameter redundancy.
Thus, a larger pruning ratio is set for these layers. According to Figure 12, it can be observed
that after pruning, some convolutional channels in the model are noticeably removed.

Drones 2023, 7, 559 15 of 22 
 

 
Figure 12. Comparison of each convolutional layer before and after pruning. The X-axis shows the 
index of the convolution, and the Y-axis shows the number of channels of the convolution. 

Table 2 presents the result comparison with different pruning methods. It can be ob-
served that after pruning 50% of the channels, our model reduced the parameter by 62.5%, 
with only a slight decrease of 0.8% in mAP. The pruned YOLOHLA achieved a 41% in-
crease in speed. We also compared the structured pruning method [46] with two popular 
pruning models Torch pruning [39] and DepGraph [52]. Based on the experimental results 
in Table 2, it can be observed that the structured pruning approach we adopted has better 
performance in pruning the YOLOHLA model. Our lightweight model effectively reduces 
the parameters while ensuring detection accuracy. Figure 13 provides a visual comparison 
of the three pruning methods. It can be observed that YOLOHLA-tiny still achieves good 
detection results for poppies in some occluded or cluttered areas. 

Table 2. Comparative results with different pruning methods. (“Model size” refers to the number 
of bytes occupied by the model). 

Methods P R F1 mAP FPS Model Size 
YOLOHLA 0.839 0.770 0.803 0.842 323 20.8 MB 

Torch pruning  0.785 0.715 0.748 0.803 333 15.9 MB 
DepGraph  0.768 0.692 0.728 0.766 384 10.2 MB 

YOLOHLA-Tiny 0.843 0.731 0.783 0.834 456 7.8 MB 

Figure 12. Comparison of each convolutional layer before and after pruning. The X-axis shows the
index of the convolution, and the Y-axis shows the number of channels of the convolution.

Table 2 presents the result comparison with different pruning methods. It can be
observed that after pruning 50% of the channels, our model reduced the parameter by
62.5%, with only a slight decrease of 0.8% in mAP. The pruned YOLOHLA achieved a 41%
increase in speed. We also compared the structured pruning method [46] with two popular
pruning models Torch pruning [39] and DepGraph [52]. Based on the experimental results
in Table 2, it can be observed that the structured pruning approach we adopted has better
performance in pruning the YOLOHLA model. Our lightweight model effectively reduces
the parameters while ensuring detection accuracy. Figure 13 provides a visual comparison
of the three pruning methods. It can be observed that YOLOHLA-tiny still achieves good
detection results for poppies in some occluded or cluttered areas.

Table 2. Comparative results with different pruning methods. (“Model size” refers to the number of
bytes occupied by the model).

Methods P R F1 mAP FPS Model Size

YOLOHLA 0.839 0.770 0.803 0.842 323 20.8 MB

Torch pruning 0.785 0.715 0.748 0.803 333 15.9 MB

DepGraph 0.768 0.692 0.728 0.766 384 10.2 MB

YOLOHLA-Tiny 0.843 0.731 0.783 0.834 456 7.8 MB



Drones 2023, 7, 559 15 of 21Drones 2023, 7, 559 16 of 22 
 

 
(a) (b) (c) 

Figure 13. Visualization comparison of object detection results after pruning. (a) Torch Pruning. (b) 
DepGraph. (c) Our method. The orange circles represent falsely detected objects. The yellow circle 
represents missed detection, and the orange circle represents false detection. 

4.5. Results on Embedded Device 
YOLOHLA-Tiny is a poppy object detection model designed for UAV platforms. 

Therefore, we further validated its inference performance on embedded computing plat-
forms. We used NVIDIA Jetson Orin (https://www.nvidia.cn/autonomous-machines/em-
bedded-systems/jetson-orin/, on 14 April 2023) as the experimental platform and con-
ducted tests to compare YOLOHLA, YOLOHLA-Tiny, and other pruned models, as 
shown in Table 3. Our method achieved a detection speed of over 170 fps, resulting in a 
34.7% increase in model inference speed compared to before pruning. When compared 
with the Torch pruning method, our detection speed improved by more than two times. 
The above results indicate that our YOLOHLA-Tiny model retains a significant advantage 
in poppy detection on embedded platforms. 

Table 3. Comparison results with different pruning methods on NVIDIA Jeston Orin platform (In-
put size: 640 × 640). 

Methods P R F1 mAP FPS 
YOLOHLA 0.839 0.770 0.803 0.842 128 

Torch pruning 0.785 0.715 0.748 0.803 78 
DepGraph 0.768 0.692 0.728 0.766 154 

YOLOHLA-Tiny 0.843 0.731 0.783 0.834 172 

5. Ablation Studies 
5.1. Impact of Attention Mechanism 

To estimate the validity and feasibility of the proposed HLA module, multiple atten-
tion models are used for comparative experiments, including squeeze and excitation (SE) 
[53], coordinate attention (CA) [54], efficient channel attention (ECA) [55], and convolu-
tional block attention module (CBAM) [56]. 

