Constraint Programming Approach to Coverage-Path Planning for Autonomous Multi-UAV Infrastructure Inspection
Abstract
:1. Introduction
2. Related Work
2.1. Uavs Operations Planning
2.2. Arc Routing Problems
3. Preliminaries
4. Problem Formulation
4.1. Edge-Disjoin Formulation
4.2. Eulerian Trail Formulation
4.3. Multi-Weight Formulation
4.4. Fixed Start Formulation
5. Methodology
5.1. Eulerian Trail Model
5.2. Multi-Weight Model
5.3. Fixed Start Model
6. Experimental Evaluation
6.1. Eulerian Trail Model Simulation
6.2. Multi-Weight Model Simulations
6.3. Fixed Start Model Simulations
7. Conclusions
Author Contributions
Funding
Institutional Review Board Statement
Informed Consent Statement
Data Availability Statement
Conflicts of Interest
References
- Alzahrani, B.; Oubbati, O.S.; Barnawi, A.; Atiquzzaman, M.; Alghazzawi, D. UAV assistance paradigm: State-of-the-art in applications and challenges. J. Netw. Comput. Appl. 2020, 166, 102706. [Google Scholar] [CrossRef]
- Mohsan, S.A.H.; Othman, N.Q.H.; Li, Y.; Alsharif, M.H.; Khan, M.A. Unmanned aerial vehicles (UAVs): Practical aspects, applications, open challenges, security issues, and future trends. Intell. Serv. Robot. 2023, 16, 109–137. [Google Scholar] [CrossRef] [PubMed]
- Outay, F.; Mengash, H.A.; Adnan, M. Applications of unmanned aerial vehicle (UAV) in road safety, traffic and highway infrastructure management: Recent advances and challenges. Transp. Res. Part A Policy Pract. 2020, 141, 116–129. [Google Scholar] [CrossRef] [PubMed]
- Jordan, S.; Moore, J.; Hovet, S.; Box, J.; Perry, J.; Kirsche, K.; Lewis, D.; Tse, Z.T.H. State-of-the-art technologies for UAV inspections. IET Radar Sonar Navig. 2018, 12, 151–164. [Google Scholar] [CrossRef]
- Becerra, V.M. Autonomous Control of Unmanned Aerial Vehicles. Electronics 2019, 8, 452. [Google Scholar] [CrossRef]
- Jacobsen, R.H.; Matlekovic, L.; Shi, L.; Malle, N.; Ayoub, N.; Hageman, K.; Hansen, S.; Nyboe, F.F.; Ebeid, E. Design of an Autonomous Cooperative Drone Swarm for Inspections of Safety Critical Infrastructure. Appl. Sci. 2023, 13, 1256. [Google Scholar] [CrossRef]
- Lu, M.; Bagheri, M.; James, A.P.; Phung, T. Wireless charging techniques for UAVs: A review, reconceptualization, and extension. IEEE Access 2018, 6, 29865–29884. [Google Scholar] [CrossRef]
- Vom Bögel, G.; Cousin, L.; Iversen, N.; Ebeid, E.S.M.; Hennig, A. Drones for inspection of overhead power lines with recharge function. In Proceedings of the 2020 23rd Euromicro Conference on Digital System Design (DSD), Kranj, Slovenia, 26–28 August 2020; pp. 497–502. [Google Scholar]
- Ben-Moshe, B. Power line charging mechanism for drones. Drones 2021, 5, 108. [Google Scholar] [CrossRef]
- Nyboe, F.F.; Malle, N.H.; vom Bögel, G.; Cousin, L.; Heckel, T.; Troidl, K.; Madsen, A.S.; Ebeid, E. Towards Autonomous UAV Railway DC Line Recharging: Design and Simulation. In Proceedings of the 2023 IEEE International Conference on Robotics and Automation (ICRA), London, UK, 29 May–2 June 2023; pp. 3310–3316. [Google Scholar]
- Iversen, N.; Schofield, O.B.; Cousin, L.; Ayoub, N.; Vom Bögel, G.; Ebeid, E. Design, integration and implementation of an intelligent and self-recharging drone system for autonomous power line inspection. In Proceedings of the 2021 IEEE/RSJ International Conference on Intelligent Robots and Systems (IROS), Prague, Czech Republic, 27 September–1 October 2021; pp. 4168–4175. [Google Scholar]
- Stewart, W.; Floreano, D.; Ebeid, E. A Lightweight Device for Energy Harvesting from Power Lines with a Fixed-Wing UAV. In Proceedings of the 2022 International Conference on Unmanned Aircraft Systems (ICUAS), Dubrovnik, Croatia, 21–24 June 2022; pp. 86–93. [Google Scholar]
- Simic, M.; Bil, C.; Vojisavljevic, V. Investigation in wireless power transmission for UAV charging. Procedia Comput. Sci. 2015, 60, 1846–1855. [Google Scholar] [CrossRef]
- Dror, M. Arc Routing: Theory, Solutions and Applications; Springer Science & Business Media: Berlin/Heidelberg, Germany, 2012. [Google Scholar]
- Corberán, Á.; Laporte, G. Arc Routing: Problems, Methods, and Applications; SIAM: Philadelphia, PA, USA, 2015. [Google Scholar]
- Otto, A.; Agatz, N.; Campbell, J.; Golden, B.; Pesch, E. Optimization approaches for civil applications of unmanned aerial vehicles (UAVs) or aerial drones: A survey. Networks 2018, 72, 411–458. [Google Scholar] [CrossRef]
- Mignardi, S.; Verdone, R. On the performance improvement of a cellular network supported by an unmanned aerial base station. In Proceedings of the 2017 29th International Teletraffic Congress (ITC 29), Genoa, Italy, 4–8 September 2017; Volume 2, pp. 7–12. [Google Scholar]
- Zhu, K.; Xu, X.; Han, S. Energy-efficient UAV trajectory planning for data collection and computation in mMTC networks. In Proceedings of the 2018 IEEE Globecom Workshops (GC Wkshps), Abu Dhabi, United Arab Emirates, 9–13 December 2018; pp. 1–6. [Google Scholar]
- Ouaarab, A.; Ahiod, B.; Yang, X.S. Discrete cuckoo search algorithm for the travelling salesman problem. Neural Comput. Appl. 2014, 24, 1659–1669. [Google Scholar] [CrossRef]
- Jeong, S.; Simeone, O.; Kang, J. Mobile edge computing via a UAV-mounted cloudlet: Optimization of bit allocation and path planning. IEEE Trans. Veh. Technol. 2017, 67, 2049–2063. [Google Scholar] [CrossRef]
- Li, R.; Wei, Z.; Yang, L.; Ng, D.W.K.; Yang, N.; Yuan, J.; An, J. Joint trajectory and resource allocation design for UAV communication systems. In Proceedings of the 2018 IEEE Globecom Workshops (GC Wkshps), Abu Dhabi, United Arab Emirates, 9–13 December 2018; pp. 1–6. [Google Scholar]
- Sun, Y.; Xu, D.; Ng, D.W.K.; Dai, L.; Schober, R. Optimal 3D-trajectory design and resource allocation for solar-powered UAV communication systems. IEEE Trans. Commun. 2019, 67, 4281–4298. [Google Scholar] [CrossRef]
- Wu, Q.; Zeng, Y.; Zhang, R. Joint trajectory and communication design for multi-UAV enabled wireless networks. IEEE Trans. Wirel. Commun. 2018, 17, 2109–2121. [Google Scholar] [CrossRef]
- Chiaraviglio, L.; D’andreagiovanni, F.; Choo, R.; Cuomo, F.; Colonnese, S. Joint optimization of area throughput and grid-connected microgeneration in UAV-based mobile networks. IEEE Access 2019, 7, 69545–69558. [Google Scholar] [CrossRef]
- Chiaraviglio, L.; D’Andreagiovanni, F.; Liu, W.; Gutierrez, J.A.; Blefari-Melazzi, N.; Choo, K.K.R.; Alouini, M.S. Multi-area throughput and energy optimization of UAV-aided cellular networks powered by solar panels and grid. IEEE Trans. Mob. Comput. 2020, 20, 2427–2444. [Google Scholar] [CrossRef]
- Almadhoun, R.; Taha, T.; Seneviratne, L.; Zweiri, Y. A survey on multi-robot coverage path planning for model reconstruction and mapping. SN Appl. Sci. 2019, 1, 1–24. [Google Scholar] [CrossRef]