We first compared the performances based on YOLOV5s and SE, CA, ECA and 
CBAM. Table 4 reports the results of different attention modules on the UAV remote 

Figure 13. Visualization comparison of object detection results after pruning. (a) Torch Pruning.
(b) DepGraph. (c) Our method. The orange circles represent falsely detected objects. The yellow
circle represents missed detection, and the orange circle represents false detection.

4.5. Results on Embedded Device

YOLOHLA-Tiny is a poppy object detection model designed for UAV platforms.
Therefore, we further validated its inference performance on embedded computing plat-
forms. We used NVIDIA Jetson Orin (https://www.nvidia.cn/autonomous-machines/
embedded-systems/jetson-orin/, accessed on 14 April 2023) as the experimental platform
and conducted tests to compare YOLOHLA, YOLOHLA-Tiny, and other pruned models,
as shown in Table 3. Our method achieved a detection speed of over 170 fps, resulting in
a 34.7% increase in model inference speed compared to before pruning. When compared
with the Torch pruning method, our detection speed improved by more than two times.
The above results indicate that our YOLOHLA-Tiny model retains a significant advantage
in poppy detection on embedded platforms.

Table 3. Comparison results with different pruning methods on NVIDIA Jeston Orin platform (Input
size: 640 × 640).

Methods P R F1 mAP FPS

YOLOHLA 0.839 0.770 0.803 0.842 128
Torch pruning 0.785 0.715 0.748 0.803 78

DepGraph 0.768 0.692 0.728 0.766 154
YOLOHLA-Tiny 0.843 0.731 0.783 0.834 172

5. Ablation Studies
5.1. Impact of Attention Mechanism

To estimate the validity and feasibility of the proposed HLA module, multiple attention
models are used for comparative experiments, including squeeze and excitation (SE) [53],
coordinate attention (CA) [54], efficient channel attention (ECA) [55], and convolutional
block attention module (CBAM) [56].

We first compared the performances based on YOLOV5s and SE, CA, ECA and CBAM.
Table 4 reports the results of different attention modules on the UAV remote sensing image

https://www.nvidia.cn/autonomous-machines/embedded-systems/jetson-orin/
https://www.nvidia.cn/autonomous-machines/embedded-systems/jetson-orin/
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dataset. Our method has the highest mAP among all attention modules, which is 2.5%
higher than YOLOV5s + CA. Although the F1 score of our method is slightly lower than
the SE module, our method has a lower level of complexity.

Table 4. Comparison results using YOLOV5s and different attention modules on the test dataset.

Model P R F1 mAP FPS

YOLOV5s + SE 0.795 0.730 0.761 0.795 278

YOLOV5s + CA 0.851 0.766 0.806 0.842 133

YOLOV5s + ECA 0.843 0.719 0.776 0.822 286

YOLOV5s + CBAM 0.840 0.720 0.775 0.819 294

YOLOV5s + HLA 0.839 0.770 0.803 0.842 323

Table 5 presents the comparison results based on YOLOV6-Tiny. It should be noted
that in the experiment, we replaced the RepBlock of YOLOV6 [46] with the proposed HLC
module, and the others remained unchanged. Our method achieves the best results in both
F1 and mAP metrics. Our model is slightly slower than SE, but our method improves F1
and mAP by 1.4% and 1.2%, respectively.

Table 5. Comparison results using YOLOV6-Tiny and different attention modules on the test dataset.

Model P R F1 mAP FPS

YOLOV6-Tiny + SE 0.901 0.829 0.864 0.870 169

YOLOV6-Tiny + CA 0.885 0.811 0.846 0.877 159

YOLOV6-Tiny + ECA 0.901 0.84 0.869 0.868 167

YOLOV6-Tiny + CBAM 0.906 0.829 0.866 0.866 159

YOLOV6-Tiny + HLA 0.908 0.851 0.878 0.882 154

5.2. Impact of Repetitive Learning

Repetitive learning involves the iterative process of identifying challenging samples
through continuous learning and optimizing the model based on prior knowledge. In
order to validate the effectiveness of the proposed training strategy, we verify the effect
in two aspects. The first one randomly divides the dataset (it contains set A and set B) to
train the model and test the performance on the test set. The second is to find the hard
samples, but without prior knowledge. Figure 14 illustrates the comparison results of the
two methods (Orange and Blue) and our method (Green). Four models are used to verify
the performance of repetitive learning. Our method shows a significant improvement
in performance compared with conventional training methods. Especially, our training
strategy has significant advantages over the YOLOV5s and YOLOV6-tiny models. Figure 15
illustrates the visual ablation comparison with our methods. YOLOV5s with HLA and
RL method performs a better performance than YOLOV5s. For the case that has a similar
texture and color, using the proposed RL strategy can recognize all the objects.