- Luis, S.Y.; Peralta, F.; Córdoba, A.T.; del Nozal, Á.R.; Marín, S.T.; Reina, D.G. An evolutionary multi-objective path planning of a fleet of ASVs for patrolling water resources. Eng. Appl. Artif. Intell. 2022, 112, 104852. [Google Scholar] [CrossRef]
- Barrientos, A.; Colorado, J.; Cerro, J.d.; Martinez, A.; Rossi, C.; Sanz, D.; Valente, J. Aerial remote sensing in agriculture: A practical approach to area coverage and path planning for fleets of mini aerial robots. J. Field Robot. 2011, 28, 667–689. [Google Scholar] [CrossRef]
- Jing, W.; Deng, D.; Xiao, Z.; Liu, Y.; Shimada, K. Coverage path planning using path primitive sampling and primitive coverage graph for visual inspection. In Proceedings of the 2019 IEEE/RSJ International Conference on Intelligent Robots and Systems (IROS), Macau, China, 3–8 November 2019; pp. 1472–1479. [Google Scholar]
- Chen, J.; Du, C.; Zhang, Y.; Han, P.; Wei, W. A clustering-based coverage path planning method for autonomous heterogeneous UAVs. IEEE Trans. Intell. Transp. Syst. 2021, 23, 25546–25556. [Google Scholar] [CrossRef]
- Nedjati, A.; Izbirak, G.; Vizvari, B.; Arkat, J. Complete coverage path planning for a multi-UAV response system in post-earthquake assessment. Robotics 2016, 5, 26. [Google Scholar] [CrossRef]
- Fevgas, G.; Lagkas, T.; Argyriou, V.; Sarigiannidis, P. Coverage path planning methods focusing on energy efficient and cooperative strategies for unmanned aerial vehicles. Sensors 2022, 22, 1235. [Google Scholar] [CrossRef] [PubMed]
- Muñoz, J.; López, B.; Quevedo, F.; Monje, C.A.; Garrido, S.; Moreno, L.E. Multi UAV coverage path planning in urban environments. Sensors 2021, 21, 7365. [Google Scholar] [CrossRef] [PubMed]
- Ivić, S.; Crnković, B.; Grbčić, L.; Matleković, L. Multi-UAV trajectory planning for 3D visual inspection of complex structures. Autom. Constr. 2023, 147, 104709. [Google Scholar] [CrossRef]
- Cabreira, T.M.; Brisolara, L.B.; Paulo R, F.J. Survey on coverage path planning with unmanned aerial vehicles. Drones 2019, 3, 4. [Google Scholar] [CrossRef]
- Wang, X.; Wasil, E. On the road to better routes: Five decades of published research on the vehicle routing problem. Networks 2021, 77, 66–87. [Google Scholar] [CrossRef]
- Shakhatreh, H.; Sawalmeh, A.H.; Al-Fuqaha, A.; Dou, Z.; Almaita, E.; Khalil, I.; Othman, N.S.; Khreishah, A.; Guizani, M. Unmanned aerial vehicles (UAVs): A survey on civil applications and key research challenges. IEEE Access 2019, 7, 48572–48634. [Google Scholar] [CrossRef]
- Avellar, G.S.; Pereira, G.A.; Pimenta, L.C.; Iscold, P. Multi-UAV routing for area coverage and remote sensing with minimum time. Sensors 2015, 15, 27783–27803. [Google Scholar] [CrossRef]
- Vasquez-Gomez, J.I.; Herrera-Lozada, J.C.; Olguin-Carbajal, M. Coverage path planning for surveying disjoint areas. In Proceedings of the 2018 International Conference on Unmanned Aircraft Systems (ICUAS), Dallas, TX, USA, 12–15 June 2018; pp. 899–904. [Google Scholar]
- Yu, X.; Jin, S.; Shi, D.; Li, L.; Kang, Y.; Zou, J. Balanced multi-region coverage path planning for unmanned aerial vehicles. In Proceedings of the 2020 IEEE International Conference on Systems, Man, and Cybernetics (SMC), Toronto, ON, Canada,, 11–14 October 2020; pp. 3499–3506. [Google Scholar]