5.3. Impact of Pruning Ratio

The pruning ratio pr is a crucial parameter that controls model pruning. A larger value
of pr indicates that the model will discard more convolutional kernels and parameters,
significantly reducing the model’s parameter count. However, it may also impact the
detection performance of the model. Table 6 shows the impact of different values of pr on
model accuracy and inference speed. It can be observed that when pr = 50%, the parameters
of model reduce by more than half, but the detection accuracy decreases by almost half as
well. By fine-tuning and retraining the model, the detection accuracy can be restored to a
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level similar to that before pruning, but the inference speed improves by 23% compared to
the original model.
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Table 6. Comparison of different pruning ratios. (“Model size” refers to the number of bytes occupied
by the model).

Pruning Ratios P R F1 mAP FPS Model Size

YOLOHLA 0.839 0.770 0.803 0.842 323 20.8 MB
pr = 10% 0.786 0.759 0.772 0.818 370 17.7 MB
pr = 20% 0.782 0.568 0.658 0.72 385 14.5 MB
pr = 30% 0.764 0.576 0.657 0.650 401 12.1 MB
pr = 40% 0.670 0.502 0.574 0.544 417 9.8 MB
pr = 50% 0.489 0.481 0.485 0.427 456 7.8 MB

Finetuning (pr = 50%) 0.843 0.731 0.783 0.834 456 7.8 MB

6. Discussions
6.1. Comparisons on VisDrone2019 Dataset

To better verify the effectiveness of our proposed method, we conducted comparative
experiments on VisDrone2019 dataset [57]. The VisDrone2019 dataset primarily consists of
visible light imagery collected from drone platforms and comprises 10 different categories.
Table 7 presents the comparative results of different detection models. It is important to
note that we used lightweight models, which resulted in relatively lower average accuracy
across the 10 categories. We can observe that the method proposed in this paper remains
competitive, with the average detection accuracy for the 10 categories also outperforming
existing methods.

Table 7. Comparisons of VisDrone2019 dataset.

Methods P R F1 mAP

YOLOV5S 0.432 0.342 0.382 0.328
YOLOV6-tiny 0.476 0.4 0.435 0.371
YOLOV7-tiny 0.489 0.371 0.422 0.36

YOLOHLA 0.487 0.41 0.439 0.375

6.2. Limitations

We introduce a concept of re-learning to enhance the detection accuracy of the model;
however, this approach has certain limitations. Firstly, our method requires iterative train-
ing of object detection models, which consumes a considerable amount of time compared to
end-to-end training models. Additionally, in real-world scenarios, drones capture images
at large scales with wide coverage, where the scale of poppy targets could be relatively
small. This could affect the model’s detection performance.

7. Conclusions

In this paper, we proposed a YOLO-based model with HLA for UAV remote sensing
image opium poppy detection. A new attention module (HLA) is proposed that combines
high-scale and low-scale features to enhance the ability of detector. Furthermore, in order
to enhance the learning ability of the model, we propose a repetitive learning strategy to
train the model, through continuous learning to accumulate knowledge and find the hard
samples and then repeating learning on the hard samples to enhance the representation
ability. Furthermore, we employ structured pruning methods to prune the proposed
YOLOHLA model. By comparing with existing methods, our pruned YOLOHLA model
can achieve faster and more accurate poppy detection on an embedded platform.

In order to validate the performance of the proposed method, we collect a poppy
detection dataset from UAV remote sensing imagery, which contains many hard samples,
such as poppies in different growth periods, occlusions, and so on. Our method achieves
an F1 score of 0.855 and a mAP of 0.882. The proposed method surpasses the existing
detectors, such as YOLOV5s and YOLOV6-tiny, and achieves state-of-the-art performance
on the opium poppy dataset. We conducted tests on a low-power embedded computing
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platform, and after model pruning, our method achieved an inference speed of 172 fps
with 0.834 mAP. Extensive experiments show that our method is more suitable for opium
poppy detection.

Our approach also has some limitations, especially in the detection of large-scale drone
images. In future work, we will enhance the inference efficiency and detection accuracy
of the proposed model for detecting poppies in large-scale images. We aim to migrate the
algorithm to embedded devices, enabling real-time online poppy detection and recognition
on drone platforms. Furthermore, we will also explore by applying our method to the
detection and recognition of other crops, such as apples, oranges, and corn.
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