- Li, L.; Shi, D.; Jin, S.; Yang, S.; Zhou, C.; Lian, Y.; Liu, H. Exact and heuristic multi-robot dubins coverage path planning for known environments. Sensors 2023, 23, 2560. [Google Scholar] [CrossRef]
- Campbell, J.F.; Corberán, Á.; Plana, I.; Sanchis, J.M.; Segura, P. Solving the length constrained K-drones rural postman problem. Eur. J. Oper. Res. 2021, 292, 60–72. [Google Scholar] [CrossRef]
- Priesler, M.; Tarsi, M. On some multigraph decomposition problems and their computational complexity. Discret. Math. 2004, 281, 247–254. [Google Scholar] [CrossRef]
- Eglese, R.; Letchford, A. General routing problem. In Encyclopedia of Optimization; Floudas, C.A., Pardalos, P.M., Eds.; Springer US: Boston, MA, USA, 2009; pp. 1252–1254. [Google Scholar] [CrossRef]
- Sokmen, O.C.; Emec, S.; Yilmaz, M.; Akkaya, G. An overview of Chinese postman problem. In Proceedings of the 3rd International Conference on Advanced Engineering Technologies, Istanbul, Turkey, 8–10 November 2019; Volume 10. [Google Scholar]
- Belenguer, J.M.; Benavent, E. The capacitated arc routing problem: Valid inequalities and facets. Comput. Optim. Appl. 1998, 10, 165–187. [Google Scholar] [CrossRef]
- Ahr, D. Contributions to Multiple Postmen Problems. Ph.D. Thesis, Ruprecht-Karls-Heidelberg University, Heidelberg, Germany, 2004. [Google Scholar]
- Ahr, D.; Reinelt, G. New heuristics and lower bounds for the min-max k-Chinese postman problem. In Proceedings of the Algorithms—ESA 2002: 10th Annual European Symposium, Rome, Italy, 17–21 September 2002; Proceedings 10. Springer: Berlin, Germany, 2002; pp. 64–74. [Google Scholar]
- Ahr, D.; Reinelt, G. A tabu search algorithm for the min–max k-Chinese postman problem. Comput. Oper. Res. 2006, 33, 3403–3422. [Google Scholar] [CrossRef]
- Willemse, E.J.; Joubert, J.W. Applying min–max k postmen problems to the routing of security guards. J. Oper. Res. Soc. 2012, 63, 245–260. [Google Scholar] [CrossRef]
- Shafahi, A.; Haghani, A. Generalized maximum benefit multiple Chinese postman problem. Transp. Res. Part Emerg. Technol. 2015, 55, 261–272. [Google Scholar] [CrossRef]
- Benavent, E.; Corberán, A.; Plana, I.; Sanchis, J.M. Min-Max K-vehicles windy rural postman problem. Netw. Int. J. 2009, 54, 216–226. [Google Scholar] [CrossRef]
- Benavent, E.; Corberán, A.; Plana, I.; Sanchis, J.M. New facets and an enhanced branch-and-cut for the min–max K-vehicles windy rural postman problem. Networks 2011, 58, 255–272. [Google Scholar] [CrossRef]
- Benavent, E.; Corberán, Á.; Desaulniers, G.; Lessard, F.; Plana, I.; Sanchis, J.M. A branch-price-and-cut algorithm for the min-max k-vehicle windy rural postman problem. Networks 2014, 63, 34–45. [Google Scholar] [CrossRef]
- Benavent, E.; Corberán, Á.; Sanchís Llopis, J.M. A metaheuristic for the min-max windy rural postman problem with k vehicles. Comput. Manag. Sci. 2010, 7, 269–287. [Google Scholar] [CrossRef]
- Dussault, B.; Golden, B.; Groër, C.; Wasil, E. Plowing with precedence: A variant of the windy postman problem. Comput. Oper. Res. 2013, 40, 1047–1059. [Google Scholar] [CrossRef]
- Dussault, B.; Golden, B.; Wasil, E. The downhill plow problem with multiple plows. J. Oper. Res. Soc. 2014, 65, 1465–1474. [Google Scholar] [CrossRef]
- Drones4Safety Project, EU Horizon 2020 Research and Innovation Programme. Available online: https://drones4safety.eu/ (accessed on 30 April 2023).
- Matlekovic, L.; Juric, F.; Schneider-Kamp, P. Microservices for autonomous UAV inspection with UAV simulation as a service. Simul. Model. Pract. Theory 2022, 119, 102548. [Google Scholar] [CrossRef]
- West, D.B. Introduction to Graph Theory, 2nd ed.; Prentice Hall: Hoboken, NJ, USA, 2000. [Google Scholar]
Input | Description |
---|---|
k | number of UAVs involved in inspection |
D | array of integers representing each UAV from 1 to k |
d | an element of D |
E | array of all possible directions a UAV can take on each edge |
e, | an element of E |
array of reversed directions for each direction in E | |
array of inspection costs for each direction in E | |
maximum theoretical inspection cost for a UAV, defined as a sum of costs in | |
array of possible successors for each direction in E | |
matrix of costs for UAVs taking each direction in E | |
array of all possible actions for UAVs to take; including all directions from E as well as , signifying the end of the route |
Output | Description |
---|---|
matrix of actions taken after each option from , for each UAV in D | |
matrix of accumulated costs for traversals identified in , for each UAV in D | |
matrix of Boolean values marking directions from E as inspected or not inspected, for each UAV in D | |
optimization variable representing a total cost of inspection |
Input | Description |
---|---|
array of deadheading costs for each direction in E | |
penalizing factor for increasing the cost of inspection flight | |
maximum theoretical total cost for a UAV, defined as a sum of inspection costs in one direction and deadheading costs in reversed direction | |
matrix of costs for UAVs taking a direction depending on the traversal type (inspect/deadhead) |
Solver | Time [s] | |
---|---|---|
Solution | Execution | |
Gurobi | 2.93 | 3.41 |
Gecode | 0.39 | 0.62 |
Chuffed | 0.42 | 0.53 |
OR-Tools | 0.39 | 0.48 |
Graph | Single-Objective Optimization | Multi-Objective Optimization | ||||||
---|---|---|---|---|---|---|---|---|
Time [s] | Cost | Time [s] | Cost | |||||
Solution | Execution | D1 | D2 | Solution | Execution | D1 | D2 | |
0.35 | 0.36 | 24 | 20 | 0.35 | 0.38 | 24 | 16 | |
0.46 | 2.12 | 58 | 56 | 0.63 | 2.38 | 56 | 58 | |
0.39 | 1.89 | 88 | 82 | 0.59 | 2.48 | 88 | 80 | |
0.53 | 8.47 | 60 | 60 | 0.87 | 122.00 | 60 | 60 | |
0.64 | 6.77 | 62 | 64 | 1.27 | 47.41 | 64 | 60 |
Graph | Single-Objective Optimization | Multi-Objective Optimization | ||||||||||
---|---|---|---|---|---|---|---|---|---|---|---|---|
Time [s] | Cost | Time [s] | Cost | |||||||||
S | E | D1 | D2 | D3 | D4 | S | E | D1 | D2 | D3 | D4 | |
4.23 | 56.12 | 34 | 42 | 40 | 38 | 3.58 | 1215.00 | 34 | 34 | 42 | 42 | |
2.66 | 32.52 | 40 | 34 | 38 | 26 | 9.40 | 33.92 | 34 | 26 | 38 | 40 | |
1.36 | 11.34 | 28 | 26 | 28 | 22 | 16.86 | 146.00 | 20 | 28 | 26 | 28 |
Graph | Time [s] | Cost | ||
---|---|---|---|---|
Solution | Execution | D1 | D2 | |
0.39 | 0.48 | 20 | 22 | |
0.81 | 26.76 | 56 | 56 | |
1.51 | 9.61 | 77 | 72 | |
49.45 | 754.77 | 60 | 60 | |
1.40 | 375.00 | 60 | 58 |
Graph | Time [s] | Cost | ||||
---|---|---|---|---|---|---|
Solution | Execution | D1 | D2 | D3 | D4 | |
10.26 | 81.00 | 40 | 40 | 40 | 41 | |
8.77 | 296.00 | 40 | 40 | 40 | 39 | |
16.26 | 36.99 | 28 | 27 | 26 | 28 |
Graph | Eulerian Trail | Multi-Weight | ||||||
---|---|---|---|---|---|---|---|---|
Time [s] | Cost | Time [s] | Cost | |||||
Solution | Execution | D1 | D2 | Solution | Execution | D1 | D2 | |
15.56 | 47.54 | 76 | 78 | 149.00 | 77 | 77 | ||
1.20 | 25.49 | 80 | 80 | 13.58 | 240.00 | 73 | 72 | |
1.41 | 14.22 | 52 | 52 | 2.32 | 52 | 50 |
Graph | Vehicles | Time [s] | Total Cost | |
---|---|---|---|---|
Solution | Execution | |||
2 | 0.39 | 0.48 | 22 | |
G1 | 3 | 0.45 | 0.53 | 16 |
4 | 0.48 | 0.62 | 14 | |
2 | 0.81 | 26.76 | 56 | |
G2 | 3 | 3.85 | 17.46 | 38 |
4 | 4.37 | 13.47 | 32 | |
2 | 1.51 | 9.61 | 77 | |
G3 | 3 | 1.21 | 7.33 | 49 |
4 | 1.11 | 5.56 | 36 | |
2 | 49.45 | 754.77 | 60 | |
G4 | 3 | 8.23 | 674.58 | 40 |
4 | 5.54 | 151.99 | 30 | |
2 | 1.40 | 375.00 | 60 | |
G5 | 3 | 3.45 | 81.00 | 40 |
4 | 9.76 | 40.30 | 30 |
Vehicles | Time [s] | Total Cost | |
---|---|---|---|
Solution | Execution | ||
2 | 1.53 | 3.97 | 67 |
3 | 3.93 | 5.25 | 50 |
4 | 3.59 | 3.91 | 41 |
Vehicles | Time [s] | Total Cost | |
---|---|---|---|
Solution | Execution | ||
2 | 1.14 | 3.84 | 67 |
3 | 1.49 | 2.59 | 47 |
4 | 2.57 | 2.65 | 38 |
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2023 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Matlekovic, L.; Schneider-Kamp, P. Constraint Programming Approach to Coverage-Path Planning for Autonomous Multi-UAV Infrastructure Inspection. Drones 2023, 7, 563. https://doi.org/10.3390/drones7090563
Matlekovic L, Schneider-Kamp P. Constraint Programming Approach to Coverage-Path Planning for Autonomous Multi-UAV Infrastructure Inspection. Drones. 2023; 7(9):563. https://doi.org/10.3390/drones7090563
Chicago/Turabian StyleMatlekovic, Lea, and Peter Schneider-Kamp. 2023. "Constraint Programming Approach to Coverage-Path Planning for Autonomous Multi-UAV Infrastructure Inspection" Drones 7, no. 9: 563. https://doi.org/10.3390/drones7090563
APA StyleMatlekovic, L., & Schneider-Kamp, P. (2023). Constraint Programming Approach to Coverage-Path Planning for Autonomous Multi-UAV Infrastructure Inspection. Drones, 7(9), 563. https://doi.org/10.3390/drones7090563